BSIM 4.6.1 - Release Enhancements over BSIM4.6.0

Mohan V. Dunga, Morgan Young, Ali M. Niknejad, Chenming Hu

Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley

May 2007

BSIM4.6.1 Release

Model Enhancements

- Error in the derivative calculation for dVdseffCV_dVb is fixed within b4ld.c.
- Warning messages about the limits on NOFF and VOFFCV are removed in b4check.c.
 - The C-V model is enhanced by adding a new definition for *VgsteffCV* to improve the sub-threshold fitting.
- New Material Model is introduced for predictive modeling of non-SiO₂ insulator, non-poly Si gate and non-Si channel.
- Mobility model, GIDL/GISL and Poly depletion models are made more predictive.

Bug Fix : dVdseffCV_dVb

- Reported by Geoffery Coram (ADI)
- Error in the derivative calculation for dVdseffCV_dVb fixed within b4ld.c.

The following lines in the code have been modified :

Capmod = 1

OLD: dVdseffCV_dVb = dT0_dVb * (1.0 - T5) + T5 * dT1_dVb; **NEW**: dVdseffCV_dVb = dT0_dVb * (T4 - T5) + T5 * dT1_dVb;

Capmod=2

OLD : $dVdseffCV_dVb = dT0_dVb * (1.0 - T5) + T5 * dT1_dVb;$ **NEW** : $dVdseffCV_dVb = dT0_dVb * (T4 - T5) + T5 * dT1_dVb;$

Changes to b4check.c

 Warning messages about the limits on NOFF and VOFFCV have been removed.

C-V Model

- A new VgsteffCV definition is introduced into C-V model to improve sub-threshold fitting.
- Setting CVCHARGEMOD = 1 activates the new VgsteffCV calculation which is similar to the Vgsteff formulation in the I-V model.

$$V_{gsteffCV} = \frac{nv_{t} \ln \left(1 + \exp\left(\frac{m^{*}(V_{gse} - V_{th})}{nv_{t}}\right)\right)}{m^{*} + nC_{oxe}\sqrt{\frac{2f_{s}}{qNDEPe_{si}}} \exp\left(-\frac{(1 - m^{*})(V_{gse} - V_{th}) - Voff'}{nv_{t}}\right)}$$
$$m^{*} = 0.5 + \frac{\arctan(MINVCV)}{p} \qquad Voff' = VOFFCV + \frac{VOFFCVL}{L_{eff}}$$

- Setting CVCHARGEMOD = 0 defaults C-V model to BSIM4.6.0.
- 6 new parameters added :
 - CVCHARGEMOD, MINVCV, LMINVCV, WMINVCV, PMINVCV and VOFFCVL

New Material Model

- A new materials model is introduced with the following features:
 - Predictive modeling of
 - Non-SiO2 insulator
 - Non-poly-Si gate
 - Non-silicon channel
 - Improved predictive models for GIDL/GISL leakage current, mobility degradation and short channel effects
 - A model selector (MTRLMOD) is used to turn on/off all the new materials parameters/equations, thus maintains backward compatibility

New Materials Model : New Parameters

- Model selector:
 - MTRLMOD : =1 activates the new-materials option and =0 (default) deactivates
- For non-poly-silicon gate:
 - PHIG : Gate work function
 - EPSRGATE : Dielectric constant of gate relative to vacuum (= 0 deactivates poly depletion)
- For non-SiO2 gate-dielectric:
 - EOT : Equivalent SiO2 thickness
 - VDDEOT : Gate voltage at which EOT is measured
- For non-silicon channel material:
 - EASUB : Electron affinity of substrate
 - EPSRSUB : Dielectric constant of substrate relative to vacuum
 - NIOSUB : Intrinsic carrier concentration at T=300.15K
 - BG0SUB : Band-gap of substrate at T=0K
 - TBGASUB : First parameter of band-gap change due to temperature
 - TBGBSUB : Second parameter of band-gap change due to temperature
 - ADOS : Density of states parameter to control charge centroid
 - BDOS : Density of states parameter to control charge centroid

Non-Silicon Channel Material

 Define the temperature-dependent intrinsic carrier concentrations and the band gap with the new non-silicon parameters for MTRLMOD = 1.

$$Eg0 = BG0SUB - \frac{TBGASUB * Tnom^2}{Tnom + TBGBSUB}$$
$$Eg(300.15) = BG0SUB - \frac{TBGASUB * 300.15^2}{300.15 + TBGBSUB}$$

$$ni = NI0SUB * \left(\frac{Tnom}{300.15}\right)^{3/2} \cdot e^{\frac{Eg(300.15K) - Eg0}{2V_t}}$$

$$Eg = BG0SUB - \frac{TBGASUB * Temp^2}{Temp + TBGBSUB}$$

Non-Silicon Channel Material

- For MTRLMOD = 1, replace the hard coded dielectric constant of 11.7 (for silicon) with EPSRSUB.
- Change hard coded ratio of channel and insulator dielectric-constants (3.0 for Si/SiO2), e.g.

$$litl = \sqrt{3.0 \cdot TOXE \cdot XJ} \longrightarrow litl = \sqrt{\frac{EPSRSUB \cdot EOT \cdot XJ}{3.9 * 8.854 * 10^{-12}}}$$

 Introduce two new parameters for charge centroid for non-silicon channel materials in both I-V and C-V models.

$$X_{dc} = \frac{ADOS \times 1.9 \times 10^{-9}}{1 + \left(\frac{Vgsteff + (VTH0 - VFB - \phi_s)}{2toxp}\right)^{0.7 \times BDOS}}$$

Non-SiO₂ Dielectric Material

Change hard coded ratio of channel and insulator dielectric-constants (3.0 for Si/SiO2), e.g.

 $litl = \sqrt{3.0 \cdot TOXE \cdot XJ} \longrightarrow litl = \sqrt{\frac{EPSRSUB \cdot EOT \cdot XJ}{3.9 * 8.854 * 10^{-12}}}$

• For MTRLMOD = 1, use EOT (defined as the electrical oxide thickness at V_{as} = VDDEOT) to calculate oxide thickness at flatband voltage.

$$Toxp = EOT - \frac{3.9}{EPSRSUB} \cdot X_{dc}|_{Vgs=VDDEOT, V_{ds}=V_{bs}=0}$$

Non-poly-Si gate Material

Poly depletion is calculated using the following equation :

$$V_{gse} = VFB + \Phi_{s} + \frac{q e_{gate} NGATE}{coxe^{2}} \left(\sqrt{1 + \frac{2coxe^{2} \left(V_{gs} - VFB - \Phi_{s} \right)}{q e_{gate} NGATE}} - 1 \right)$$

where
$$e_{gate} = EPSRGATE \cdot EPS0 \quad \text{for MTRLMOD} = 1$$
$$= EPSSI \qquad \text{for MTRLMOD} = 0$$

• Setting EPSRGATE = 0 turns the poly depletion model off.

Improved Mobility Model

For MTRLMOD = 1, mobility degradation uses a new definition of vertical field.

$$E_{eff} = \frac{V_{gsteff} + 2V_{th} - 2 * BSIM4type * (PHIG - EASUB - Eg/2 + 0.45)}{EOT} \cdot \frac{3.9}{EPSRSUB}$$

MOBMOD = 0 and MOBMOD = 1 are changed accordingly.

$$\mu_{eff} = \frac{U0 \cdot f(L_{eff})}{1 + \left(UA + UC \cdot V_{bseff}\right) E_{eff} + UB \cdot E_{eff}^2 + UD \left(\frac{V_{th} \cdot EOT}{V_{gsteff} + 2\sqrt{V_{th}^2 + 0.00001}}\right)^2}$$

$$\mu_{eff} = \frac{U0 \cdot f(L_{eff})}{1 + \left(UA \cdot E_{eff} + UB \cdot E_{eff}^2\right) \left(1 + UC \cdot V_{bseff}\right) UD \left(\frac{V_{th} \cdot EOT}{V_{gsteff} + 2\sqrt{V_{th}^2 + 0.00001}}\right)^2}$$

BSIM4.6.1 Release

UC Berkeley - 12

Improved GIDL/GISL Model

For MTRLMOD = 1, the flat band voltage at Source/Drain is calculated using

$$V_{fbsd} = PHIG - \left(EASUB + \frac{Eg0}{2} - BSIM4type \cdot MIN\left(\frac{Eg0}{2}, V_t \ln\left(\frac{NSD}{ni}\right)\right)\right)$$

For MTRLMOD = 1, GIDL/GISL is given by

$$I_{GIDL} = AGIDL \cdot W_{effCJ} \cdot Nf \qquad \cdot \frac{V_{ds} - V_{gse} - EGIDL + V_{fbsd}}{EOT \cdot \frac{EPSRSUB}{3.9}} \\ \cdot exp\left(-\frac{EOT \cdot \frac{EPSRSUB}{3.9} \cdot BGIDL}{V_{ds} - V_{gse} - EGIDL + V_{fbsd}}\right) \cdot \frac{V_{db}^3}{CGIDL + V_{db}^3}$$

$$I_{GISL} = AGISL \cdot W_{effCJ} \cdot Nf \qquad \cdot \frac{-V_{ds} - V_{gse} - EGISL + V_{fbsd}}{EOT \cdot \frac{EPSRSUB}{3.9}} \\ \cdot exp\left(-\frac{EOT \cdot \frac{EPSRSUB}{3.9} \cdot BGISL}{-V_{ds} - V_{gse} - EGISL + V_{fbsd}}\right) \cdot \frac{V_{sb}^3}{CGISL + V_{sb}^3}$$

BSIM4.6.1 Release

UC Berkeley - 13