BSIM6.1.0 MOSFET Compact Model

Technical Manual

Authors:
Harshit Agarwal, Sourabh Khandelwal
Juan Pablo Duarte, Yogesh Singh Chauhan
Ali Niknejad and Chenming Hu

Project Director:
Prof. Ali Niknejad and Prof. Chenming Hu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720

Copyright 2014
The Regents of University of California
All Right Reserved

Past Developers :

Navid Paydavosi, UC Berkeley
Sriramkumar Venugopalan, UC Berkeley
Pankaj Thakur, UC Berkeley
Mohammed A. Karim, UC Berkeley

BSIM6 Web Page

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM6

Contents

1 RELEASE NOTES 8
1.1 Updates made in BSIM6.1.0 8
2 BSIM6 Model Equations 10
2.1 Physical constants 10
2.2 Effective Channel Length \& Width 11
2.3 Binning Calculations 11
2.4 Global geomertical scaling 12
2.5 Terminal Voltages 17
2.6 Pinch-off Potential and Normalized Charge Calculation 18
2.6.1 Pinch-off Potential with Poly Depletion 18
2.6.2 Normalized Charge Density 20
2.7 Short Channel Effects 25
2.8 Drain Saturation Voltage 25
2.9 Mobility degradation with vertical field 26
2.10 Parasitic series resistance 27
2.10.1 Bias Independent External Series Resistance, Bias Dependent In- ternal Resistance (RDSMOD=0) 27
2.10.2 Bias Dependent External Series Resistance $\left(R_{s}(V) \& R_{d}(V)\right)$ 28
2.10.3 Bias Dependent Internal Resistance (RDSMOD=2) 28
2.10.4 Sheet resistance model 29
2.11 Output Conductance 29
2.12 Velocity Saturation 31
2.13 Effective Mobility 31
2.14 Drain Current Model 31
2.14.1 Without Velocity Saturation 31
2.14.2 Including Velocity Saturation 32
2.15 Impact Ionization Model 34
2.16 GIDL/GISL Current Model 35
2.17 Gate Tunneling Current Model 35
2.17.1 Model Selectors 36
2.17.2 Equations for Tunneling Currents 37
2.18 Gate resistance and Body resistance network Model 40
2.18.1 Gate Electrode Electrode and Intrinsic-Input Resistance (IIR) Model 40
2.18.2 Substrate Resistance Network 42
2.19 Noise Modeling 45
2.19.1 Flicker Noise Models 45
2.19.2 Channel Thermal Noise 46
2.19.3 Gate Current Shot Noise 49
2.19.4 Resistor Noise 49
2.20 Self Heating Model 49
3 Asymmetric MOS Junction Diode Models 50
3.1 Junction Diode IV Model 50
3.2 Junction Diode CV Model 52
4 Layout dependent Parasitics Models 55
4.1 Layout-Dependent Parasitics Models 55
4.1.1 Geometry Definition 55
4.1.2 Model Formulation and Options 56
5 Temperature dependence Models 58
5.1 Temperature Dependence Model 58
5.1.1 Length Scaling of Temperature parameters 59
5.1.2 Temperature Dependence of Threshold Voltage 59
5.1.3 Temperature Dependence of Mobility 60
5.1.4 Temperature Dependence of Saturation Velocity 60
5.1.5 Temperature Dependence of LDD Resistance 60
5.1.6 Temperature Dependence of Junction Diode IV 61
5.1.7 Temperature Dependence of Junction Diode CV 62
5.1.8 Temperature Dependences of E_{g} and n_{i} 64
6 Stress effect Model Development 64
6.1 Stress Effect Model 64
6.1.1 Stress Effect Model Development 65
6.1.2 Effective SA and SB for Irregular LOD 68
7 Well Proximity Effect Model 69
8 Well Proximity Effect Model 69
8.1 Well Proximity Effect Model 70
9 C-V Model 71
10 Parameter Extraction Procedure 76
10.1 Extraction of Geometry Independent Parameters 77
10.1.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \& $V_{B}=0 V$ 77
10.1.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right], V_{S}=0 V$ $\& V_{B}=0 V$ 78
10.1.3 Gate Current I_{G} vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 \mathrm{~V}$ 79
10.1.4 Drain Current I_{D} vs. V_{D} Analysis @ various $V_{G}, V_{S}=0 \mathrm{~V}$ \& $V_{B}=0 V$ 80
10.1.5 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$ 80
10.1.6 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B} 80
10.1.7 Fitting Verification 81
10.2 Extraction of Short Channel Effects \& Length Scaling Parameters 81
10.2.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \& $V_{B}=0 V$ 82
10.2.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, \text { sat }}\right], V_{S}=0 V$ $\& V_{B}=0 V$ 82
10.2.3 I_{G} vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 V$ 84
10.2.4 I_{D} vs. V_{D} Analysis @ various $V_{G}, V_{S}=0 V \& V_{B}=0 V$ 84
10.2.5 $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$ 84
10.2.6 I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right] \&$ various V_{B} (or various V_{S}) 85
10.2.7 Fitting Verification 85
10.3 Extraction of Narrow Channel Effects \& Width Scaling Parameters 86
10.3.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \& $V_{B}=0 V$ 86
10.3.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, \text { sat }}\right], V_{S}=0 V$ $\& V_{B}=0 V$ 86
10.3.3 Gate Current I_{G} vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 V$ 87
10.3.4 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$ 88
10.3.5 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B} (or various V_{S}) 88
10.3.6 Fitting Verification 88
10.4 Extraction of Parameters for Narrow/Short Channel Devices 88
10.4.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \& $V_{B}=0 V$ 89
10.4.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, \text { lin }}, V_{D, \text { sat }}\right], V_{S}=0 V$ $\& V_{B}=0 V$ 89
10.4.3 $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$ 90
10.4.4 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B} (or various V_{S}) 90
10.4.5 Fitting Verification 91
10.5 Extraction of Temperature Dependence Parameters 91
10.5.1 Wide \& Long Channel Devices 91
10.5.2 Length Scaling of Wide Channel Devices 93
11 Instance Parameters 95
12 Model Controllers and Process Parameters 96
13 Basic Model Parameters 99
14 High-Speed/RF Model Parameters 106
15 Flicker and Thermal Noise Model Parameters 109
16 Layout-Dependent Parasitic Model Parameters 110
17 Asymmetric Source/Drain Junction Diode Model Parameters 111
18 Temperature Dependence and Self Heating Parameters 114
19 Stress Effect Model Parameters 116
20 Well-Proximity Effect Parameters 118
21 Parameter equivalence between BSIM6 \& BSIM4 119
22 Appendix A : Smoothing Function 123
22.1 Polynomial Smoothing 123
23 Ackowledgements 129

1 RELEASE NOTES

1.1 Updates made in BSIM6.1.0

Model Enhancement

- Self heating effect model is added.
- New CVMOD added for consistent IV-CV.
- Length and Width shrinking parameters LMLT and WMLT added.
- Parameter BINUNIT added to select binning unit.
- New source-drain resistance model with bias independent external and bias dependent internal resistance, introduced for $\mathrm{RDSMOD}=0$ (similar to $\mathrm{RDSMOD}=0$ in BSIM4). The RDSMOD $=0$ model of BSIM6.0.0 where both bias dependent and independent parts are internal, is now accessed via $\mathrm{RDSMOD}=2$ in BSIM6.0.0.
- Operating point variable TK, which returns total device temperature in Kelvin, is added.
- Binning equation pattern modified for robustness by introducing length and width reduction parameter DLBIN and DWBIN
- Calculation of effective perimeter and area of source and drain region from layout when PS, PD, AS and AD are not given, is added.

Bug Fixes

- Redundancy in gate current handling for negative $V_{d s}$ removed.
- Bugs in operating point variable ISEFF and IDEFF removed.
- Operating point variable for body and gate capacitance updated.
- NF multiplication in Flicker noise model is corrected
- Flat-band voltage between gate and S/D diffusion region (vfbsdr) redefined to have proper sign.
- Boundary value check is applied to binning variable instead of root parameter for CDSCB, CDSCD, UC, GIDL, GISL, CKAPPAS, CKAPPAD, PDITS, PCLM, PCLMCV, PSAT, CIT, NFACTOR and K2.

Other Changes

- Mobility reduction factor $\left(D_{r}\right)$ due to S/D resistance now considers the effect of velocity saturation ($D_{v s a t}$) and vertical field mobility degradation $\left(D_{\text {mob }}\right)$.
- $L_{e f f}$ and $W_{e f f}$ expressions modified to align with BSIM4.
- Noise names made similar to noise names in BSIM4.
- Check is applied to ensure effective Length and Width are positive.
- Check is applied on nuEndS and nuEndD for smooth operation when any of them is zero.
- $N F A C T O R_{t}$ is clamped for lower bound to avoid negative values at low temperatures.
- Body bias dependency of Early voltage due to DIBL ($V_{a, D I B L}$) modified to avoid negative $V_{a, D I B L}$.
- KVTH0WE, K2WE, KU0WE, KT1, KT2 and PSATB are made binnable.
- Effective length and width for binning equations modified.
- $J T S S W G D_{t}$ and $J T S S W G S_{t}$ in diode temperature module updated to use Weffcj (as in BSIM4) instead of W used in BSIM6.0.0.

2 BSIM6 Model Equations

2.1 Physical constants

Physical quantities are in M.K.S units unless specified otherwise.

$$
\begin{align*}
& q=1.6 \times 10^{-19} C \tag{2.1}\\
& \epsilon_{0}=8.8542 \times 10^{-12} \quad \frac{F}{m} \tag{2.2}\\
& \epsilon_{\text {sub }}=E P S R S U B \cdot \epsilon_{0} \quad \frac{F}{m} \tag{2.3}\\
& \epsilon_{o x}=E P S R O X \cdot \epsilon_{0} \frac{F}{m} \tag{2.4}\\
& C_{o x}=\frac{3.9 \cdot \epsilon_{0}}{T O X E} \frac{F}{m^{2}} \tag{2.5}\\
& \epsilon_{\text {ratio }}=\frac{E P S R S U B}{3.9} \tag{2.6}
\end{align*}
$$

2.2 Effective Channel Length \& Width

$$
\begin{align*}
\Delta L= & L I N T+\frac{L L}{\left(L_{\text {new }}\right)^{L L N}}+\frac{L W}{\left(W_{\text {new }}\right)^{L W N}}+\frac{L W L}{\left(L_{\text {new }}\right)^{L L N} \cdot\left(W_{\text {new }}\right)^{L W N}} \tag{2.8}\\
\Delta W= & W I N T+\frac{W L}{\left(L_{\text {new }}\right)^{W L N}}+\frac{W W}{\left(W_{\text {new }}\right)^{W W N}}+\frac{W W L}{L_{\text {new }}^{W L N} \cdot\left(W_{\text {new }}\right)^{W W N}} \tag{2.9}\\
\Delta L_{1}= & L I N T+\frac{L W}{\left(L_{\text {new }}+D L B I N\right)^{L L N}}+\frac{L W L}{\left(W_{\text {new }}+D W B I N\right)^{L W N}}+ \tag{2.10}\\
& \frac{W}{\left(L_{\text {new }}+D L B I N\right)^{L L N} \cdot\left(W_{\text {new }}+D W B I N\right)^{L W N}} \tag{2.11}\\
\Delta W_{1}= & W I N T+\frac{W L}{\left(L_{\text {new }}+D L B I N\right)^{W L N}}+\frac{W W}{\left(W_{\text {new }}+D W B I N\right)^{W W N}}+ \tag{2.12}\\
& \frac{W W L}{\left(L_{\text {new }}+D L B I N\right)^{W L N} \cdot\left(W_{\text {new }}+D W B I N\right)^{W W N}} \\
L_{\text {new }}= & L * L M L T+X L ; \tag{2.13}\\
W_{\text {new }}= & \frac{W}{N F} * W M L T+X W ; \tag{2.14}\\
\Delta L_{C V}= & D L C \tag{2.15}\\
\Delta W_{C V}= & D W C \tag{2.16}\\
L_{e f f}= & L * L M L T+X L-2 \Delta L \tag{2.17}\\
W_{\text {eff }}= & W * W M L T+X W-2 \Delta W \tag{2.18}\\
L_{e f f, C V}= & L * L M L T+X L-2 \Delta L_{C V} \tag{2.19}\\
W_{\text {eff }, C V}= & W * W M L T+X W-2 \Delta W_{C V} \tag{2.20}\\
L_{e f f, B i n}= & L * L M L T+X L-2 \Delta L_{1} \tag{2.21}\\
W_{\text {eff }, \text { Bin }}= & W * W M L T+X W-2 \Delta W_{1} \tag{2.22}
\end{align*}
$$

2.3 Binning Calculations

For a given L and W , each model parameter $P A R A M_{i}$ is calculated as a function of PARAM, and length dependent term, LPARAM, width dependent term, WPARAM, area
dependent term, PPARAM:

$$
\begin{equation*}
P A R A M_{i}=P A R A M+L P A R A M \cdot B I N L+W P A R A M \cdot B I N W+P P A R A M \cdot B I N W L \tag{2.24}
\end{equation*}
$$

BINUNIT is the binning unit selector. When BINUNIT=1,

$$
\begin{align*}
B I N L & =\frac{1 e^{-6}}{L_{e f f}+D L B I N} \tag{2.25}\\
B I N W & =\frac{1 e^{-6}}{W_{e f f}+D W B I N} \tag{2.26}
\end{align*}
$$

when BINUNIT=0,

$$
\begin{align*}
B I N L & =\frac{1.0}{L_{e f f}+D L B I N} \tag{2.27}\\
B I N W & =\frac{1.0}{W_{e f f}+D W B I N} \tag{2.28}
\end{align*}
$$

and

$$
\begin{equation*}
B I N W L=B I N L \cdot B I N W \tag{2.29}
\end{equation*}
$$

For the list of binable parameters, please refer to the complete parameter list at the end of this technical note.

2.4 Global geomertical scaling

Following scaling formulation is used in global scaling -

$$
\begin{align*}
& \text { PARAM }[L]=\text { PARAM } \cdot\left[1+P A R A M L \cdot\left(\frac{1}{L_{\text {eff }}^{P A R A M L E X P}}-\frac{1}{L L O N G^{P A R A M L E X P}}\right)\right. \\
& \quad+P A R A M W \cdot\left(\frac{1}{W_{\text {eff }}^{P A R A M W E X P}}-\frac{1}{W W I D E^{P A R A M W E X P}}\right) \\
& \left.\quad+P A R A M W L \cdot\left(\frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{\text {PARAMWLEXP }}}\right)\right] \tag{2.30}
\end{align*}
$$

LLONG is the length of extracted long channel device and WWIDE is the width for extracted wide device. They are used to ensure that scaling parameters do not affect longwide fitting. We will not mention LLONG and WWIDE part again but all of the following scaling equation use above kind of formulation.

$$
\begin{align*}
& N D E P[L]=N D E P \cdot\left[1+N D E P L 1 \cdot \frac{1}{L_{e f f}^{N D E P L E X P 1}}+N D E P L 2 \cdot \frac{1}{L_{e f f}^{N D E P L E X P 2}}\right. \\
& \left.\quad+N D E P W \cdot \frac{1}{W_{e f f}^{N D E P W E X P}}+N D E P W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{N D E P W L E X P}}\right] \tag{2.3.3}
\end{align*}
$$

$$
\begin{align*}
& N F A C T O R[L]=N F A C T O R \cdot\left[1+N F A C T O R L \cdot \frac{1}{L_{\text {eff }}^{N F A C T O R L E X P}}\right. \\
& \left.+N F A C T O R W \cdot \frac{1}{W_{e f f}^{N F A C T O R W E X P}}+N F A C T O R W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{\text {NFACTORWLEXP }}}\right] \\
& C D S C D[L]=C D S C D \cdot\left[1+C D S C D L \cdot \frac{1}{L_{\text {eff }}^{C D S C D L E X P}}\right] \\
& C D S C B[L]=C D S C B \cdot\left[1+C D S C B L \cdot \frac{1}{L_{\text {eff }}^{C D S C B L E X P}}\right] \\
& U 0[L]= \begin{cases}U 0 \cdot\left[1-U 0 L \cdot \frac{1}{L_{\text {eff }}^{U 0 L E X P}}\right] & U 0 L E X P>0 \\
U 0 \cdot[1-U 0 L] & \text { Otherwise }\end{cases} \\
& U A[L]=U A \cdot\left[1+U A L \cdot \frac{1}{L_{e f f}^{U A L E X P}}+U A W \cdot \frac{1}{W_{e f f}^{U A W E X P}}+U A W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{U A W L E X P}}\right] \tag{2.36}\\
& E U[L]=E U \cdot\left[1+E U L \cdot \frac{1}{L_{e f f}^{E U L E X P}}+E U W \cdot \frac{1}{W_{e f f}^{E U W E X P}}+E U W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{E U W L E X P}}\right] \tag{2.37}\\
& U D[L]=U D \cdot\left[1+U D L \cdot \frac{1}{L_{\text {eff }}^{U D L E X P}}\right] \tag{2.38}\\
& U C[L]=U C \cdot\left[1+U C L \cdot \frac{1}{L_{\text {eff }}^{U C L E X P}}+U C W \cdot \frac{1}{W_{\text {eff }}^{U C W E X P}}+U C W L \cdot \frac{1}{\left(L_{\text {eff }} \cdot W_{\text {eff }}\right)^{U C W L E X P}}\right] \\
& E T A 0[L]=E T A 0 \cdot\left[\frac{1}{L_{\text {eff }}^{D S U B}}\right] \tag{2.39}\\
& E T A B[L]=E T A B \cdot\left[\frac{1}{L_{\text {eff }}^{E T A B E X P}}\right] \tag{2.41}\\
& P D I B L C[L]=P D I B L C \cdot\left[1+P D I B L C L \cdot \frac{1}{L_{e f f}^{P D I B L C L E X P}}\right] \tag{2.42}\\
& D E L T A[L]=D E L T A \cdot\left[1+D E L T A L \cdot \frac{1}{14} \frac{1}{L_{\text {eff }}^{D E L T L E X P}}\right] \tag{2.43}
\end{align*}
$$

$$
\begin{align*}
& F P R O U T[L]=F P R O U T \cdot\left[1+F P R O U T L \cdot \frac{1}{L_{\text {eff }}^{F P O U T L E X P}}\right] \tag{2.44}\\
& P C L M[L]=P C L M \cdot\left[1+P C L M L \cdot \frac{1}{L_{\text {eff }}^{P C L M L E X P}}\right] \tag{2.45}\\
& V S A T[L]=V S A T \cdot\left[1+V S A T L \cdot \frac{1}{L_{\text {eff }}^{V S A T L E X P}}+V S A T W \cdot \frac{1}{W_{\text {eff }}^{V S A T W E X P}}\right. \\
& \left.+V S A T W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{V S A T W L E X P}}\right] \tag{2.46}\\
& \operatorname{PSAT}[L]=P S A T \cdot\left[1+P S A T L \cdot \frac{1}{L_{\text {eff }}^{P S A T L E X P}}\right] \tag{2.47}\\
& P T W G[L]=P T W G \cdot\left[1+P T W G L \cdot \frac{1}{L_{\text {eff }}^{P T W G L E X P}}\right] \tag{2.48}\\
& A L P H A 0[L]=A L P H A 0 \cdot\left[1+A L P H A 0 L \cdot \frac{1}{L_{\text {eff }}^{A L P H A O L E X P}}\right] \tag{2.49}\\
& A G I D L[L]=A G I D L \cdot\left[1+A G I D L L \cdot \frac{1}{L_{e f f}}+A G I D L W \cdot \frac{1}{W_{e f f}}\right] \tag{2.50}\\
& A G I S L[L]=A G I S L \cdot\left[1+A G I S L L \cdot \frac{1}{L_{e f f}}+A G I S L W \cdot \frac{1}{W_{\text {eff }}}\right] \tag{2.51}\\
& A I G C[L]=A I G C \cdot\left[1+A I G C L \cdot \frac{1}{L_{e f f}}+A I G C W \cdot \frac{1}{W_{\text {eff }}}\right] \tag{2.52}\\
& A I G S[L]=A I G S \cdot\left[1+A I G S L \cdot \frac{1}{L_{e f f}}+A I G S W \cdot \frac{1}{W_{e f f}}\right] \tag{2.53}\\
& A I G D[L]=A I G D \cdot\left[1+A I G D L \cdot \frac{1}{L_{e f f}}+A I G D W \cdot \frac{1}{W_{e f f}}\right] \tag{2.54}\\
& P I G C D[L]=P I G C D \cdot\left[1+P I G C D L \cdot \frac{1}{L_{e f f}}\right] \tag{2.55}\\
& N D E P C V[L]=N D E P C V \cdot\left[1+N D E P C V L 1 \cdot \frac{1}{L_{e f f}^{N D E P C V L E X P 1}}\right. \\
& +N D E P C V L 2 \cdot \frac{1}{L_{\text {eff }}^{N D E P C V L E X P 2}}+N D E P C V W \cdot \frac{1}{W_{e f f}^{N D E P C V W E X P}} \\
& \left.+N D E P C V W L \cdot \frac{151}{\left(L_{e f f} \cdot W_{e f f}\right)^{\text {NDEPCVWLEXP }}}\right] \tag{2.56}
\end{align*}
$$

$$
\begin{align*}
& V F B C V[L]=V F B C V \cdot\left[1+V F B C V L \cdot \frac{1}{L_{e f f}^{V F B C V L E X P}}\right. \\
& \left.\quad+V F B C V W \cdot \frac{1}{W_{e f f}^{V F B C V W E X P}}+V F B C V W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{V F B C V W L E X P}}\right] \tag{2.57}
\end{align*}
$$

$$
\begin{align*}
& V S A T C V[L]=V S A T C V \cdot\left[1+V S A T C V L \cdot \frac{1}{L_{\text {eff }}^{V S A T C V L E X P}}\right. \\
& \left.\quad+V S A T C V W \cdot \frac{1}{W_{e f f}^{V S A T C V W E X P}}+V S A T C V W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{V S A T C V W L E X P}}\right] \tag{2.58}
\end{align*}
$$

$P C L M C V[L]=P C L M C V \cdot\left[1+P C L M C V L \cdot \frac{1}{L_{e f f}^{P C L M C V L E X P}}\right]$
$K 2[L]=K 2 \cdot\left[1+K 2 L \cdot \frac{1}{L_{e f f}^{K 2 L E X P}}+K 2 W \cdot \frac{1}{W_{e f f}^{K 2 W E X P}}+K 2 W L \cdot \frac{1}{\left(L_{e f f} \cdot W_{e f f}\right)^{K 2 W L E X P}}\right]$
$P R W B[L]=P R W B \cdot\left[1+P R W B L \cdot \frac{1}{L_{\text {eff }}^{P R W B L E X P}}\right]$
$R S W[L]=R S W \cdot\left[1+R S W L \cdot \frac{1}{L_{e f f}^{R S W L E X P}}\right]$
$R D W[L]=R D W \cdot\left[1+R D W L \cdot \frac{1}{L_{e f f}^{R D W L E X P}}\right]$
$R D S W[L]=R D S W \cdot\left[1+R D S W L \cdot \frac{1}{L_{e f f}^{R D S W L E X P}}\right]$

2.5 Terminal Voltages

BSIM6 is a body referenced model.

$$
\begin{align*}
& V_{t}=\frac{K \cdot T}{q} \tag{2.65}\\
& V_{g}=V_{g}-V_{b} \tag{2.66}\\
& V_{d}=V_{d}-V_{b} \tag{2.67}\\
& V_{s}=V_{s}-V_{b} \tag{2.68}\\
& V_{g s}=V_{g}-V_{s} \tag{2.69}\\
& V_{g d}=V_{g}-V_{d} \tag{2.70}\\
& V_{g b}=V_{g}-V_{b} \tag{2.71}\\
& V_{d s}=V_{d}-V_{s} \tag{2.72}\\
& V_{d s x}=\sqrt{V_{d s}^{2}+0.01}-0.1 \tag{2.73}\\
& V_{b s x}=-\left[V_{s}+\frac{1}{2}\left(V_{d s}-V_{d s x}\right)\right] \tag{2.74}
\end{align*}
$$

2.6 Pinch-off Potential and Normalized Charge Calculation

2.6.1 Pinch-off Potential with Poly Depletion

$$
\begin{align*}
& \phi_{b}=\ln \left(\frac{n_{b o d y}}{n_{i}}\right) \tag{2.75}\\
& \gamma_{0}=\frac{\sqrt{2 \cdot q \cdot \epsilon_{s i} \cdot N D E P}}{C_{o x} \sqrt{n V_{t}}} \tag{2.76}\\
& \gamma_{g}=\frac{\sqrt{2 \cdot q \cdot \epsilon_{s i} \cdot N G A T E}}{C_{o x} \sqrt{n V_{t}}} \tag{2.77}\\
& \gamma^{\prime}=\gamma_{0} \cdot \sqrt{n V_{t}} \tag{2.78}\\
& \gamma_{g}^{\prime}=\gamma_{g} \cdot \sqrt{n V_{t}} \tag{2.79}\\
& \delta_{P D}=\frac{N D E P}{N G A T E} \tag{2.80}\\
& \left(\frac{\gamma_{0}}{\gamma_{g}}\right)^{2}=\left(\frac{\frac{\sqrt{2 \cdot q \cdot \epsilon_{s i} \cdot N D E P}}{C_{o x} \sqrt{V_{t}}}}{\frac{\sqrt{2 \cdot q \cdot q \epsilon_{s i} \cdot N G A T E}}{C_{o x} \sqrt{n V_{t}}}}\right)^{2}=\frac{N D E P}{N G A T E}=\delta_{P D} \tag{2.81}\\
& \gamma=\frac{\gamma_{0}}{1+\delta_{P D}} \tag{2.82}
\end{align*}
$$

In accumulation and inversion under depletion approximation, the bulk charge is given as [1]

$$
\begin{equation*}
Q_{b}=-\operatorname{sign}\left(\psi_{s}\right) \cdot \gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t} \cdot\left(e^{-\frac{\psi_{s}}{V_{t}}}-1\right)+\psi_{s}} \tag{2.83}
\end{equation*}
$$

From potential balance equation including poly depletion,

$$
\begin{equation*}
V_{G}=V_{F B}+\psi_{S}-\frac{Q_{i}+Q_{b}}{C_{o x}}+\left(\frac{Q_{i}+Q_{b}}{\gamma_{g}^{\prime} \cdot C_{o x}}\right)^{2} \tag{2.84}
\end{equation*}
$$

At pinch off, $\psi_{S}=\psi_{P}$ and $Q_{i}=0$. Substituting in (2.83) and (2.84),

$$
\begin{align*}
V_{G}-V_{F B} & =\psi_{P}+\gamma^{\prime} \cdot \sqrt{V_{t} \cdot\left(e^{-\frac{\psi_{P}}{V_{t}}}-1\right)+\psi_{P}}+\left(\frac{\gamma^{\prime}}{\gamma_{g}^{\prime}}\right)^{2}\left(V_{t} \cdot\left(e^{-\frac{\psi_{P}}{V_{t}}}-1\right)+\psi_{P}\right) \tag{2.85}\\
& =\psi_{P}+\gamma^{\prime} \cdot \sqrt{V_{t} \cdot\left(e^{-\frac{\psi_{P}}{V_{t}}}-1\right)+\psi_{P}}+\delta_{P D}\left(V_{t} \cdot\left(e^{-\frac{\psi_{P}}{V_{t}}}-1\right)+\psi_{P}\right) \tag{2.86}
\end{align*}
$$

Normalizing it,

$$
\begin{equation*}
v_{g}-v_{f b}=\psi_{p}+\gamma_{0} \cdot \sqrt{e^{-\psi_{p}}+\psi_{p}-1}+\delta_{P D}\left(e^{-\psi_{p}}-1+\psi_{p}\right) \tag{2.87}
\end{equation*}
$$

Explicit expression for ψ_{p} can be derived from above relation in the asymptotic form by inspecting the behavior in three different regions. First consider the depletion and inversion region of operation where $\psi_{p} \gg 0$ so that $e^{-\psi_{p}}$ is very small. Let $\zeta_{1}=e^{-\psi_{p}}$

$$
\begin{equation*}
v_{g}-v_{f b}=\psi_{p}+\gamma_{0} \cdot \sqrt{\psi_{p}+\zeta_{1}-1}+\delta_{P D}\left(\zeta_{1}-1+\psi_{p}\right) \tag{2.88}
\end{equation*}
$$

Let

$$
\begin{equation*}
\sqrt{\psi_{p}+\zeta_{1}-1}=x \tag{2.89}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{p}=x^{2}+1-\zeta_{1} \tag{2.90}
\end{equation*}
$$

Thus

$$
\begin{equation*}
v_{g}-v_{f b}=x^{2}+1-\zeta_{1}+\gamma_{0} \cdot x+\delta_{P D} \cdot x^{2} \tag{2.91}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{2}+\frac{\gamma_{0}}{1+\delta_{P D}} \cdot x+\frac{1-\zeta_{1}}{1+\delta_{P D}}-\frac{v_{g}-v_{f b}}{1+\delta_{P D}}=0 \tag{2.92}
\end{equation*}
$$

This gives

$$
\begin{gather*}
x=\left[\sqrt{\frac{v_{g}-v_{f b}-1+\zeta_{1}}{1+\delta_{P D}}+\left(\frac{\gamma_{0}}{2 \cdot\left(1+\delta_{P D}\right)}\right)^{2}}-\frac{\gamma_{0}}{2 \cdot\left(1+\delta_{P D}\right)}\right] \tag{2.93}\\
\psi_{p}=x^{2}+1-\zeta_{1}=\left[\sqrt{\frac{v_{g}-v_{f b}-1+\zeta_{1}}{1+\delta_{P D}}+\left(\frac{\gamma_{0}}{2 \cdot\left(1+\delta_{P D}\right)}\right)^{2}}-\frac{\gamma_{0}}{2 \cdot\left(1+\delta_{P D}\right)}\right]^{2}+1-\zeta_{1} \tag{2.94}\\
=\left[\sqrt{\frac{v_{g}-v_{f b}-1+\zeta_{1}}{1+\delta_{P D}}+\left(\frac{\gamma}{2}\right)^{2}}-\frac{\gamma}{2}\right]^{2}+1-\zeta_{1} \tag{2.95}
\end{gather*}
$$

where $\gamma=\frac{\gamma_{0}}{1+\delta_{P D}}$
Similarly,
when ψ_{p} is close to 0

$$
\begin{equation*}
\psi_{p 0}=\left[\frac{v_{g}-v_{f b}}{2}-3\left(1+\frac{\gamma}{\sqrt{2}}\right)\right]+\sqrt{\left[\frac{v_{g}-v_{f b}}{2}-3\left(1+\frac{\gamma}{\sqrt{2}}\right)\right]^{2}+6\left(v_{g}-v_{f b}\right)} \tag{2.96}
\end{equation*}
$$

and in accumulation where $\psi_{p} \ll 0\left(\zeta_{2}=\psi_{p}\right)$,

$$
\begin{equation*}
\psi_{p}=-\ln \left[1-\zeta_{2}+\left(\frac{v_{g}-v_{f b}-\zeta_{2}}{\gamma}\right)^{2}\right] \tag{2.97}
\end{equation*}
$$

Thus the pinch off potential is expressed as

$$
\psi_{p}= \begin{cases}-\ln \left[1-\psi_{p 0}+\left(\frac{v_{g}-v_{f b}-\psi_{p 0}}{\gamma}\right)^{2}\right] & \text { if } v_{g}-v_{f b}<0 \tag{2.98}\\ 1-e^{-\psi_{p 0}}+\left[\sqrt{v_{g}-v_{f b}-1+e^{-\psi_{p 0}}+\left(\frac{\gamma}{2}\right)^{2}}-\frac{\gamma}{2}\right]^{2} & \text { otherwise }\end{cases}
$$

Note: Derivatives of ψ_{p} are continuous in all regions.

2.6.2 Normalized Charge Density

Inversion Charge [2], [3] : Normalized inversion charge density at source/drain is newly derived for BSIM6 and can be obtained as follows.
Charge sheet model approximates inversion charge density as

$$
\begin{equation*}
Q_{i}=-\gamma^{\prime} . C_{o x} \cdot \sqrt{V_{t}}\left[\sqrt{\frac{\psi_{S}}{V_{t}}+e^{\frac{\psi_{S}-2 . \phi_{F}-V_{c h}}{V_{t}}}}-\sqrt{\frac{\psi_{S}}{V_{t}}}\right] \tag{2.99}
\end{equation*}
$$

Using inversion charge linearization [3],

$$
\begin{equation*}
Q_{i}=n_{q} \cdot C_{o x} \cdot\left(\psi_{S}-\psi_{P}\right) \tag{2.100}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{S}=\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}} \tag{2.101}
\end{equation*}
$$

Substituting ψ_{S} from (2.101) in (2.99),

$$
\begin{equation*}
-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}=\left[\sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}+e^{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}-2 . \phi_{F}-V_{c h}}{V_{t}}}}-\sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}}\right] \tag{2.102}
\end{equation*}
$$

rearranging,

$$
\begin{align*}
& {\left[-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}+\sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}}\right]^{2}=\left[\sqrt{\left.\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}+e^{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}-2 . \phi_{F}-V_{c h}}}{V_{t}}}\right]^{2}}\right.} \tag{2.103}\\
& e^{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}-2 . \phi_{F}-V_{c h}}}{V_{t}}}=\left(-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}\right)^{2}-2 \cdot\left(\frac{Q_{i}}{\gamma \cdot C_{o x} \cdot \sqrt{V_{t}}}\right) \cdot \sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}} \tag{2.104}
\end{align*}
$$

This reduces to

$$
\begin{align*}
\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}-2 . \phi_{F}-V_{c h}}{V_{t}} & =\ln \left[\left(-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}\right)^{2}-2 \cdot\left(\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}\right) \cdot \sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}}\right] \tag{2.105}\\
& =\ln \left[-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}\left(-\frac{Q_{i}}{\gamma^{\prime} \cdot C_{o x} \cdot \sqrt{V_{t}}}+2 \cdot \sqrt{\frac{\psi_{P}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}}{V_{t}}}\right)\right] \tag{2.106}
\end{align*}
$$

Normalizing inversion charge to $-2 V_{t} \cdot n_{q} \cdot C_{o x}$, all voltages to V_{t},

$$
\begin{equation*}
\psi_{p}-2 . q_{i}-2 . \phi_{f}-v_{c h}=\ln \left[\frac{2 n_{q} \cdot q_{i}}{\gamma_{0}}\left(\frac{2 . n_{q} \cdot q_{i}}{\gamma_{0}}+2 \cdot \sqrt{\psi_{p}-2 q_{i}}\right)\right] \tag{2.107}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\ln \left(q_{i}\right)+\ln \left[\frac{2 n_{q}}{\gamma_{0}}\left(q_{i} \frac{2 n_{q}}{\gamma_{0}}+2 \sqrt{\psi_{p}-2 q_{i}}\right)\right]+2 q_{i}=\psi_{p}-2 \phi_{f}-v_{c h} \tag{2.108}
\end{equation*}
$$

This is a general equation which can be solved to give normalized inversion charge density. The procedure of obtaining initial guess for the solution of above equation for weak inversion is described below [4]. Note that to generalized the process, subscript "i" is dropped from the term q_{i}

Let $v=\psi_{p}-2 \phi_{f}-v_{c h}-\ln \left(\frac{4 n_{q} \sqrt{\psi_{p}}}{\gamma}\right)=\ln q+2 q$

$$
\begin{align*}
v & =\ln q+2 q \tag{2.109}\\
& =\ln q+2 e^{\ln q} \tag{2.110}\\
& =\ln q+\frac{1}{F(\ln q)} \tag{2.111}
\end{align*}
$$

Here in second term q has been used as $\ln \left(e^{q}\right)$. The function F is defined as

$$
\begin{align*}
F & =\frac{1}{2 e^{\ln q}} \tag{2.112}\\
& =\frac{1}{2 e\left(\ln q+\ln q_{t}-\ln q_{t}\right)} \tag{2.113}\\
& =\frac{1}{2 q_{t} e^{\ln \frac{q}{q_{t}}}} \tag{2.114}\\
& =\frac{1}{2 q_{t}} e^{-\Delta} \tag{2.115}
\end{align*}
$$

Where $\Delta=\ln \frac{q}{q_{t}}$. Expanding (2.115) around $\Delta=0$ using Taylor series expansion (as $|2 q| \ll$ $|\ln q|$),

$$
\begin{align*}
F & \left.=\frac{1}{2 q_{t}} \cdot\left[1-e^{-0} \cdot \Delta\right]\right] \tag{2.116}\\
& =\frac{1}{2 q_{t}}\left(1-\ln \frac{q}{q_{t}}\right) \tag{2.117}
\end{align*}
$$

substituting in (2.111),

$$
\begin{equation*}
v=\ln q+\frac{2 q_{t}}{1-\ln q+\ln q_{t}} \tag{2.118}
\end{equation*}
$$

This equation is solved for q. Let,

$$
\begin{align*}
& \ln q=x \tag{2.119}\\
& v=x+\frac{2 q_{t}}{1+\ln q_{t}-x} \tag{2.120}\\
& v\left(1+\ln q_{t}\right)-v x-x\left(1+\ln q_{t}\right)+x^{2}-2 q_{t}=0 \tag{2.121}\\
& x=\frac{v+\left(1+\ln q_{t}\right)-\sqrt{\left(v+\left(1+\ln q_{t}\right)^{2}-4 v\left(1+\ln q_{t}\right)+8 q_{t}\right.}}{2} \tag{2.122}
\end{align*}
$$

For subthreshold region, normalized inversion charge density will be $|q| \ll 1$ and $|\ln q| \gg$ $|2 q|$. The initial value is taken at a point where $|\ln q|=2 .|2 q|$ which gives

$$
\begin{align*}
& q_{t}=0.301 \tag{2.123}\\
& 1+\ln q_{t}=-0.201491 \tag{2.124}
\end{align*}
$$

substituting in (2.122),

$$
\begin{align*}
& x=\frac{v-0.201491-\sqrt{(v-0.201491)^{2}-4 v(-0.201491)+8(0.301)}}{2} \tag{2.125}\\
& x=\ln q=\frac{v-0.201491-\sqrt{(v+0.402982) v+2.446562}}{2} \tag{2.126}
\end{align*}
$$

Once the initial guess is known, the final value is obtained by using analytical method as shown below

$$
\begin{align*}
& n_{q 0}=1+\frac{\gamma}{2 \sqrt{\psi_{p}}} \tag{2.127}\\
& v=\psi_{p}-2 \phi-v_{c h}-\ln \left(4.0 \cdot \frac{n_{q 0}}{\gamma} \cdot \sqrt{\psi_{p}}\right) \tag{2.128}\\
& \ln _{q 0}=\frac{1}{2}[v-0.201491-\sqrt{v \cdot(v+0.402982)+2.446562}] \tag{2.129}\\
& q_{0}=e^{\ln q 0} \tag{2.130}\\
& \text { if } \ln _{q 0}<=-80.0 \\
& q_{s / d}=f=q_{0} \cdot\left[1+\psi_{p}-2 \phi-v_{c h}-\ln n_{q 0}-\ln \left(2 \cdot \frac{n_{q 0}}{\gamma}\left(2 \cdot q_{0} \cdot \frac{n_{q 0}}{\gamma}+2 \cdot \sqrt{\psi_{p}}\right)\right)\right] \tag{2.131}
\end{align*}
$$

In this equation, if $\ln q_{0}$ becomes very large and negative then $q_{0}=e^{\ln q_{0}}$ may be out of range of precision limit of the simulator. Therefore it is approximated as follows
if $\ln q_{0}<-110, q_{0}=e^{-100}$
if $\ln q_{0}>-90, q_{0}=e^{\ln q_{0}}$
else $q_{0}=\exp \left(-100+20\left(\frac{5}{64}+\frac{z}{2}+z^{2}\left(\frac{15}{16}-z^{2}\left(1.25-z^{2}\right)\right)\right)\right)$
where $z=\frac{\ln q_{0}+100}{20}$.
The above polynomial provides smooth derivatives for q . For the derivation of polynomial coefficients, refer to Appendix A.

For $\ln q_{0}>-80$

$$
\begin{align*}
& f=2 q_{0}+\ln \left(2 q_{0} \frac{n_{q}}{\gamma}\left(2 q_{0} \frac{n_{q}}{\gamma}+2 \sqrt{\psi_{p}}\right)-\left(v_{p}-2 \phi_{f}-v_{c h}\right)\right. \tag{2.132}\\
& f^{\prime}=2+\frac{1}{q_{0}}+\frac{\frac{n_{q 0}}{\gamma}-\frac{1}{\sqrt{\psi_{p}}}}{\frac{n_{q 0}}{\gamma} \cdot q_{0}+\sqrt{\psi_{p}}} \tag{2.133}\\
& q_{1}=q_{0}-\frac{f}{f^{\prime}} \tag{2.134}
\end{align*}
$$

The accuracy of this initial guess is further improved by following procedure

$$
\begin{align*}
& f=2 q_{1}+\ln \left(2 q_{1} \frac{n_{q}}{\gamma}\left(2 q_{1} \frac{n_{q}}{\gamma}+2 \sqrt{\psi_{p}}\right)-\left(v_{p}-2 \phi_{f}-v_{c h}\right)\right. \tag{2.135}\\
& f^{\prime}=2+\frac{1}{q_{1}}+\frac{\frac{n_{q 1}}{\gamma}-\frac{1}{\sqrt{\psi_{p}}}}{\frac{n_{q 1}}{\gamma} \cdot q_{1}+\sqrt{\psi_{p}}} \tag{2.136}
\end{align*}
$$

Applying Halley's method,

$$
\begin{align*}
& f^{\prime \prime}=-\frac{1}{q_{1}^{2}}-\frac{1}{\left[\left(\psi_{p}\right)^{\frac{3}{2}}\right] \cdot\left[\frac{n_{q 0}}{\gamma} \cdot q_{1}+\sqrt{\psi_{p}}\right]}-\left[\frac{\frac{n_{q 0}}{\gamma}-\frac{1}{\sqrt{\psi_{p}}}}{\frac{n_{q 0}}{\gamma} \cdot q_{1}+\sqrt{\psi_{p}}}\right]^{2} \tag{2.137}\\
& q_{s / d}=q_{1}-\frac{f}{f^{\prime}} \cdot\left(1+\frac{f \cdot f^{\prime \prime}}{2 \cdot f^{\prime 2}}\right) \tag{2.138}
\end{align*}
$$

2.7 Short Channel Effects

Vt Roll-off, DIBL, and Subthreshold Slope Degradation (Ref.: BSIM4 Model)

$$
\begin{align*}
& \psi_{s t}=0.4+P H I N+\frac{k T}{q} \cdot \ln \frac{N D E P}{n_{i}} \tag{2.139}\\
& \text { PhistVbs }=\psi_{s t}-V_{b s x} \tag{2.140}\\
& X_{d e p}=\sqrt{\frac{2 \cdot \epsilon_{s u b} \cdot P h i s t V b s}{q \cdot N D E P}} \tag{2.141}\\
& n=1+\frac{C I T+N F A C T O R+C D S C D \cdot V_{d s x}-C D S C B \cdot V_{b s x}}{C_{o x}} \tag{2.142}\\
& V_{t}=\frac{k_{b} \cdot T}{q} \tag{2.143}\\
& n V_{t}=n \cdot V_{t} \tag{2.144}\\
& \Delta V_{t h, V D N U D}=-K 2 \cdot V_{b s x} \tag{2.145}\\
& \Delta V_{t h, D I B L}=-\left(E T A 0+E T A B \cdot V_{b s x}\right) \cdot V_{d s x} \tag{2.146}\\
& \Delta V_{t h, D I T S}=-n \frac{K T}{q} \cdot \ln \left(\frac{L_{e f f}+D V T P 0 \cdot\left(1+\exp \left(-D V T P 1 \cdot V_{d s}\right)\right.}{L_{e f f}}\right) \\
& \quad-\left(D V T P 5+\frac{D V T P 2}{L_{e f f}^{D V T P 3}}\right) \cdot \tanh \left(D V T P 4 \cdot V_{d s x}\right) \tag{2.147}\\
& \Delta V_{t h, a l l}=\Delta V_{t h, V N U D}+\Delta V_{t h, D I B L}+\Delta V_{t h, D I T S} \tag{2.148}\\
& V_{g f b}=V_{g}-V_{f b}-\Delta V_{t h, a l l} \tag{2.149}
\end{align*}
$$

Note: Short channel effect and Reverse short channel effect are modeled using NDEPL1, NDELEXP1, NDEPL2 and NDEPLEXP2 parameters. Width scaling of $V_{t h}$ is modeled using NDEPW and NDEPWEXP parameters.

2.8 Drain Saturation Voltage

The drain saturation voltage model is calculated after the source-side charge $\left(q_{s}\right)$ has been calculated. $V_{d s e f f}$ is subsequently used to compute the drain-side charge $\left(q_{d}\right)$.

Electric Field Calculations

Electric Field is in $M V / \mathrm{cm}$

$$
\begin{align*}
& \eta=\left\{\begin{array}{l}
\frac{1}{2} \cdot E T A M O B \quad \text { for NMOS } \\
\frac{1}{3} \cdot E T A M O B \\
\text { for PMOS }
\end{array}\right. \tag{2.150}\\
& E_{\text {effs }}=10^{-8} \cdot\left(\frac{q_{b s}+\eta \cdot q_{i s}}{\epsilon_{\text {ratio }} \cdot \text { TOXE }}\right) \tag{2.151}
\end{align*}
$$

Drain Saturation Voltage ($V_{d s a t}$) Calculations (Ref. BSIM4 \& EKV Model)

$$
\begin{align*}
& D_{\text {mobs }}=1+\left(U A+U C \cdot V_{b s x}\right) \cdot\left(E_{e f f s}\right)^{E U}+\frac{U D}{\left[\frac{1}{2} \cdot\left(1+\frac{q_{i s}}{q_{b s}}\right)\right]^{U C S}} \tag{2.152}\\
& T_{0}= \begin{cases}\frac{1}{1+P S A T B \cdot V_{b s x}} & V_{b s \geq 0} \\
1-P S A T B \cdot V_{b s x} & V_{b s}<0\end{cases} \tag{2.153}\\
& \lambda_{C}=\frac{2 \cdot U 0 \cdot n V_{t}}{\left(D_{\text {mobs }}\right)^{P S A T} \cdot V S A T \cdot L_{e f f}} \cdot\left[1+P T W G \cdot \frac{10 \cdot P S A T X \cdot q s \cdot T_{0}}{10 \cdot P S A T X+q s \cdot T_{0}}\right] \tag{2.154}\\
& q_{d s a t}=\frac{\lambda_{C}}{2} \cdot \frac{q_{s}^{2}+q_{s}}{1+\frac{\lambda_{C}}{2} \cdot\left(1+q_{s}\right)} \tag{2.155}\\
& v_{d s a t}=\psi_{p}-\frac{2 \phi_{b}}{n}-2 q_{d s a t}-\ln \left[\frac{2 q_{d s a t} \cdot n_{q}}{g a m} \cdot\left(\frac{2 q_{d s a t} \cdot n_{q}}{g a m}+\frac{g a m}{n_{q}-1}\right)\right] \tag{2.156}\\
& V_{d s a t}=v_{d s a t} \cdot n V_{t} \tag{2.157}\\
& V_{d s s a t}=V_{d s a t}-V_{s} \tag{2.158}
\end{align*}
$$

$$
\begin{equation*}
V_{d s e f f}=\frac{V_{d s}}{\left[1+\left(\frac{V_{d s}}{V_{d s s a t}}\right)^{1 / D E L T A}\right]^{D E L T A}} \tag{2.159}
\end{equation*}
$$

$$
\begin{equation*}
v_{d e f f}=\frac{V_{d s e f f}+V_{s}}{n V_{t}} \tag{2.160}
\end{equation*}
$$

2.9 Mobility degradation with vertical field

(Ref. BSIM4 Model)

$$
\begin{equation*}
E_{e f f m}=10^{-8} \cdot\left(\frac{q_{b a}+\eta \cdot q_{i a}}{\epsilon_{\text {ratio }} \cdot T O X E}\right) \tag{2.161}
\end{equation*}
$$

Where $q_{i a}$ and $q_{b a}$ are the average inversion charge and bulk charge densities respectively.

$$
\begin{equation*}
D_{\text {mob }}=1+\left(U A+U C \cdot V_{b s x}\right) \cdot\left(E_{\text {effm }}\right)^{E U}+\frac{U D}{\left[\frac{1}{2} \cdot\left(1+\frac{q_{i a}}{q_{b a}}\right)\right]^{U C S}} \tag{2.162}
\end{equation*}
$$

The $D_{m o b}$ goes into denominator of mobility expression.

2.10 Parasitic series resistance

BSIM6 offers three ways to model parasitic resistance of the MOSFET as shown below
(a) $\mathrm{RDSMOD}=0$, External resistance are bias independent while internal resistance is bias dependent.
(b) RDSMOD $=1$, No internal resistance. Both bias dependent and independent resistor are kept externally.
(c) $\operatorname{RDSMOD}=2$, No external resistance. Both bias dependent and independent resistor are kept internally.

2.10.1 Bias Independent External Series Resistance, Bias Dependent Internal Resistance (RDSMOD=0)

$$
\begin{align*}
& T_{0}=1+P R W G \cdot q_{i a} \tag{2.163}\\
& T_{1}=P R W B \cdot\left(\sqrt{\phi_{s}-V_{b s}}-\sqrt{\phi_{s}}\right) \tag{2.164}\\
& T_{2}=\frac{1}{T_{0}}+T_{1} \tag{2.165}\\
& T_{3}=\frac{1}{2}\left[T_{2}+\sqrt{T_{2}^{2}+0.01}\right] \tag{2.166}\\
& R_{d s}(V)=N F \cdot\left(W_{e f f}^{W R}\left[R D S W M I N+R D S W \cdot T_{3}\right]\right) \tag{2.167}\\
& D_{r}=1.0+\frac{\mu_{0}}{D_{m o b} \cdot D_{v s a t}} \cdot C_{o x} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot q_{i a} \cdot R_{d s} \tag{2.168}\\
& R_{\text {source }}=R_{s, g e o} \tag{2.169}\\
& R_{\text {drain }}=R_{d, g e o} \tag{2.170}
\end{align*}
$$

$R_{s, \text { geo }}$ and $R_{d, \text { geo }}$ are the source and drain diffusion resistances, which are described later. And, D_{r} goes into the denominator of the final $I_{d s}$ expression.

2.10.2 Bias Dependent External Series Resistance $\left(R_{s}(V) \& R_{d}(V)\right)$

The bias-dependent external resistance model is adopted from BSIM4 and can be invoked by setting model selector $\mathrm{RDSMOD}=1$. BSIM4 and BSIM6 allow the source extension resistance $R_{s}(V)$ and the drain extension resistance $R_{d}(V)$ to be external and asymmetric (i.e. $R_{s}(V)$ and $R_{d}(V)$ can be connected between the external and internal source and drain nodes, respectively; furthermore, $R_{s}(V)$ does not have to be equal to $R_{d}(V)$). This feature makes accurate RF CMOS simulation possible.
The source/drain series resistance is the sum of a bias-independent component and a bias-dependent component.

$$
\begin{align*}
& V_{g s, e f f}=\frac{1}{2}\left[V_{g s}-V_{f b s d r}+\sqrt{\left(V_{g s}-V_{f b s d r}\right)^{2}+10^{-2}}\right] \\
& V_{g d, e f f}=\frac{1}{2}\left[V_{g d}-V_{f b s d r}+\sqrt{\left(V_{g d}-V_{f b s d r}\right)^{2}+10^{-2}}\right] \tag{2.171}\\
& R_{s o u r c e}=\frac{1}{W_{e f f}^{W R} \cdot N F} \cdot\left(R S W M I N+R S W \cdot\left[-P R W B \cdot V_{b s}+\frac{1}{1+P R W G_{i} \cdot V_{g s, e f f}}\right]\right) \\
& \quad+R_{s, g e o} \tag{2.172}\\
& R_{d r a i n}=\frac{1}{W_{e f f}^{W R} \cdot N F} \cdot\left(R D W M I N+R D W \cdot\left[-P R W B \cdot V_{b d}+\frac{(2.172)}{1+P R W G_{i} \cdot V_{g d, e f f}}\right]\right) \\
& \quad+R_{d, g e o} \tag{2.173}
\end{align*}
$$

$R_{s, g e o}$ and $R_{d, \text { geo }}$ are the source and drain diffusion resistances.

2.10.3 Bias Dependent Internal Resistance (RDSMOD=2)

$$
\begin{align*}
& R_{d s}(V)=R_{s, g e o}+N F \cdot\left(W_{e f f}^{W R}\left[R D S W M I N+R D S W \cdot T_{3}\right]\right)+R_{d, g e o} \tag{2.174}\\
& D_{r}=1.0+\frac{\mu_{0}}{D_{m o b} \cdot D_{v s a t}} \cdot C_{o x} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot q_{i a} \cdot R_{d s} \tag{2.175}
\end{align*}
$$

where T3 is given by (2.166).

2.10.4 Sheet resistance model

The resistances $R_{s, g e o}$ and $R_{d, g e o}$ are simply calculated as the sheet resistances ($R S H S, R S H D$) times the number of squares $(N R S, N R D)$:

$$
\begin{align*}
& R_{s, \text { geo }}=N R S \cdot R S H S \\
& R_{d, \text { geo }}=N R D \cdot R S H D \tag{2.176}
\end{align*}
$$

2.11 Output Conductance

The Output conductance model is taken from BSIM4 [5]

Channel Length Modulation (CLM)

$$
\begin{align*}
& E_{\text {sat }}=\frac{2 \cdot V S A T}{\frac{U 0}{D_{m o b}}} \tag{2.177}\\
& F= \begin{cases}1 & \text { for } F P R O U T \leq 0 \\
\frac{1}{1+\frac{F P R O U T \cdot \sqrt{L_{\text {eff }}}}{q i a+2 \cdot n V_{t}}} & \text { for } F P R O U T>0\end{cases} \tag{2.178}\\
& C_{c l m}= \begin{cases}P C L M \cdot\left(1+P C L M G \cdot \frac{q_{i a}}{E_{\text {sat }} \cdot L_{e f f}}\right) \frac{1}{F} & \text { for } P C L M G>0 \\
\left.\frac{P C L M}{\left(1-P C L M G \cdot \frac{q_{i a}}{E_{\text {sat }} \cdot L_{e f f}}\right)}\right)^{\frac{1}{F}} & \text { for } P C L M G<0\end{cases} \tag{2.179}\\
& V_{a s a t}=V_{d s s a t}+E_{\text {satL }} \tag{2.180}\\
& M_{C L M}=1+C_{\text {clm }} \ln \left[1+\frac{V_{d s}-V_{\text {dseff }}}{V_{\text {asat }}} \cdot \frac{1}{C_{c l m}}\right] \tag{2.181}
\end{align*}
$$

Drain Induced Barrier Lowering (DIBL)

$$
P V A G \text { factor }= \begin{cases}1+P V A G \cdot \frac{q_{i m}}{E_{\text {sat }} L_{e f f}} & \text { for } P V A G>0 \tag{2.182}\\ \frac{1}{1-P V A G \cdot \frac{q_{i m}}{E_{\text {sat }} L_{e f f}}} & \text { for } P V A G<0\end{cases}
$$

$$
\begin{align*}
& \theta_{\text {rout }}=P D I B L C \tag{2.183}\\
& V_{A D I B L}=\frac{q_{i a}+2 k T / q}{\theta_{\text {rout }}} \cdot\left(1-\frac{V_{\text {dssat }}}{V_{d s s a t}+q_{i a}+2 k T / q}\right) \cdot P V A G f a c t o r \cdot \frac{1}{1+P D I B L C B \cdot V_{b s x}} \tag{2.184}\\
& M_{D I B L}=\left(1+\frac{V_{d s}-V_{d s e f f}}{V_{A D I B L}}\right) \tag{2.185}
\end{align*}
$$

Note: Length scaling parameters for PDIBLC are PDIBLCL and PDIBLCLEXP.

Drain Induced Threshold Shift (DITS)

$$
\begin{align*}
V_{A D I T S} & =\frac{1}{P D I T S} \cdot F \cdot\left[1+\left(1+P D I T S L \cdot L_{e f f}\right) \exp \left(P D I T S D \cdot V_{d s}\right)\right] \tag{2.186}\\
M_{D I T S} & =\left(1+\frac{V_{d s}-V_{d s e f f}}{V_{A D I T S}}\right) \tag{2.187}
\end{align*}
$$

Substrate Current induced Body Effect (SCBE)

$$
\begin{align*}
& l i t l=\sqrt{\left(\epsilon_{s u b} / \epsilon_{o x}\right) \cdot T O X E \cdot X J} \tag{2.188}\\
& V_{A S C B E}=\frac{L_{e f f}}{P S C B E 2} \cdot \exp \left(\frac{P S C B E 1 \cdot l i t l}{V_{d s}-V_{d s e f f}}\right) \tag{2.189}\\
& M_{S C B E}=\left(1+\frac{V_{d s}-V_{d s e f f}}{V_{A S C B E}}\right) \tag{2.190}\\
& M_{o c}=M_{D I B L} \cdot M_{C L M} \cdot M_{D I T S} \cdot M_{S C B E} \tag{2.191}
\end{align*}
$$

$M_{o c}$ is multiplied to $I_{d s}$ in the final drain current expression.

2.12 Velocity Saturation

Current Degradation Due to Velocity Saturation

$$
\begin{align*}
& T_{1}=2 \cdot \lambda_{C} \cdot\left(q_{s}-q_{d e f f}\right) \tag{2.192}\\
& \lambda_{C}=\frac{2 \cdot U 0 \cdot n V_{t}}{\left(D_{\text {mobs }}\right)^{P S A T} \cdot V S A T \cdot L_{e f f}} \cdot\left[1+P T W G \cdot \frac{10 \cdot P S A T X \cdot q s \cdot T_{0}}{10 \cdot P S A T X+q s \cdot T_{0}}\right] \tag{2.193}\\
& D_{v s a t}=\frac{1}{2}\left[\sqrt{1+T_{1}^{2}}+\frac{1}{T_{1}} \cdot \ln \left(T_{1}+\sqrt{1+T_{1}^{2}}\right)\right] \tag{2.194}\\
& D_{p t w g}=D_{v s a t} \tag{2.195}\\
& D_{t o t}=D_{m o b} \cdot D_{v s a t} \cdot D_{r} \tag{2.196}
\end{align*}
$$

where D_{r} is the effect of internal resistance $\left(R_{d s i}\right)$ on current, defined as

$$
D_{r}= \begin{cases}1 & \text { if } R D S M O D=1 \tag{2.197}\\ 1+U 0 \cdot C_{o x} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot q_{i a} \cdot R_{d s i} & \text { if } R D S M O D=0\end{cases}
$$

2.13 Effective Mobility

$$
\begin{equation*}
\mu_{e f f}=\frac{U 0}{D_{t o t}} \tag{2.198}
\end{equation*}
$$

2.14 Drain Current Model

2.14.1 Without Velocity Saturation

The drain current expression is derived as follows,

$$
\begin{align*}
& I_{d s}=I_{d r i f t}+I_{d i f f} \tag{2.199}\\
& I_{d s}=-W_{e f f} \cdot Q_{i} \cdot \mu_{e f f} \frac{d \psi_{s}}{d x}+W \cdot \mu_{e f f} \cdot V_{t} \frac{d Q_{i}}{d x} \tag{2.200}
\end{align*}
$$

from charge linearization, $\psi_{s}=\psi_{p}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}$. Thus

$$
\begin{equation*}
I_{d s}=\mu_{e f f} \cdot W_{e f f} \cdot\left[-\frac{Q_{i}}{n_{q} \cdot C_{o x}}+V_{t}\right] \frac{d Q_{i}}{d x} \tag{2.201}
\end{equation*}
$$

normalizing inversion charge to $-2 n_{q} C_{o x} V_{t}$ and using $\xi=\frac{x}{L}$,

$$
\begin{align*}
I_{d s} & =\mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot\left[-\frac{\left(-2 \cdot n_{q} \cdot C_{o x} \cdot V_{t} \cdot q\right)}{n_{q} \cdot C_{o x}}+V_{t}\right] \frac{d\left(-2 \cdot n_{q} \cdot C_{o x} \cdot V_{t} \cdot q\right)}{d \xi} \tag{2.202}\\
& =-2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot(2 q+1) \frac{d q}{d \xi} \tag{2.203}
\end{align*}
$$

Total drain current,

$$
\begin{equation*}
I_{D S}=\int_{0}^{1} I_{d s} d \xi=-2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot \int_{q_{s}}^{q_{d}}(2 q+1) d q \tag{2.204}
\end{equation*}
$$

which gives

$$
\begin{equation*}
I_{D S}=2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot\left[\left(q_{s}-q_{d e f f}\right)\left(q_{s}+q_{d e f f}+1\right)\right] \tag{2.205}
\end{equation*}
$$

n_{q} is the slope factor in charge based model and $n V_{t}$ is $n . \frac{K T}{q}$ with n given by (2.142).

2.14.2 Including Velocity Saturation

As the device is getting smaller and smaller, the lateral electric field strength and therefore kinetic energy of the carriers increases. On reaching optical phonon energy levels, they releases optical phonon by virtue of reduction in kinetic energy and therefore loses velocity [6]. The effect of velocity saturation on mobility is captured as follows

$$
\begin{align*}
\mu & =\frac{\mu_{e f f}}{\sqrt{1+\left(\frac{E}{E_{c}}\right)^{2}}} \tag{2.206}\\
& =\frac{\mu_{e f f}}{\sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}}} \tag{2.207}
\end{align*}
$$

from (2.203) and (2.207),

$$
\begin{align*}
I_{d s} & =-2 \cdot n_{q} \cdot \frac{\mu_{e f f}}{\sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}}} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot(2 q+1) \frac{d q}{d \xi} \tag{2.208}\\
& =z \cdot \frac{(2 q+1) \frac{d q}{d \xi}}{\sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}}} \tag{2.209}
\end{align*}
$$

with $z=-2 \mu_{e f f} \cdot n_{q} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2}$
Total current,

$$
\begin{align*}
& I_{D S}=\int_{0}^{1} I_{d s} d \xi=z \cdot \int_{q_{s}}^{q_{d}} \frac{(2 q+1)}{\sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}}} d q \tag{2.210}\\
& I_{D S} \int_{0}^{1} \sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2} d \xi=z \cdot \int_{q_{s}}^{q_{d}}(2 q+1) d q} \tag{2.211}
\end{align*}
$$

from (2.205),

$$
\begin{equation*}
\int_{q_{s}}^{q_{d}}(2 q+1) d q=-\left(q_{s}-q_{d e f f}\right)\left(q_{s}+q_{d e f f}+1\right) \tag{2.212}
\end{equation*}
$$

Now consider the LHS of (2.211). Using charge linearization, $\psi_{s}=\psi_{p}+\frac{Q_{i}}{n_{q} \cdot C_{o x}}$,

$$
\begin{equation*}
\frac{1}{E_{c}} \frac{d \psi_{s}}{d x}=\frac{1}{E_{c} \cdot n_{q} \cdot C_{o x}} \frac{Q_{i}}{d x}=-\frac{2 V_{t}}{E_{c} \cdot L} \frac{d q}{d \xi}=-\lambda_{c} \cdot \frac{d q}{d \xi} \tag{2.213}
\end{equation*}
$$

Let

$$
D_{v s a t}=\int \sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}} d \xi
$$

It is evaluated by assuming that lateral electric field ($-\frac{d \psi_{s}}{d \xi}$) increases linearly from 0 at source to $2 \cdot\left(\frac{\psi_{s, D}-\psi_{s, S}}{L}\right)$ at drain [7] i.e.

$$
\begin{equation*}
-\frac{d \psi_{s}}{d x}=2 \cdot \frac{\psi_{s, D}-\psi_{s, S}}{L} \cdot \frac{x}{L}=2 \cdot \frac{\psi_{s, D}-\psi_{s, S}}{L} \cdot \xi \tag{2.214}
\end{equation*}
$$

From charge linearization (2.101),

$$
\begin{align*}
& \psi_{s, S}=\psi_{P}+\frac{Q_{S}}{n_{q} \cdot C_{o x}}=\psi_{P}-2 V_{t} \cdot q_{s} \tag{2.215}\\
& \psi_{s, D}=\psi_{P}+\frac{Q_{D}}{n_{q} \cdot C_{o x}}=\psi_{P}-2 V_{t} \cdot q_{d} \tag{2.216}\\
& \psi_{s, D}-\psi_{s, S}=2 . V_{t}\left(q_{s}-q_{d}\right) \tag{2.217}
\end{align*}
$$

substituting in (2.214),

$$
\begin{align*}
& -\frac{d \psi_{s}}{d x}=2 \cdot \frac{2 . V_{t}\left(q_{s}-q_{d}\right)}{L^{2}} \cdot x=2 \cdot \frac{2 . V_{t}\left(q_{s}-q_{d}\right)}{L} \cdot \xi \tag{2.218}\\
& -\frac{1}{E_{c}} \frac{d \psi_{s}}{d x}=2 \cdot \frac{2 . V_{t}}{E_{c} L} \cdot\left(q_{s}-q_{d}\right) \xi=2 \lambda_{c}\left(q_{s}-q_{d}\right) \xi \tag{2.219}
\end{align*}
$$

where $\lambda_{c}=\frac{2 V_{t}}{E_{c} \cdot L}$. Thus $D_{v s a t}$ can be given as

$$
\begin{align*}
D_{v s a t} & =\int \sqrt{1+\left(\frac{1}{E_{c}} \cdot \frac{d \psi_{s}}{d x}\right)^{2}} d \xi \tag{2.220}\\
& =\int \sqrt{1+\left(2 \lambda_{c}\left(q_{s}-q_{d}\right) \xi\right)^{2}} d \xi=\int \sqrt{1+\left(2 \lambda_{c} \cdot \Delta q \cdot \xi\right)^{2}} d \xi \tag{2.221}\\
& =\frac{1}{2}\left[\sqrt{1+\left(2 \cdot \lambda_{c} \cdot \Delta q\right)^{2}}+\frac{1}{2 \cdot \lambda_{c} \cdot \Delta q} \cdot \ln \left(2 \cdot \lambda_{c} \cdot \Delta q+\sqrt{1+\left(2 \cdot \lambda_{c} \cdot \Delta q\right)^{2}}\right)\right] \tag{2.222}
\end{align*}
$$

with $\Delta q=q_{s}-q_{d}$. From (2.211), (2.212) and (2.222),

$$
\begin{equation*}
I_{D S}=2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot\left[\left(q_{s}-q_{d e f f}\right)\left(q_{s}+q_{d e f f}+1\right)\right] \cdot M_{o c} \tag{2.223}
\end{equation*}
$$

where $\mu_{e f f}=\frac{U 0}{D_{\text {tot }}}$ and $D_{\text {tot }}=D_{\text {mod }} \cdot D_{v s a t} \cdot D_{r}$

2.15 Impact Ionization Model

The impact ionization current model in BSIM6 is the same as that in BSIM4, and is modeled by

$$
\begin{equation*}
I_{i i}=A L P H A 0 \cdot\left(V_{d s}-V_{d s e f f}\right) \cdot \exp \left(-\frac{B E T A 0}{V_{d s}-V_{d s e f f}}\right) \cdot \frac{I_{d s}}{M_{S C B E}} \tag{2.224}
\end{equation*}
$$

where parameters $A L P H A 0$ and $B E T A 0$ are impact ionization coefficients. ALPHA0L and ALPHA0LEXP are length scaling parameters for ALPHA0.

Note: The order of ALPHA0 in BSIM6 $=10^{6} \mathrm{X}$ order of ALPHA0 in BSIM4

2.16 GIDL/GISL Current Model

GIDL/GISL currents are set using model selector GIDLMOD=1. The GIDL/GISL current and its body bias effect are modeled by

$$
\begin{align*}
I_{G I D L}= & A G I D L \cdot W_{e f f} \cdot N F \cdot \frac{V_{d s}-V_{g s e}-E G I D L}{3 \cdot T_{o x e}} \\
& \cdot \exp \left(-\frac{3 \cdot T_{o x e} \cdot B G I D L}{V_{d s}-V_{g s e}-E G I D L}\right) \cdot \frac{V_{d b}^{3}}{C G I D L+V_{d b}^{3}} \tag{2.225}\\
I_{G I S L}= & A G I S L \cdot W_{e f f} \cdot N F \cdot \frac{-V_{d s}-V_{\text {gde }}-E G I S L}{3 \cdot T_{o x e}} \\
& \cdot \exp \left(-\frac{3 \cdot T_{o x e} \cdot B G I S L}{-V_{d s}-V_{g d e}-E G I S L}\right) \cdot \frac{V_{s b}^{3}}{C G I S L+V_{s b}^{3}} \tag{2.226}
\end{align*}
$$

where $A G I D L, B G I D L, C G I D L$ and $E G I D L$ are model parameters for the drain side and AGISL, BGISL, CGISL and EGISL are the model parameters for the source side. CGIDL and CGISL account for the body-bias dependence of $I_{G I D L}$ and $I_{G I S L}$ respectively. $W_{\text {eff }}$ and $N F$ are the effective width of the source/drain diffusions and the number of fingers. Further explanation of $W_{\text {eff }}$ and $N F$ can be found in the chapter of the layout-dependence model. Check scaling parameters in the parameter list at the end.
$I_{G I D L} / I_{G I S L}$ can be switched off by setting GIDLMOD $=0$.

2.17 Gate Tunneling Current Model

As the gate oxide thickness is scaled down to 3 nm and below, gate leakage current due to carrier direct tunneling becomes important. This tunneling happens between the gate and silicon beneath the gate oxide. To reduce the tunneling current, high-k dielectrics are

Figure 1: Schematic gate current components flowing between MOSFET terminals.
being used in place of gate oxide. In order to maintain a good interface with substrate, multi-layer dielectric stacks are being used. The BSIM6 gate tunneling model (taken from BSIM4) has been shown to work for multi-layer gate stacks as well. The tunneling carriers can be either electrons or holes, or both, either from the conduction band or valence band, depending on (the type of the gate and) the bias regime. In BSIM6, the gate tunneling current components include the tunneling current between gate and substrate $\left(I_{g b}\right)$, and the current between gate and channel $\left(I_{g c}\right)$, which is partitioned between the source and drain terminals by $I_{g c}=I_{g c s}+I_{g c d}$. The third component happens between gate and source/drain diffusion regions ($I_{g s}$ and $I_{g d}$). Figure 1 shows the schematic gate tunneling current flows.

2.17.1 Model Selectors

Two global selectors are provided to turn on or off the tunneling components. $\mathbf{I G C M O D}=1$ turns on $I_{g c}, I_{g s}$, and $I_{g d} ; \mathbf{I G B M O D}=1$ turns on $I_{g b}$. When the
selectors are set to zero, no gate tunneling currents are modeled.

$$
\begin{array}{r}
V_{o x}=n V t \cdot\left(v_{g}-v_{f b}-\psi_{p}+q_{s}+q_{d e f f}\right) \\
V_{o x a c c}=\frac{1}{2}\left(-V_{o x}+\sqrt{V_{o x}^{2}+10^{-4}}\right) \\
V_{o x d e p i n v}=\frac{1}{2}\left(V_{o x}+\sqrt{V_{o x}^{2}+10^{-4}}\right) \tag{2.229}
\end{array}
$$

Eq. (2.228) and (2.229) are valid and continuous from accumulation through depletion to inversion.

2.17.2 Equations for Tunneling Currents

Note: All gate tunneling current equations use operating temperature in the calculations.

Gate-to-Substrate Current $\left(I_{g b}=I_{g b a c c}+I_{g b i n v}\right): \quad I_{g b a c c}$, determined by ECB (Electron tunneling from Conduction Band), is significant in accumulation and given by

$$
\begin{align*}
I_{g b a c c}= & N F \cdot W_{\text {eff }} L_{\text {eff }} \cdot A \cdot T_{\text {oxRatio }} \cdot V_{g b} \cdot V_{\text {aux }} \cdot i_{\text {gtemp }} \\
& \cdot \exp \left[-B \cdot \operatorname{TOXE}\left(A I G B A C C-B I G B A C C \cdot V_{\text {oxacc }}\right) \cdot\left(1+C I G B A C \cdot V_{\text {oxacc }}\right)\right] \tag{2.230}
\end{align*}
$$

where the physical constants $A=4.97232 e-7 A / V^{2}, B=7.45669 e 11\left(g / F-s^{2}\right)^{0.5}$, and

$$
\begin{align*}
T_{o x \text { Ratio }} & =\left(\frac{T O X R E F}{T O X E}\right)^{N T O X} \cdot \frac{1}{T O X E^{2}} \tag{2.231}\\
V_{\text {aux }} & =N I G B A C C \cdot V_{t} \cdot \log \left(1+\exp \left(-\frac{V_{o x a c c}}{N I G B A C C \cdot V_{t}}\right)\right) \tag{2.232}
\end{align*}
$$

$I_{g b i n v}$, determined by EVB (Electron tunneling from Valence Band), is significant in inversion and given by

$$
\begin{align*}
I_{\text {gbinv }}= & N F \cdot W_{\text {eff }} L_{\text {eff }} \cdot A \cdot T_{\text {oxRatio }} \cdot V_{g b} \cdot V_{\text {aux }} \cdot i_{\text {gtemp }} \\
& \cdot \exp \left[-B \cdot \operatorname{TOXE}\left(A I G B I N V-B I G B I N V \cdot V_{\text {oxdepinv }}\right) \cdot\left(1+C I G B I N V V_{\text {oxdepinv }}\right)\right] \tag{2.233}
\end{align*}
$$

where $\mathrm{A}=3.75956 \mathrm{e}-7 A / V^{2}, \mathrm{~B}=9.82222 \mathrm{e} 11\left(g / F-s^{2}\right)^{0.5}$, and

$$
\begin{align*}
& V_{a u x}=N I G B I N V \cdot V_{t} \cdot \log \left(1+\exp \left(\frac{V_{o x d e p i n v}-E I G B I N V}{N I G B I N V \cdot V_{t}}\right)\right) \tag{2.234}\\
& I_{g b}=I_{g b a c c}+I_{g b i n v} \tag{2.235}
\end{align*}
$$

Gate-to-Channel Current ($I_{g c 0}$) and Gate-to-S/D ($I_{g s}$ and $I_{g d}$): $I_{g c 0}$, determined by ECB for NMOS and HVB (Hole tunneling from Valence Band) for PMOS at $V_{d s}=0$, is formulated as

$$
\begin{align*}
I_{g c 0}= & N F \cdot W_{\text {eff }} L_{\text {eff }} \cdot A \cdot T_{\text {oxRatio }} \cdot V_{\text {gse }} \cdot V_{\text {aux }} \cdot i_{\text {gtemp }} \\
& \cdot \exp \left[-B \cdot \operatorname{TOXE}\left(A I G C-B I G C \cdot V_{\text {oxdepinv }}\right) \cdot\left(1+C I G C V_{\text {oxdepinv }}\right)\right] \tag{2.236}
\end{align*}
$$

where $\mathrm{A}=4.97232 A / V^{2}$ for NMOS and $3.42537 A / V^{2}$ for PMOS, $\mathrm{B}=7.45669 \mathrm{e} 11$ $\left(g / F-s^{2}\right)^{0} .5$ for NMOS and $1.16645 \mathrm{e} 12\left(g / F-s^{2}\right)^{0.5}$ for PMOS.

$$
\begin{equation*}
V_{\text {aux }}=n_{q} \cdot n V t \cdot\left(q_{s}+q_{d e f f}\right) \tag{2.237}
\end{equation*}
$$

Partition of $I_{g c}$: To consider the drain bias effect, $I_{g c}$ is split into two components, $I_{g c s}$ and $I_{g c d}$, that is $I_{g c}=I_{g c s}+I_{g c d}$, and

$$
\begin{equation*}
I_{g c s}=I_{g c 0} \cdot \frac{P I G C D \cdot V_{d s e f f x}+\exp \left(-P I G C D \cdot V_{d s e f f x}\right)-1+10^{-4}}{P I G C D \cdot V_{d s e f f x}{ }^{2}+2 \cdot 10^{-4}} \tag{2.238}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{g c d}=I_{g c 0} \cdot \frac{1-\left(P I G C D \cdot V_{d s e f f x}+1\right) \cdot \exp \left(-P I G C D \cdot V_{d s e f f x}\right)+10^{-4}}{P I G C D \cdot V_{d s e f f x}{ }^{2}+2 \cdot 10^{-4}} \tag{2.239}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{d s e f f x}=\sqrt{V_{d s e f f}+0.01}-0.1 \tag{2.240}
\end{equation*}
$$

At $V_{d s}=0, I_{g c s}=I_{g c d}=\frac{1}{2} I_{g c 0}$. Thus $I_{g c 0}$ is the gate to channel current $I_{g c}$ at $V_{d s}=0$.
$I_{g s}$ and $I_{g d}: \quad I_{g s}$ represents the gate tunneling current between the gate and the source diffusion region, while $I_{g d}$ represents the gate tunneling current between the gate and the drain diffusion region. $I_{g s}$ and $I_{g d}$ are determined by ECB for NMOS and HVB for PMOS, respectively.

$$
\begin{align*}
I_{g s}= & N F \cdot W_{e f f} D L C I G \cdot A \cdot T_{o x R a t i o E d g e} \cdot V_{g s} \cdot V_{g s}^{\prime} \cdot i_{g t e m p} \\
& \cdot \exp \left[-B \cdot \operatorname{TOXE} \cdot \operatorname{POXEDGE\cdot (AIGS-BIGS\cdot V_{gs}^{\prime })\cdot (1+CIGSV_{gs}^{\prime })]}\right. \tag{2.241}
\end{align*}
$$

and

$$
\begin{align*}
I_{g d}= & N F \cdot W_{e f f} D L C I G D \cdot A \cdot T_{o x R a t i o E d g e} \cdot V_{g d} \cdot V_{g d}^{\prime} \cdot i_{g t e m p} \\
& \cdot \exp \left[-B \cdot T O X E \cdot P O X E D G E \cdot\left(A I G D-B I G D \cdot V_{g d}^{\prime}\right) \cdot\left(1+C I G D V_{g d}^{\prime}\right)\right] \tag{2.242}
\end{align*}
$$

where $\mathrm{A}=4.97232 A / V^{2}$ for NMOS and $3.42537 A / V^{2}$ for PMOS, $\mathrm{B}=7.45669 \mathrm{e} 11$ $\left(g / F-s^{2}\right)^{0.5}$ for NMOS and 1.16645e12 $\left(g / F-s^{2}\right)^{0.5}$ for PMOS, and

$$
\begin{align*}
T_{\text {oxRatioEdge }} & =\left(\frac{T O X R E F}{T O X E \cdot P O X E D G E}\right)^{N T O X} \cdot \frac{1}{(T O X E \cdot P O X E D G E)^{2}}(2.243) \\
V_{g s}^{\prime} & =\sqrt{\left(V_{g s}-V_{f b s d}\right)^{2}+10^{-4}} \tag{2.244}\\
V_{g d}^{\prime} & =\sqrt{\left(V_{g d}-V_{f b s d}\right)^{2}+10^{-4}} \tag{2.245}
\end{align*}
$$

Vfbsd is the flat-band voltage between gate and S/D diffusions calculated as
If $N G A T E>0.0$

$$
\begin{equation*}
V_{f b s d}=-\operatorname{devsign} \cdot \frac{k_{B} T}{q} \log \left(\frac{N G A T E}{N S D}\right)+V F B S D O F F \tag{2.246}
\end{equation*}
$$

Else $V_{f b s d}=0.0$.

2.18 Gate resistance and Body resistance network Model

2.18.1 Gate Electrode Electrode and Intrinsic-Input Resistance (IIR) Model

General Description: BSIM6 provides four options for modeling gate electrode resistance (bias-independent) and intrinsic-input resistance (IIR, bias-dependent). The IIR model considers the relaxation-time effect due to the distributive RC nature of the channel region, and therefore describes the first-order non-quasi-static effect. Thus, the IIR model should not be used together with the charge-deficit NQS model at the same time. The model selector RGATEMOD is used to choose different options.

Model Option and Schematic: There are four model selectors for gate resistance network.

RGATEMOD $=0$ (zero-resistance): In this case, no gate resistance is generated (see Figure 2).

RGATEMOD $=1$ (constant-resistance): In this case, only the electrode gate resistance (bias-independent) is generated by adding an internal gate node. Rgeltd is given by

$$
\begin{equation*}
\text { Rgeltd }=\frac{R S H G \cdot\left(X G W+\frac{W_{e f f c i}}{3 \cdot N G C O N}\right)}{N G C O N \cdot\left(L_{d r a w n}-X G L\right) \cdot N F} \tag{2.247}
\end{equation*}
$$

RGATEMOD $=2$ (IIR model with variable resistance): In this case, the gate resistance is the sum of the electrode gate resistance Rgeltd (2.247) and the intrinsicinput resistance $R_{i i}$ as given by (2.248). An internal gate node will be generated.

$$
\frac{1}{R_{i i}}=X R C R G 1 . N F \cdot\left(\frac{I_{d s}}{V_{d s e f f}}+X R C R G 2 \cdot \frac{W_{e f f} \mu_{e f f} C_{o x e f f} V_{t}}{L_{e f f}}\right)
$$

or

$$
\begin{equation*}
\frac{1}{R_{i i}} \approx X R C R G 1 . N F \cdot\left(\mu_{e f f}\left(\frac{W_{e f f}}{L_{e f f}}\right) C_{o x} \cdot q_{i a}+X R C R G 2 \cdot \frac{W_{e f f} \mu_{e f f} C_{o x e f f} V_{t}}{L_{e f f}}\right) \tag{2.248}
\end{equation*}
$$

RGATEMOD $=3$ (IIR model with two nodes): In this case, the gate electrode resistance Rgeltd is in series with the intrinsic-input resistance $R_{i i}$ through two internal gate nodes, so that the overlap capacitance current will not pass through the intrinsicinput resistance.

Figure 2: Gate resistance network for (a) RGATEMOD $=0$ (b) $R G A T E M O D=1$ (b) $R G A T E M O D=2$ (d) $R G A T E M O D=3$ 。

2.18.2 Substrate Resistance Network

General Description: For CMOS RF circuit simulation, it is essential to consider the high frequency coupling through the substrate. BSIM6 offers a flexible built-in substrate resistance network. This network is constructed such that little simulation efficiency penalty will result. Note that the substrate resistance parameters should be extracted for the total device, not on a per-finger basis.

Model Selector and Topology The model selector RBODYMOD can be used to turn on or turn off the resistance network.

RBODYMOD $=0($ Off $):$
No substrate resistance network is generated at all.
RBODYMOD $=1$ (On):
All five resistances $R B P S, R B P D, R B P B, R B S B$, and $R B D B$ in the substrate network as shown schematically below are present simultaneously.

A minimum conductance, GBMIN, is introduced in parallel with each resistance and therefore to prevent infinite resistance values, which would otherwise cause poor convergence. GBMIN is merged into each resistance to simplify the representation of the model topology. Note that the intrinsic model substrate reference point in this case is the internal body node bNodePrime, into which the impact ionization current $I_{i i}$ and the GIDL current $I_{G I D L}$ flow.

RBODYMOD $=2$ (On : Scalable Substrate Network):
The schematic is similar to $\mathrm{RBODYMOD}=1$ but all the five resistors in the substrate network are now scalable with a possibility of choosing either five resistors, three resistors or one resistor as the substrate network.

The resistors of the substrate network are scalable with respect to channel length (L), channel width (W) and number of fingers (NF). The scalable model allows to account for both horizontal and vertical contacts.

The scalable resistors RBPS and RBPD are evaluated through

$$
\begin{align*}
& R B P S=R B P S 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B P S L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B P S W} \cdot N F^{R B P S N F} \tag{2.249}\\
& R B P D=R B P D 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B P D L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B P D W} \cdot N F^{R B P D N F} \tag{2.250}
\end{align*}
$$

Figure 3: Topology with the substrate resistance network turned on.

The resistor RBPB consists of two parallel resistor paths, one to the horizontal contacts and other to the vertical contacts. These two resistances are scalable and RBPB is given by a parallel combination of these two resistances.

$$
\begin{align*}
R B P B X & =R B P B X 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B P B X L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B P B X W} \cdot N F^{R B P D N(2.251)} \\
R B P B Y & =R B P B Y 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B P B Y L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B P B Y W} \\
R B P B & =\frac{R B P B X \cdot R B P B Y}{R B P B X+R B P B Y} \tag{2.253}
\end{align*}
$$

The resistors RBSB and RBDB share the same scaling parameters but have different scaling prefactors. These resistors are modeled in the same way as RBPB. The equations
for RBSB are shown below. The calculation for RBDB follows RBSB.

$$
\begin{align*}
R B S B X & =R B S B X 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B S B X L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B S B X W} \cdot N F^{R B S D N F}(2.254) \\
R B S B Y & =R B S B Y 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B S B Y L} \cdot\left(\frac{W}{10^{-6}}\right)^{R B S B Y W} \cdot N F^{R B S D N F}(2.255) \\
R B S B & =\frac{R B S B X \cdot R B S B Y}{R B S B X+R B S B Y} \tag{2.256}
\end{align*}
$$

Similarly, the equations for $R B D B$ is as follows

$$
\begin{align*}
& R B D B X=R B D B X 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B D B X L} \cdot\left(\frac{L}{10^{-6}}\right)^{R B D B X W} \cdot(N F)^{R B D B X N F} \tag{2.257}\\
& R B D B Y=R B D B Y 0 \cdot\left(\frac{L}{10^{-6}}\right)^{R B D B Y L} \cdot\left(\frac{L}{10^{-6}}\right)^{R B D B Y W} \cdot(N F)^{R B D B Y N F} \tag{2.258}\\
& R B D B=\frac{R B D B X \times R B D B Y}{R B D B X+R B D B Y} \tag{2.259}
\end{align*}
$$

The implementation of RBODYMOD $=2$ allows the user to chose between the 5-R network (with all five resistors), 3-R network (with RBPS, RBPD and RBPB) and 1-R network (with only RBPB).

If the user does not provide both the scaling parameters RBSBX0 and RBSBY0 for RBSB or both the scaling parameters RBDBX0 and RBDBY0 for RBDB, then the conductances for both RBSB and RBDB are set to GBMIN. This converts the 5 -R schematic to 3-R schematic where the substrate network consists of the resistors RBPS, RBPD and RBPB. RBPS, RBPD and RBPB are then calculated using (2.249), (2.250), and (2.253).

If the user chooses not to provide either of RBPS0 or RBPD0, then the 5 -R schematic is converted to 1-R network with only one resistor RBPB. The conductances for RBSB and RBDB are set to GBMIN. The resistances RBPS and RBPD are set to 1e-3 Ohm. The resistor RBPB is then calculated using (2.253).

In all other situations, 5 -R network is used with the resistor values calculated from the equations aforementioned.

2.19 Noise Modeling

The following noise sources in MOSFETs are modeled in BSIM6 for SPICE noise ananlysis: flicker noise (also known as 1/f noise), channel thermal noise and induced gate noise and their correlation, thermal noise due to physical resistances such as the source/ drain, gate electrode, and substrate resistances, and shot noise due to the gate dielectric tunneling current.

Noise models in BSIM 6.0.0	Origin
Flicker noise model	BSIM4 Unified Model (FNOIMOD=1)
Thermal noise(TNOIMOD=0)	BSIM4 (TNOIMOD=0)
Thermal noise (TNOIMOD=1)	BSIM4 (TNOIMOD=2)
Gate current shot noise	BSIM4 gate current noise
Noise associated with parasitic resistances	BSIM4 parasitic resistance noise

2.19.1 Flicker Noise Models

BSIM6's flicker noise model is same as FNOIMOD $=1$ in BSIM4. The unified physical flicker noise model is smooth over all bias regions.

The physical mechanism for the flicker noise is trapping/detrapping-related charge fluctuation in oxide traps, which results in fluctuations of both mobile carrier numbers and mobilities in the channel. The unified flicker noise model captures this physical process. In the inversion region, the noise density is expressed as [8]

$$
\begin{aligned}
S_{i d, \text { inv }}(f)= & \frac{k T q^{2} \mu_{e f f} I_{d s}}{C_{o x e} L_{\text {effNOI }}^{2} f^{E F} \cdot 10^{10}}\left(N O I A \cdot \log \left(\frac{N_{0}+N^{*}}{N_{l}+N^{*}}\right)\right. \\
& \left.N O I B \cdot\left(N_{0}-N_{l}\right)+\frac{N O I C}{2}\left(N_{0}^{2}-N_{l}^{2}\right)\right) \\
& \frac{k T I_{d s}^{2} \Delta L_{c l m}}{W_{e f f} L_{e f f N O I}^{2} f^{E F} \cdot 10^{10}}\left(\frac{N O I A+N O I B \cdot N_{l}+N O I C \cdot N_{l}^{2}}{\left(N_{l}+N^{*}\right)^{2}}(2) \cdot 260\right)
\end{aligned}
$$

where $L_{e f f N O I}=L_{e f f}-2 \cdot$ LINTNOI, $\mu_{e f f}$ is the effective mobility at the given bias condition, and $L_{e f f}$ and $W_{e f f}$ are the effective channel length and width, respectively.

The parameter N_{0} is the charge density at the source side given by

$$
\begin{equation*}
N_{0}=\frac{2 n_{q} C_{o x} V_{t} q_{s}}{q} \tag{2.261}
\end{equation*}
$$

The parameter N_{l} is the charge density at the drain end given by

$$
\begin{equation*}
N_{l}=\frac{2 n_{q} C_{o x} V_{t} q_{\text {deff }}}{q} \tag{2.262}
\end{equation*}
$$

and N^{*} is given by

$$
\begin{equation*}
N^{*}=\frac{V_{t}\left(C_{o x}+C_{d}+C I T\right)}{q} \tag{2.263}
\end{equation*}
$$

where CIT is a model parameter from DC IV and C_{d} is the depletion capacitance.
$\Delta L_{c l m}$ is the channel length reduction due to channel length modulation and given by

$$
\begin{align*}
\Delta L_{c l m} & =l i t l \cdot \log \left(\frac{\frac{V_{d s}-V_{\text {dseff }}}{l i t l}+E M}{E_{\text {sat }}}\right) \\
E_{\text {sat }} & =\frac{2 V S A T}{\mu_{e f f}} \tag{2.264}
\end{align*}
$$

In the subthreshold region, the noise density is written as

$$
\begin{equation*}
S_{i d, s u b V t}(f)=\frac{N O I A \cdot k \cdot T \cdot I_{d s}^{2}}{W_{e f f} L_{e f f} f^{E F} N^{* 2} \cdot 10^{10}} \tag{2.265}
\end{equation*}
$$

The total flicker noise density is

$$
\begin{equation*}
S_{i d}(f)=\frac{S_{i d, i n v} \cdot S_{i d, s u b V t}}{S_{i d, i n v}+S_{i d, s u b V t}} \tag{2.266}
\end{equation*}
$$

2.19.2 Channel Thermal Noise

There are two channel thermal noise models in BSIM6. One is a charge-based model (default model) similar to that used in BSIM3v3.2 and BSIM4.7.0 (TNOIMOD=0). The other is the holistic model similar to BSIM4.7.0 (TNOIMOD=2). These two models can be selected through the model selector TNOIMOD.

TNOIMOD $=0($ Charge based Model): The noise current is given by

$$
\begin{align*}
& Q_{\text {inv }}=\left|Q_{s, \text { intrinsic }}+Q_{d, \text { intrinsic }}\right| \times N F I N_{\text {total }} \tag{2.267}\\
& \overline{i_{d}^{2}}= \begin{cases}N T N O I \cdot \frac{4 k T \Delta f}{R_{d s}+\frac{L_{\text {eff }}^{2}}{\mu_{e f f} Q_{i n v}}} & \text { if RDSMOD }=0 \\
N T N O I \cdot \frac{4 k T \Delta f}{L_{\text {eff }}^{2}} \cdot \mu_{e f f} Q_{i n v} & \text { if RDSMOD }=1\end{cases} \tag{2.268}
\end{align*}
$$

where $R_{d s}(V)$ is the bias-dependent LDD source/drain resistance, and the parameter NTNOI is introduced for more accurate fitting of short-channel devices. $Q_{i n v}$ is the total inversion charge in the channel.

TNOIMOD = $\mathbf{1}$ (Holistic Model): In this thermal noise model (similar to TNOIMOD $=2$ in BSIM4.7.0), all the short-channel effects and velocity saturation effect incorporated in the IV model are automatically included, hence the name "holistic thermal noise model". In this thermal noise model both the gate and the drain noise are implemented as current noise sources. The drain current noise flows from drain to source; whereas the induced gate current noise flows from the gate to the source. The correlation between the two noise sources is independently controllable and can be tuned using the parameter RNOIC, although the use of default value 0.395 is recommended when measured data is not available. As illustrated in Fig. 4, TNOIMOD=1 shows good physical behavior in both the weak and strong inversion regions. The white noise gamma factor $\gamma_{W N}=\frac{S_{I d}}{4 k T g_{d 0}}$ shows a value of 1 at low $V_{d s}$, as expected. At high $V_{d s}$, it correctly goes to $2 / 3$ for strong inversion and $1 / 2$ in sub-threshold [9]. The relevant formulations of TNOIMOD $=2$ are given below. For more details, see Ph.D. thesis of Darsen Lu and BSIM4 manual.

$$
\begin{align*}
& \beta_{\text {tnoi }}=\text { RNOIA } \cdot\left[1.0+\text { TNOIA } \cdot L_{e f f} \cdot\left(\frac{q_{i a}}{E_{\text {sat }, n o i} L_{e f f}}\right)^{2}\right] \tag{2.269}\\
& \theta_{\text {tnoi }}=\text { RNOIB } \cdot\left[1.0+\text { TNOIB } \cdot L_{e f f} \cdot\left(\frac{q_{i a}}{E_{\text {sat }, n o i} L_{e f f}}\right)^{2}\right] \tag{2.270}\\
& c_{\text {tnoi }}=\text { RNOIC } \cdot\left[1.0+\text { TNOIC } \cdot L_{e f f} \cdot\left(\frac{q_{i a}}{E_{\text {sat }, n o i} L_{e f f}}\right)^{2}\right] \tag{2.271}
\end{align*}
$$

$$
\begin{align*}
& S_{i d}=4 K T \cdot \mu C_{o x} \frac{W_{\text {eff }}}{L_{v s a t}} V_{t} D_{p t w g} M_{o c}\left[\frac{q_{s}+q_{\text {deff }}}{2}+\frac{\left(q_{s}-q_{\text {deff }}\right)^{2}}{12\left(\frac{1+q_{s}+q_{\text {deff }}}{2}\right)}\right] \cdot\left(3 \cdot \beta_{t n o i}^{2}\right) \tag{2.273}\\
& S_{i g}=4 K T \cdot \frac{1}{12 \cdot N F \cdot W_{e f f} \mu_{\text {eff }} \cdot D_{p t w g} M_{o c} C_{o x} \cdot V_{t}} \frac{L_{v s a t}^{3}}{L_{\text {eff }}^{2}} \cdot\left[\frac{\frac{q_{s}+q_{d e f f}}{2}}{\left(\frac{1+q_{s}+q_{d e f f}}{2}\right)^{2}}\right. \\
& \left.-\frac{6\left(\frac{1+q_{s}+q_{\text {deff }}}{2}\right)\left(q_{s}-q_{d e f f}\right)^{2}}{60\left(\frac{1+q_{s}+q_{\text {deff }}}{2}\right)^{4}}+\frac{\left(q_{s}-q_{\text {deff }}\right)^{4}}{144\left(\frac{1+q_{s}+q_{d e f f}}{2}\right)^{5}}\right] \cdot\left(\frac{15}{4} \cdot \theta_{\text {tnoi }}^{2}\right) \tag{2.274}\\
& S_{i g, i d}=-j \omega \cdot 4 K T \cdot \mu C_{o x} D_{p t w g} M_{o c} V_{t}\left(\frac{L_{v s a t}}{L_{e f f}}\right) \cdot\left[\frac{\left(q_{s}-q_{d e f f}\right)}{12\left(\frac{1+q_{s}+q_{\text {deff }}}{2}\right)}-\frac{\left(q_{s}-q_{d e f f}\right)^{3}}{144\left(\frac{1+q_{s}+q_{d e f f}}{2}\right)^{3}}\right] \cdot \frac{c_{\text {tnoi }}}{0.395} \tag{2.275}\\
& c=\frac{S_{i g, i d}}{\sqrt{S_{i g}} \cdot \sqrt{S_{i d}}} \tag{2.276}
\end{align*}
$$

Figure 4: TNOIMOD $=1$ shows good physical behavior at high and low $V_{d s}$ from subthreshold to strong inversion regions.

2.19.3 Gate Current Shot Noise

$$
\begin{align*}
& \overline{i_{g s}^{2}}=2 q\left(I_{g c s}+I_{g s}\right) \tag{2.277}\\
& \overline{\overline{i_{g d}^{2}}}=2 q\left(I_{g c d}+I_{g d}\right) \tag{2.278}\\
& \overline{i_{g b}^{2}}=2 q I_{g b i n v} \tag{2.279}
\end{align*}
$$

2.19.4 Resistor Noise

The noise associated with each parasitic resistors in BSIM6 are calculated If $R D S M O D=1$ then

$$
\begin{align*}
& \frac{\overline{i_{R S}^{2}}}{\frac{\Delta f}{}}=4 k T \cdot \frac{1}{R_{\text {source }}} \tag{2.280}\\
& \frac{i_{R D}^{2}}{\Delta f}=4 k T \cdot \frac{1}{R_{\text {drain }}} \tag{2.281}
\end{align*}
$$

If $R G A T E M O D=1$ then

$$
\begin{equation*}
\frac{\overline{i_{R G}^{2}}}{\Delta f}=4 k T \cdot \frac{1}{R_{g e l t d}} \tag{2.282}
\end{equation*}
$$

2.20 Self Heating Model

Effect of self heating is modeled by employing a thermal network consisting of thermal resistance $\left(R_{t h}\right)$ and capacitance $\left(C_{t h}\right)$ as shown in Fig. 5 . The voltage at thermal node T gives the rise in temperature, which is added to the ambient temperature and all the temperature sensitive variables in the model are updated accordingly.

$$
\begin{aligned}
R_{t h} & =\frac{R T H 0}{(W T H 0+W e f f) \cdot N F} \\
C_{t h} & =C T H 0 *(W T H 0+W e f f) \cdot N F
\end{aligned}
$$

Figure 5: Thermal Network for Self Heating Model.

3 Asymmetric MOS Junction Diode Models

3.1 Junction Diode IV Model

In BSIM6, there is only one diode model ($\mathrm{DIOMOD}=2$ from BSIM4), which includes resistance and breakdown. BSIM6 models the diode breakdown with current limiting in both forward IJTHSFWD or IJTHDFWD and reverse operations XJBVS, XJBVD, BVS, and BVD.

Source/Body Junction Diode The equations for the source-side diode are as follows:

$$
\begin{equation*}
I_{b s}=I_{s b s}\left[\exp \left(\frac{V_{b s}}{N J S \cdot V_{t}}\right)-1\right] \cdot f_{b r e a k d o w n}+V_{b s} \cdot G_{m i n} \tag{3.1}
\end{equation*}
$$

where $I_{s b s}$ is the total saturation current consisting of the components through the gate-edge (Jsswgs) and isolation-edge sidewalls (Jssws) and the bottom junction (Jss),

$$
\begin{equation*}
I_{s b s}=A_{s e f f} J_{s s}(T)+P_{s e f f} J_{s s w s}(T)+W_{e f f c j} \cdot N F \cdot J_{s s w g s}(T) \tag{3.2}
\end{equation*}
$$

where the calculation of the junction area and perimeter is discussed in section LayoutDependent Parasitics Models, and the temperature-dependent current density model is given in Section Temperature Dependence of Junction Diode IV. The exponential term in equation given below is linearized at both the limiting current IJTHSFWD in the forward-bias mode and the limiting current IJTHSREV in the reverse-bias mode. In (3.1), $f_{\text {breakdown }}$ is given by

$$
\begin{equation*}
f_{\text {breakdown }}=1+X J B V S \cdot \exp \left(-\frac{\left(B V S+V_{b s}\right)}{N J S \cdot V_{t}}\right) \tag{3.3}
\end{equation*}
$$

if $X J B V S \leq 0.0$, it is reset to 1.0.

Drain/Body Junction Diode The equations for the drain-side diode are as follows:

$$
\begin{equation*}
I_{b d}=I_{s b d}\left[\exp \left(\frac{V_{b d}}{N J D \cdot V_{t}}\right)-1\right] \cdot f_{b r e a k d o w n}+V_{b d} \cdot G_{m i n} \tag{3.4}
\end{equation*}
$$

where $I_{s b s}$ is the total saturation current consisting of the components through the gate-edge (Jsswgs) and isolation-edge sidewalls (Jssws) and the bottom junction (Jss),

$$
\begin{equation*}
I_{s b d}=A_{d e f f} J_{s d}(T)+P_{d e f f} J_{s s w d}(T)+W_{e f f c j} \cdot N F \cdot J_{s s w g d}(T) \tag{3.5}
\end{equation*}
$$

where the calculation of the junction area and perimeter is discussed in Section LayoutDependent Parasitics Models, and the temperature-dependent current density model is given in Section Temperature Dependence of Junction Diode IV. The exponential term in (3.6) is linearized at both the limiting current IJTHDFWD in the forward-bias mode and the limiting current IJTHDREV in the reverse-bias mode. In $(3.1), f_{\text {breakdown }}$ is given by

$$
\begin{equation*}
f_{\text {breakdown }}=1+X J B V D \cdot \exp \left(-\frac{\cdot\left(B V D+V_{b d}\right)}{N J D \cdot V_{t}}\right) \tag{3.6}
\end{equation*}
$$

if $X J B V D \leq 0.0$, it is reset to 1.0.

Total Junction Source/Drain Diode Including Tunneling Total diode current including the carrier recombination and trap-assisted tunneling current in the space-
charge region is modeled by:

$$
\begin{align*}
I_{b s _t o t l e} & =I_{b s} \\
& -W_{e f f c j} \cdot N F \cdot J_{t s s w g s}(T) \cdot\left[\exp \left(\frac{-V_{b s}}{N J T S S W G(T) \cdot V t m 0} \cdot \frac{V T S S W G S}{V T S S W G S-V_{b s}}\right)\right] \\
& -P_{s, \text { deff }} J_{t s s w s}(T)\left[\exp \left(\frac{-V_{b s}}{N J T S S W(T) \cdot V t m 0} \cdot \frac{V T S S W S}{V T S S W S-V_{b s}}\right)-1\right] \\
& -A_{s, d e f f} J_{t s s}(T)\left[\exp \left(\frac{-V_{b s}}{N J T S(T) \cdot V t m 0} \frac{V T S S}{V T S S-V_{b s}}\right)-1\right]+g_{m i n} \cdot V_{b s} \tag{3.7}\\
I_{b d _t o t l e} & =I_{b d} \\
& -W_{e f f c j} \cdot N F \cdot J_{t s s w g d}(T) \cdot\left[\exp \left(\frac{-V_{b d}}{N J T S S W G D(T) \cdot V t m 0} \cdot \frac{V T S S W G D}{V T S S W G D-V_{b d}}\right)\right] \\
& -P_{d, d e f f} J_{t s s w d}(T)\left[\exp \left(\frac{-V_{b d}}{N J T S S W D(T) \cdot V t m 0} \cdot \frac{V T S S W D}{V T S S W D-V_{b d}}\right)-1\right] \\
& -A_{d, \text { deff }} J_{t s d}(T)\left[\exp \left(\frac{-V_{b d}}{N J T D(T) \cdot V t m 0} \frac{V T S D}{V T S D-V_{b d}}\right)-1\right]+g_{m i n} \cdot V_{b d} \tag{3.8}
\end{align*}
$$

3.2 Junction Diode CV Model

Source and drain junction capacitances consist of three components: the bottom junction capacitance, sidewall junction capacitance along the isolation edge, and sidewall junction capacitance along the gate edge. An analogous set of equations are used for both sides but each side has a separate set of model parameters.

Source/Body Junction Diode The source-side junction capacitance can be calculated by

$$
\begin{equation*}
C_{b s}=A_{s e f f} C_{j b s}+P_{s e f f} C_{j b s s w}+W_{e f f c j} \cdot N F \cdot C_{j b s s w g} \tag{3.9}
\end{equation*}
$$

where $C_{j b s}$ is the unit-area bottom S / B junciton capacitance, $C_{j b s s w}$ is the unit-length S/B junction sidewall capacitance along the isolation edge, and $C_{j b s s w g}$ is the unit-length S/B junction sidewall capacitance along the gate edge. The effective area and perimeters in (3.9) are given in Section Layout-Dependent Parasitics Models.

Cjbs is calculated by

$$
C_{j b s}= \begin{cases}C J S(T) \cdot\left(1-\frac{V_{b s}}{P B S(T)}\right)^{-M J S} & \text { if } \frac{V_{b s}}{P B S(T)} \leq x_{0} \tag{3.10}\\ C J S(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J S}} \cdot\left[1+M J S\left(1+\frac{\frac{V_{b s}}{P B S}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Cjbssw is calculated by

$$
C_{j b s s w}= \begin{cases}C J S W S(T) \cdot\left(1-\frac{V_{b s}}{P B S W S(T)}\right)^{-M J S W S} & \text { if } \frac{V_{b s}}{P B S W S(T)} \leq x_{0} \tag{3.11}\\ C J S W S(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J S W S}} \cdot\left[1+M J S W S\left(1+\frac{\frac{V_{b s}}{P B S W S(T)}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Cjbsswg is calculated by

$$
C_{j b s s w g}= \begin{cases}C J S W G S(T) \cdot\left(1-\frac{V_{b s}}{P B S W G S(T)}\right)^{-M J S W G S} & \text { if } \frac{V_{b s}}{P B S W G S(T)} \leq \tag{3.12}\\ C J S W G S(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J S W G S}} \cdot\left[1+M J S W G S\left(1+\frac{\frac{V_{b s}}{P B S W G S(T)}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Drain/Body Junction Diode The drain-side junction capacitance can be calculated by

$$
\begin{equation*}
C_{b d}=A_{d e f f} C_{j b d}+P_{d e f f} C_{j b d s w}+W_{e f f c j} \cdot N F \cdot C_{j b d s w g} \tag{3.13}
\end{equation*}
$$

where Cjbd is the unit-area bottom D / B junciton capacitance, Cjbdsw is the unit-length D/B junction sidewall capacitance along the isolation edge, and Cjbdswg is the unitlength D / B junction sidewall capacitance along the gate edge. The effective area and perimeters in (3.13) are given in Section Layout-Dependent Parasitics Models.

Cjbd is calculated by

$$
C_{j b d}= \begin{cases}C J D(T) \cdot\left(1-\frac{V_{b s}}{P B D(T)}\right)^{-M J D} & \text { if } \frac{V_{b s}}{P B D(T)} \leq x_{0} \tag{3.14}\\ C J D(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J D}} \cdot\left[1+M J D\left(1+\frac{\frac{V_{b s}}{P B D}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Cjbdsw is calculated by

$$
C_{j b d s w}= \begin{cases}C J S W D(T) \cdot\left(1-\frac{V_{b s}}{P B S W D(T)}\right)^{-M J S W S} & \text { if } \frac{V_{b s}}{P B S W D(T)} \leq x_{0} \tag{3.15}\\ C J S W D(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J S W D}} \cdot\left[1+M J S W D\left(1+\frac{\frac{V_{b s}}{P B S D(T)}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Cjbdswg is calculated by

$$
C_{j b d s w g}= \begin{cases}C J S W G D(T) \cdot\left(1-\frac{V_{b s}}{P B S W G D(T)}\right)^{-M J S W G D} & \text { if } \frac{V_{b s}}{P B S W G D(T)} \tag{3.16}\\ C J S W G D(T) \cdot \frac{1}{\left(1-x_{0}\right)^{M J S W G D}} \cdot\left[1+M J S W G D\left(1+\frac{\frac{V_{b s}}{P B S G D(T)}-1}{1-x_{0}}\right)\right] & \text { otherwise }\end{cases}
$$

where the value of x_{0} is taken as 0.9 .

Figure 6: Definition for layout parameters.

4 Layout dependent Parasitics Models

4.1 Layout-Dependent Parasitics Models

BSIM6 provides a comprehensive and versatile geometry/layout-dependent parasitcs model taken from BSIM4. It supports modeling of series (such as isolated, shared, or merged source/ drain) and multi-finger device layout, or a combination of these two configurations. This model has impact on every BSIM6 sub-models except the substrate resistance network model. Note that the narrow-width effect in the per-finger device with multi-finger configuration is accounted for by this model. A complete list of model parameters and selectors can be found at the end.

4.1.1 Geometry Definition

Figure 6 schematically shows the geometry definition for various source/drain connections and source/drain/gate contacts. The layout parameters shown in this figure will be used to calculate resistances and source/drain perimeters and areas.

4.1.2 Model Formulation and Options

Effective Junction Perimeter and Area: In the following, only the source-side case is illustrated. The same approach is used for the drain side. The effective junction perimeter on the source side is calculated by
If (PS is given)
if $($ perMod $=0)$
$P_{\text {seff }}=\mathrm{PS}$
else
Else
$P_{\text {seff }}$ computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG, DMCGT, RSH, and MIN.

The effective junction area on the source side is calculated by
If (AS is given)

$$
A_{\text {seff }}=A S
$$

Else
$A_{\text {seff }}$ computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG, DMCGT, RSH, and MIN.

In the above, $P_{\text {seff }}$ and $A_{\text {seff }}$ will be used to calculate junction diode IV and CV. $P_{\text {seff }}$ does not include the gate-edge perimeter.

Source/Drain Diffusion Resistance: The source diffusion resistance is calculated by
If(number of sources NRS is given)
ELSE if(rgeoMod=0)
Source diffusion resistance $R_{\text {sdiff }}$ is not generated.

Else

$R_{\text {sdiff }}$ computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG, DMCGT, RSH, and MIN.
where the number of source squares NRS is an instance parameter. Similarly, the drain diffusion resistance is calculated by
If (number of sources NRD is given)
ELSE if(rgeoMod=0)
Drain diffusion resistance $R_{\text {ddiff }}$ is not generated.
Else

geomod	End Source	End drain	Note
0	isolated	isolated	$\mathrm{NF}=$ Odd
1	isolated	shared	$\mathrm{NF}=$ Odd, Even
2	shared	shared	$\mathrm{NF}=$ Odd, Even
3	shared	isolated	$\mathrm{NF}=$ Odd, Even
4	isolated	merged	$\mathrm{NF}=$ Odd
5	shared	merged	$\mathrm{NF}=$ Odd, Even
6	merged	isolated	$\mathrm{NF}=$ Odd
7	merged	shared	$\mathrm{NF}=$ Odd, Even
8	merged	merged	$\mathrm{NF}=$ Odd
9	sha/iso	shared	$\mathrm{NF}=$ Even
10	shared	sha/iso	$\mathrm{NF}=$ Even

Table 1: geoMod options.
$R_{d d i f f}$ computed from NF, DWJ, geoMod, DMCG, DMCI, DMDG, DMCGT, RSH, and MIN.

Gate Electrode Resistance: The gate electrode resistance with multi-finger configuration is modeled by

$$
\begin{equation*}
\text { Rgeltd }=\frac{R S H G \cdot\left(X G W+\frac{W_{e f f c i}}{3 N G C O N}\right)}{N G C O N \cdot\left(L_{d r a w n}-X G L\right) \cdot N F} \tag{4.1}
\end{equation*}
$$

Option for Source/Drain Connections: Table 1 lists the options for source/drain connections through the model selector geoMod. For multi-finger devices, all inside S/D diffusions are assumed shared.

Option for Source/Drain Contacts: Table 2 lists the options for source/drain contacts through the model selector rgeoMod.

rgeoMod	End-source contact	End-drain contact
0	No $R_{\text {sdiff }}$	No $R_{\text {ddiff }}$
1	wide	wide
2	wide	point
3	point	wide
4	point	point
5	wide	merged
6	point	merged
7	merged	wide
8	merged	point

Table 2: rgeoMod options.

5 Temperature dependence Models

5.1 Temperature Dependence Model

Accurate modeling of the temperature effects on MOSFET characteristics is important to predict circuit behavior over a range of operating temperatures (T). The operating temperature might be different from the nominal temperature (TNOM) at which the BSIM6 model parameters are extracted. This chapter presents the BSIM6 temperature dependence models for threshold voltage, mobility, saturation velocity, source/drain resistance, and junction diode IV and CV.

5.1.1 Length Scaling of Temperature parameters

$$
\begin{align*}
U T E & =U T E \cdot\left(1+U T E L \frac{1}{L_{e f f}}\right) \tag{5.1}\\
U A 1 & =U A 1 \cdot\left(1+U A 1 L \frac{1}{L_{e f f}}\right) \tag{5.2}\\
U D 1 & =U D 1 \cdot\left(1+U D 1 L \frac{1}{L_{e f f}}\right) \tag{5.3}\\
A T & =A T \cdot\left(1+A T L \frac{1}{L_{e f f}}\right) \tag{5.4}\\
P T W G T & =P T W G T \cdot\left(1+P T W G T L \frac{1}{L_{e f f}}\right) \tag{5.5}
\end{align*}
$$

5.1.2 Temperature Dependence of Threshold Voltage

The temperature dependence of $V_{t h}$ is modeled by

$$
\begin{align*}
V_{t h}(T) & =V_{t h}(T N O M)+\left(K T 1_{i}+K T 2_{i} \cdot V_{b r e f f}\right) \cdot\left(\left(\frac{T}{T N O M}\right)^{K T 1 E X P}-1\right) \\
V_{f b}(T) & =V_{f b}(T N O M)-K T 1 \cdot\left(\frac{T}{T N O M}-1\right) \tag{5.7}\\
\operatorname{VFBSDOFF}(T) & =\operatorname{VFBSDOFF}(T N O M) \cdot[1+T V F B S D O F F \cdot(T-T N O M)] \\
\operatorname{NFACTOR}(T) & =\operatorname{NFACTOR}(T N O M)+T F A C T O R \cdot\left(\frac{T}{T N O M}-1\right) \tag{5.8}\\
\operatorname{ETA0}(T) & =\operatorname{ETA0}(T N O M)+T E T A 0\left(\frac{T}{T N O M}-1\right) \tag{5.9}
\end{align*}
$$

5.1.3 Temperature Dependence of Mobility

$$
\begin{align*}
U 0(T) & =U 0(T N O M) \cdot(T / T N O M)^{U T E} \tag{5.10}\\
U A(T) & =U A(T N O M)[1+U A 1 \cdot(T-T N O M)] \tag{5.11}\\
U C(T) & =U C(T N O M)[1+U C 1 \cdot(T-T N O M)] \tag{5.12}\\
U D(T) & =U D(T N O M) \cdot(T / T N O M)^{U D 1} \tag{5.13}\\
U C S(T) & =U C S(T N O M) \cdot(T / T N O M)^{U C S T E} \tag{5.14}
\end{align*}
$$

5.1.4 Temperature Dependence of Saturation Velocity

$$
\begin{equation*}
V S A T(T)=V S A T(T N O M) \cdot(T / T N O M)^{-A T} \tag{5.16}
\end{equation*}
$$

5.1.5 Temperature Dependence of LDD Resistance

$$
\begin{equation*}
\text { rdstemp }=(T / T N O M)^{P R T} \tag{5.17}
\end{equation*}
$$

$\operatorname{RDSMOD}=0$ (internal source/drain LDD resistance)

$$
\begin{align*}
\operatorname{RDSW}(T) & =R D S W(T N O M) \cdot r d s t e m p \tag{5.19}\\
\operatorname{RDSWMIN}(T) & =\operatorname{RDSWMIN}(T N O M) \cdot \text { rdstemp } \tag{5.20}
\end{align*}
$$

RDSMOD $=1$ (external source/drain LDD resistance)

$$
\begin{align*}
R D W(T) & =R D W(T N O M) \cdot r d s t e m p \tag{5.21}\\
R D W M I N(T) & =R D W M I N(T N O M) \cdot r d s t e m p) \tag{5.22}\\
R S W(T) & =R S W(T N O M) \cdot \text { rdstemp } \tag{5.23}\\
R S W M I N(T) & =R S W M I N(T N O M) \cdot \text { rdstemp } \tag{5.24}
\end{align*}
$$

5.1.6 Temperature Dependence of Junction Diode IV

- Source-side diode The source-side diode is turned off if both $A_{\text {seff }}$ and $P_{\text {seff }}$ are zero. Otherwise, the source-side saturation current is given by

$$
\begin{equation*}
I_{s b s}=A_{s e f f} J_{s s}(T)+P_{s e f f} J_{s s w s}(T)+W_{e f f c j} \cdot N F \cdot J_{s s w g s}(T) \tag{5.25}
\end{equation*}
$$

where

$$
\begin{align*}
J_{s s}(T) & =J S S(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{v_{t}(T N O M)}-\frac{E_{g}(T)}{v_{t}(T)}+X T I S \cdot \ln \left(\frac{T}{T N O M}\right)}{N J S}\right) \\
J_{s s w s}(T) & =J S S W S(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{v_{t}(T N O M)}-\frac{E_{g}(T)}{v_{t}(T)}+X T I S \cdot \ln \left(\frac{T}{T N O M}\right)}{N J S}\right) \\
J_{s s w g s}(T) & =J S S W G S(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{k_{b} \cdot T N O M}-\frac{E_{g}(T)}{k_{b} \cdot T}+X T I S \cdot \ln \left(\frac{T}{T N O M}\right)}{N J S}\right) \tag{5.26}
\end{align*}
$$

where Eg is given in Temperature Dependences of Eg and ni.

- Drain-side diode The drain-side diode is turned off if both $A_{\text {seff }}$ and $P_{\text {seff }}$ arezero. Otherwise, the drain-side saturation current is given by

$$
\begin{equation*}
I_{s b d}=A_{d e f f} J_{s d}(T)+P_{d e f f} J_{s s w d}(T)+W_{e f f c j} \cdot N F \cdot J_{s s w g d}(T) \tag{5.27}
\end{equation*}
$$

where

$$
\begin{align*}
J_{s d}(T) & =J S D(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{k_{b} \cdot T N O M}-\frac{E_{g}(T)}{k_{b} \cdot T}+X T I D \cdot \ln \left(\frac{T}{T N O M}\right)}{N J D}\right) \\
J_{s s w d}(T) & =J S S W D(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{k_{b} \cdot T N O M}-\frac{E_{g}(T)}{k_{b} \cdot T}+X T I D \cdot \ln \left(\frac{T}{T N O M}\right)}{N J D}\right) \\
J_{s s w g d}(T) & =J S S W G D(T N O M) \cdot \exp \left(\frac{\frac{E_{g}(T N O M)}{k_{b} \cdot T N O M}-\frac{E_{g}(T)}{k_{b} \cdot T}+X T I D \cdot \ln \left(\frac{T}{T N O M}\right)}{N J D}\right) \tag{5.28}
\end{align*}
$$

5.1.7 Temperature Dependence of Junction Diode CV

- Source-side diode: The temperature dependences of zero-bias unit-length/area junction capacitances on the source side are modeled by

$$
\begin{align*}
C J S(T) & =C J S(T N O M)+T C J \cdot(T-T N O M) \\
C J S W S(T) & =C J S W S(T N O M)+T C J S W \cdot(T-T N O M(5.30) \\
C J S W G S(T) & =C J S W G S(T N O M)+T C J S W G \cdot(T-T N O M) \tag{5.31}
\end{align*}
$$

The temperature dependences of the built-in potentials on the source side are modeled by

$$
\begin{align*}
P B S(T) & =P B S(T N O M)-T P B \cdot(T-T N O M) \tag{5.32}\\
P B S W S(T) & =P B S W S(T N O M)-T P B S W \cdot(T-T N O N(5) .33) \\
P B S W G S(T) & =P B S W G S(T N O M)-T P B S W G \cdot(T-T N O M) \tag{5.34}
\end{align*}
$$

- Drain-side diode: The temperature dependences of zero-bias unit-length/area junction capacitances on the drain side are modeled by

$$
\begin{align*}
C J S(T) & =C J S(T N O M)[1+T C J \cdot(T-T N O M)] \tag{5.35}\\
C J S W S(T) & =C J S W S(T N O M)+T C J S W \cdot(T-T N O M)(5.36) \tag{5.36}\\
C J S W G S(T) & =C J S W G S(T N O M)[1+T C J S W G \cdot(T-T N O M)] \tag{5.37}
\end{align*}
$$

The temperature dependences of the built-in potentials on the drain side are modeled by

$$
\begin{align*}
P B D(T) & =P B D(T N O M)-T P B \cdot(T-T N O M) \tag{5.38}\\
P B S W D(T) & =P B S W D(T N O M)-T P B S W \cdot(T-T N O N(/ 5) .39) \\
P B S W G D(T) & =P B S W G D(T N O M)-T P B S W G \cdot(T-T N O M) \tag{5.40}
\end{align*}
$$

- trap-assisted tunneling (TAT) and recombination current

$$
\begin{align*}
J_{t s s w g s}(T) & =J_{t s s w g s}(T N O M) \cdot\left(\sqrt{\left.\frac{J T W E F F}{W_{\text {effcj }}}+1\right)}\right. \\
& \cdot \exp \left[\frac{-E_{g}(T N O M)}{k_{b} T} \cdot X_{t s s w g s} \cdot\left(1-\frac{T}{T N O M}\right)\right] \tag{5.41}\\
J_{t s s w s}(T) & =J_{t s s w s}(T N O M) \cdot \exp \left[\frac{-E_{g}(T N O M)}{k_{b} T} \cdot X_{t s s w s} \cdot\left(1-\frac{T}{T N O M}\right)\right] \\
J_{t s s}(T) & =J_{t s s}(T N O M) \cdot \exp \left[\frac{-E_{g}(T N O M)}{k_{b} T} \cdot X_{t s s} \cdot\left(1-\frac{T}{T N O M}\right)\right] \\
J_{t s s w g d}(T) & =J_{t s s w g d}(T N O M) \cdot\left(\sqrt{\left.\frac{J T W E F F}{W_{e f f c j}}+1\right)}\right. \\
J_{t s d}(T) & =J_{t s d}(T N O M) \cdot \exp \left[\frac { - E _ { g } (T N O M) } { k _ { b } T } \cdot X _ { t s s w g d } \cdot \left(1-\frac{T}{T N O M)}\right.\right. \tag{5.42}\\
N J T S S W G(T) & =N J T S S W G(T N O M) \cdot\left[1+T N J T S S W G\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S S W(T) & =N J T S S W(T N O M) \cdot\left[1+T N J T S S W\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S(T) & =N J T S(T N O M) \cdot\left[1+T N J T S\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S S W G D(T) & =N J T S S W G D(T N O M) \cdot\left[1+T N J T S S W G D\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S S W D(T) & =N J T S S W D(T N O M) \cdot\left[1+T N J T S S W D\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S S W D(T) & =N J T S S W D(T N O M) \cdot\left[1+T N J T S S W D\left(\frac{T}{T N O M}-1\right)\right] \\
N J T S D(T) & =N J T S D(T N O M) \cdot\left[1+T N J T S D\left(\frac{T}{T N O M}-1\right)\right]
\end{align*}
$$

5.1.8 Temperature Dependences of E_{g} and n_{i}

- Energy-band gap of channel $\left(E_{g}\right)$: The temperature dependence of E_{g} is modeled by

$$
\begin{align*}
E g 0 & =B G 0 S U B-\frac{T B G A S U B \times \text { Tnom }^{2}}{T n o m+T B G B S U B} \tag{5.44}\\
E_{g} & =B G 0 S U B-\frac{T B G A S U B \times T^{2}}{T+T B G B S U B} \tag{5.45}
\end{align*}
$$

- Intrinsic carrier concentration of non-silicon channel $\left(n_{i}\right)$

$$
\begin{equation*}
n_{i}=N I 0 S U B \times\left(\frac{T}{\text { Tnom }}\right)^{(3 / 2)} \times \exp \left(\frac{E g}{2 \frac{k T n o m}{q}}-\frac{E g}{2 \frac{k T}{q}}\right) \tag{5.46}
\end{equation*}
$$

6 Stress effect Model Development

6.1 Stress Effect Model

CMOS feature size aggressively scaling makes shallow trench isolation(STI) very popular active area isolation process in advanced technologies. Recent years, strain channel materials have been employed to achieve high device performance. The mechanical stress effect induced by these process causes MOSFET performance function of the active area size(OD: oxide definition) and the location of the device in the active area. And the necessity of new models to describe the layout dependence of MOS parameters due to stress effect becomes very urgent in advance CMOS technologies. Influence of stress on mobility has been well known since the 0.13 um technology. The stress influence on saturation velocity is also experimentally demonstrated. Stress-induced enhancement or suppression of dopant diffusion during the processing is reported. Since the doping profile may be changed due to different STI sizes and stress, the threshold voltage shift and changes of other second-order effects, such as DIBL and body effect, were shown in process integration. BSIM4 considers the influence of stress on mobility, velocity saturation, threshold voltage, body effect, and DIBL effect.

Figure 7: the typical layout of a MOSFET

6.1.1 Stress Effect Model Development

Experimental analysis show that there exist at least two different mechanisms within the influence of stress effect on device characteristics. The first one is mobility-related and is induced by the band structure modification. The second one is Vth-related as a result of doping profile variation. Both of them follow the same 1/LOD trend but reveal different L and W scaling. We have derived a phenomenological model based on these findings by modifying some parameters in the BSIM model. Note that the following equations have no impact on the iteration time because there are no voltage-controlled components in them.

Mobility-related Equations: This model introduces the first mechanism by adjusting the U0 and Vsat according to different W, L and OD shapes. Define mobility relative change due to stress effect as :

$$
\begin{equation*}
\rho_{\mu_{e f f}}=\Delta \mu_{e f f} / \mu_{e f f o}=\left(\mu_{e f f}-\mu_{e f f o}\right) / \mu_{e f f o}=\frac{\mu_{e f f}}{\mu_{e f f o}}-1 \tag{6.1}
\end{equation*}
$$

So,

$$
\begin{equation*}
\frac{\mu_{e f f}}{\mu_{e f f o}}=1+\rho_{\mu_{e f f}} \tag{6.2}
\end{equation*}
$$

Figure 7 shows the typical layout of a MOSFET on active layout surrounded by STI isolation. SA, SB are the distances between isolation edge to Poly from one and the other side, respectively. 2D simulation shows that stress distribution can be expressed by a simple function of SA and SB . Assuming that mobility relative change is propotional to stress distribution. It can be described as function of $\mathrm{SA}, \mathrm{SB}(\mathrm{LOD}$ effect), L, W, and

Figure 8: Stress distribution within MOSFET channel using 2D simulation
T dependence:

$$
\begin{equation*}
\rho_{\mu_{e f f}}=\frac{K U 0}{K \text { stress } 0} \cdot\left(I n v _s a+I n v_{_} s b\right) \tag{6.3}
\end{equation*}
$$

where:

$$
\begin{align*}
\text { Inv_sa }= & \frac{1}{S A+0.5 \cdot L_{\text {drawn }}} \tag{6.4}\\
\text { Inv_sb }= & \frac{1}{S B+0.5 \cdot L_{\text {drawn }}} \tag{6.5}\\
\text { Kstress_u } 0= & \left(1+\frac{L K U 0}{\left(L_{\text {drawn }}+X L\right)^{\text {LLODKU0 }}}\right. \\
& +\frac{W K U 0}{\left(W_{\text {drawn }}+X W+W L O D\right)^{W L O D K U 0}} \\
& +\frac{P K U 0}{\left.\left(L_{\text {drawn }}+X L\right)^{\text {LLODKU0 } \cdot\left(W_{\text {drawn }}+X W+W L O D\right)^{W L O D K U 0}}\right)} \\
& \times\left(1+T K U 0 \cdot\left(\frac{\text { Temperature }}{T N O M}-1\right)\right)
\end{align*}
$$

So that:

$$
\begin{align*}
\mu_{e f f} & =\frac{1+\rho_{\mu_{e f f}}(S A, S B)}{1+\rho_{\mu_{e f f}}\left(S A_{\text {ref }}, S B_{\text {ref }}\right)} \mu_{\text {effo }} \tag{6.7}\\
\nu_{\text {sattemp }} & =\frac{1+K V S A T \cdot \rho_{\mu_{e f f}}(S A, S B)}{1+K V S A T \cdot \rho_{\mu_{e f f}}\left(S A_{\text {ref }}, S B_{r e f}\right)} \nu_{\text {sattempo }} \tag{6.8}
\end{align*}
$$

and $S A_{\text {ref }}, S B_{r e f}$ are reference distances between OD edge to poly from one and the other side.

Vth-related Equations: Vth0 (threshold voltage without stress effect), K2 and ETA0 are modified to cover the doping profile change in the devices with different LOD. They use the same 1/LOD formulas as shown in earlier sections, but different equations for W and L scaling:

$$
\begin{align*}
V T H 0 & =V T H 0_{\text {original }}+\frac{K V T H 0}{K s t r e s s _v t h 0} \cdot\left(I n v _s a+I n v _s b-I n v _s a_{r e f}-I n v _s b_{r e f}\right) \\
K 2 & =K 2_{\text {original }}+\frac{S T K 2}{K s t r e s s _v t h 0^{L O D K 2}} \cdot\left(I n v _s a+I n v _s b-I n v _s a_{r e f}-I n v _s b_{r e f}\right) \\
E T A 0 & =E T A 0_{\text {original }}+\frac{S T E T A 0}{K s t r e s s _v t h 0^{L O D E T A 0}} \cdot\left(I n v _s a+I n v _s b-I n v _s a_{r e f}-I n v _s b_{r e f}\right) \tag{6.9}
\end{align*}
$$

where:

$$
\begin{align*}
\text { Inv_sa }= & \frac{1}{S A_{\text {ref }}+0.5 \cdot L_{\text {drawn }}} \tag{6.10}\\
\text { Inv_sbref }= & \frac{1}{S B_{\text {ref }}+0.5 \cdot L_{\text {drawn }}} \tag{6.11}\\
\text { Kstress_vth } 0= & \left(1+\frac{L K V T H 0}{\left(L_{\text {drawn }}+X L\right)^{\text {LLODKVTH }}}\right. \\
& +\frac{W V T H 0}{\left(W_{\text {drawn }}+X W+W L O D\right)^{W L O D K V T H}} \\
& \left.+\frac{P K V T H 0}{\left(L_{d r a w n}+X L\right)^{\text {LLODKVTH }} \cdot\left(W_{\text {drawn }}+X W+W L O D\right)^{W L O D K V}\left(6 . H^{2}\right.}{ }^{2}\right)
\end{align*}
$$

Multiple Finger Device: For multiple finger device, the total LOD effect is the average of LOD effect to every finger. That is(see Figure 9) for the layout for multiple

Figure 9: Layout of multiple finger MOSFET
finger device):

$$
\begin{align*}
& I n v_{-} s a=\frac{1}{N F} \sum_{i=0}^{N F-1} \frac{1}{S A+0.5 \cdot L_{\text {drawn }}+i \cdot\left(S D+L_{\text {drawn }}\right)} \tag{6.13}\\
& I n v_{_} s b=\frac{1}{N F} \sum_{i=0}^{N F-1} \frac{1}{S B+0.5 \cdot L_{\text {drawn }}+i \cdot\left(S D+L_{\text {drawn }}\right)} \tag{6.14}
\end{align*}
$$

6.1.2 Effective SA and SB for Irregular LOD

General MOSFET has an irregular shape of active area shown in Figure 10 To fully describe the shape of OD region will require additional instance parameters. However, this will result in too many parameters in the net lists and would massively increase the read-in time and degrade the readability of parameters. One way to overcome this difficulty is the concept of effective SA and SB similar to [10]. Stress effect model as described earlier allows an accurate and efficient layout extraction of effective SA and

Figure 10: A typical layout of MOS devices with more instance parameters (swi, sai and sbi) in addition to the traditional L and W

SB while keeping fully compatibility of the LOD model. They are expressed as:

$$
\begin{align*}
& \frac{1}{S A_{\text {eff }}+0.5 \cdot L_{\text {drawn }}}=\sum_{i=1}^{n} \frac{s w_{i}}{W_{\text {drawn }}} \cdot \frac{1}{s a_{i}+0.5 \cdot L_{\text {drawn }}} \tag{6.16}\\
& \frac{1}{S B_{\text {eff }}+0.5 \cdot L_{\text {drawn }}}=\sum_{i=1}^{n} \frac{s w_{i}}{W_{\text {drawn }}} \cdot \frac{1}{s b_{i}+0.5 \cdot L_{\text {drawn }}} \tag{6.17}
\end{align*}
$$

7 Well Proximity Effect Model

8 Well Proximity Effect Model

Retrograde well profiles have several key advantages for highly scaled bulk complementary metal oxide semiconductor(CMOS) technology. With the advent of high-energy implanters and reduced thermal cycle processing, it has become possible to provide a relatively heavily doped deep nwell and pwell without affecting the critical device-related doping at the surface. The deep well implants provide a low resistance path and suppress parasitic bipolar gain for latchup protection, and can also improve soft error rate
and noise isolation. A deep buried layer is also key to forming triple-well structures for isolated-well NMOSFETs. However, deep buried layers can affect devices located near the mask edge. Some of the ions scattered out of the edge of the photoresist are implanted in the silicon surface near the mask edge, altering the threshold voltage of those devices [11]. It is observed a threshold voltage shifts of up to 100 mV in a deep boron retrograde pwell, a deep phosphorus retrograde nwell, and also a triple-well implementation with a deep phosphorus isolation layer below the pwell over a lateral distance on the order of a micrometer [11]. This effect is called well proximity effect. BSIM6 considers the influence of well proximity effect on threshold voltage, mobility, and body effect. This well proximity effect model is developed by the Compact Model Council [12].

8.1 Well Proximity Effect Model

Experimental analysis [11] shows that well proximity effect is strong function of distance of FET from mask edge, and electrical quantities influenced by it follow the same geometrical trend. A phenomenological model based on these findings has been developed by modifying some parameters in the BSIM model. Note that the following equations have no impact on the iteration time because there are no voltage controlled components in them. Well proximity affects threshold voltage, mobility and the body effect of the device. The effect of the well proximity can be described through the following equations:

$$
\begin{align*}
V t h 0 & =V t h 0_{\text {org }}+K V T H 0 W E \cdot(S C A+W E B \cdot S C B+W E C \cdot S C C) \\
K 2 & =K 2_{\text {org }}+K 2 W E \cdot(S C A+W E B \cdot S C B+W E C \cdot S C C) \\
\mu_{e f f} & =\mu_{e f f, \text { org }} \cdot(1+K U 0 W E \cdot(S C A+W E B \cdot S C B+W E B \cdot S C C)) \tag{8.1}
\end{align*}
$$

where SCA, SCB, SCC are instance parameters that represent the integral of the first/second/third distribution function for scattered well dopant. The guidelines for calculating the instance parameters SCA, SCB, SCC have been developed by the Compact Model Council which can be found at the CMC website [12].

9 C-V Model

Inversion Charge : Total inversion charge (excluding velocity saturation, CLM and poly depletion) can be expressed explicitly in terms of normalized charge densities at source and drain sides as follows,

$$
\begin{align*}
Q_{I} & =W \cdot \int_{0}^{L} Q_{i} d x \tag{9.1}\\
& =-W L \cdot C_{o x} \cdot V_{t} \int_{0}^{1} 2 . n_{q} \cdot q d \xi \tag{9.2}\\
- & \frac{Q_{I}}{W L \cdot C_{o x} V_{t}}=q_{I}=2 . n_{q} \cdot \int_{0}^{1} q d \xi \tag{9.3}
\end{align*}
$$

Here $\xi=\frac{x}{L}$. Inversion charge density is normalized to $-2 . n_{q} \cdot C_{o x} \cdot V_{t}$ and voltages to V_{t}. From (2.204),

$$
\begin{equation*}
I_{d s}=-2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{e f f}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2} \cdot(2 q+1) \frac{d q}{d \xi} \tag{9.4}
\end{equation*}
$$

Normalizing current with $2 \cdot n_{q} \cdot \mu_{e f f} \cdot \frac{W_{\text {eff }}}{L_{e f f}} \cdot C_{o x} \cdot n V_{t}^{2}$,

$$
\begin{equation*}
i=-(2 q+1) \frac{d q}{d \xi} \tag{9.5}
\end{equation*}
$$

which gives $d \xi=-\frac{(2 q+1)}{i} d q=-\frac{(2 q+1)}{\left(q_{s}-q_{d}\right)\left(1+q_{s}+q_{d}\right)}$. Substituting in (9.3)

$$
\begin{align*}
q_{I} & =-\frac{2 n_{q}}{\left(q_{s}-q_{d}\right)\left(1+q_{s}+q_{d}\right)} \int_{q_{s}}^{q_{d}} q(2 q+1) d q \tag{9.6}\\
& =-\frac{2 n_{q}}{\left(q_{s}-q_{d}\right)\left(1+q_{s}+q_{d}\right)}\left[\frac{2}{3}\left(q_{d}{ }^{3}-q_{s}^{3}\right)+\frac{1}{2}\left(q_{d}{ }^{2}-q_{s}{ }^{2}\right)\right] \tag{9.7}
\end{align*}
$$

on rearranging,

$$
\begin{equation*}
q_{I}=n_{q} \cdot\left[q_{s}+q_{d}+\frac{1}{3} \cdot \frac{\left(q_{s}-q_{d}\right)^{2}}{1+q_{s}+q_{d}}\right] \tag{9.8}
\end{equation*}
$$

Bulk Charge: Bulk charge density is given as

$$
\begin{equation*}
Q_{b}=-C_{o x} \cdot\left(V_{G}-V_{F B}-\psi_{S}\right)-Q_{i} \tag{9.9}
\end{equation*}
$$

using charge linearization

$$
\begin{equation*}
Q_{b}=-C_{o x} \cdot\left(V_{G}-V_{F B}-\psi_{P}\right)-Q_{i}\left(1-\frac{1}{n_{q}}\right) \tag{9.11}
\end{equation*}
$$

Total bulk charge,

$$
\begin{align*}
Q_{B} & =W \cdot \int_{0}^{L} Q_{b} d x \tag{9.12}\\
& =-W L \cdot C_{o x} \cdot\left[V_{G}-V_{F B}-\psi_{P}+\left(1-\frac{1}{n_{q}}\right) \cdot \int_{0}^{1} \frac{Q_{i}}{C_{o x}} d \xi\right] \tag{9.13}
\end{align*}
$$

Normalizing the bulk charge to $-W \cdot L \cdot C_{o x} \cdot V_{t}$,

$$
\begin{equation*}
q_{B}=v_{g}-v_{f b}-\psi_{p}-2\left(n_{q}-1\right) \cdot \int_{0}^{1} q d \xi \tag{9.14}
\end{equation*}
$$

We know that $i_{d s}=-(2 q+1) \frac{d q}{d \xi}$ with $i_{d s}$ given by (2.212). Thus $d \xi=-\frac{-(2 q+1)}{i_{d s}} d q$,

$$
\begin{align*}
q_{B} & =v_{g}-v_{f b}-\psi_{p}+\frac{2\left(n_{q}-1\right)}{i_{d s}} \cdot \int_{q_{s}}^{q_{d}} q(2 q+1) d q \tag{9.15}\\
& =v_{g}-v_{f b}-\psi_{p}+\frac{2\left(n_{q}-1\right)}{\left(q_{s}-q_{d}\right)\left(1+q_{s}+q_{d}\right)} \int_{q_{s}}^{q_{d}}\left[\frac{2 q^{3}}{3}+\frac{q^{2}}{2}\right] \tag{9.16}\\
& =v_{g}-v_{f b}-\psi_{p}+\frac{2\left(n_{q}-1\right)}{\left(q_{s}-q_{d}\right)\left(1+q_{s}+q_{d}\right)}\left[\frac{2}{3} \cdot\left(q_{d}-q_{s}\right)\left(q_{d}^{2}+q_{s}^{2}+q_{s} \cdot q_{d}\right)+\frac{1}{2} \cdot\left(q_{d}-q_{s}\right)\left(q_{d}+q_{s}\right)\right] \tag{9.17}
\end{align*}
$$

which on rearrangement becomes,

$$
\begin{equation*}
q_{B}=v_{g}-v_{f b}-\psi_{p}-\left(n_{q}-1\right)\left[q_{s}+q_{d}+\frac{1}{3} \cdot \frac{\left(q_{s}-q_{d}\right)^{2}}{1+q_{s}+q_{d}}\right] \tag{9.18}
\end{equation*}
$$

Bulk charge with poly depletion effect :

$$
\begin{equation*}
q_{B}=A+B+\frac{1}{3} \cdot \frac{\Delta q^{2}}{C^{3}} \cdot\left[\frac{4}{8} \cdot\left(C^{2}+P . Q\right) \cdot \frac{1}{1+q_{s}+q_{d}}+\frac{2}{\gamma_{g}^{2}}\right]-n_{q} \cdot\left[q_{s}+q_{d}+\frac{1}{3} \cdot \frac{\left(q_{s}-q_{d}\right)^{2}}{1+q_{s}+q_{d}}\right] \tag{9.19}
\end{equation*}
$$

where

$$
\begin{align*}
& P=\sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{s}}{\gamma_{g}^{2}}} \tag{9.20}\\
& Q=\sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{d}}{\gamma_{g}^{2}}} \tag{9.21}\\
& A=\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{s}}{1+2 \cdot \sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{s}}{\gamma_{g}^{2}}}} \tag{9.22}\\
& B=\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{d}}{1+2 \cdot \sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{s}}{\gamma_{g}^{2}}}} \tag{9.23}\\
& C=\sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{s}}{\gamma_{g}^{2}}}+\sqrt{\frac{1}{4}+\frac{v_{g}-v_{f b}-\psi_{p}+2 . q_{d}}{\gamma_{g}^{2}}} \tag{9.24}
\end{align*}
$$

Source and Drain Charges

$$
\begin{align*}
& Q_{s}=\frac{n_{q}}{3}\left[2 \cdot q_{s}+q_{\text {deff }}+\frac{1}{2} \cdot\left(1+\frac{4}{5} \cdot q_{s}+\frac{6}{5} \cdot q_{\text {deff }}\right)\left(\frac{q_{s}-q_{\text {deff }}}{1+q_{s}+q_{\text {deff }}}\right)^{2}\right] \tag{9.25}\\
& Q_{d}=\frac{n_{q}}{3}\left[q_{s}+2 \cdot q_{\text {deff }}+\frac{1}{2} \cdot\left(1+\frac{6}{5} \cdot q_{s}+\frac{4}{5} \cdot q_{\text {deff }}\right)\left(\frac{q_{s}-q_{\text {deff }}}{1+q_{s}+q_{\text {deff }}}\right)^{2}\right] \tag{9.26}
\end{align*}
$$

Quantum Mechanical Effect

$$
\begin{align*}
X_{D C}^{i n v} & =\frac{A D O S \cdot\left(1.9 \cdot 10^{-9}\right)}{1+\left[\frac{Q_{i}+E T A Q M \cdot Q_{B}}{Q M 0}\right]^{0.7 * B D O S}} \tag{9.28}\\
C_{o x}^{i n v} & =\frac{3.9 \cdot \epsilon_{0}}{T O X P \cdot \frac{3.9}{E P S R O X}+\frac{X_{D C}^{i n v}}{\epsilon_{\text {ratio }}}} \tag{9.29}
\end{align*}
$$

Intrinsic Charge expressions:

$$
\begin{align*}
& W L C O X V t_{i n v}=N F \cdot \text { Wact } \cdot L a c t \cdot C_{o x}^{i n v} \cdot n V t \tag{9.30}\\
& Q B i=-N F \cdot W a c t \cdot L a c t \cdot\left(\frac{\epsilon_{0} \cdot E P S R O X}{T O X P}\right) \cdot n V t \cdot Q b \tag{9.31}\\
& Q S i=-W L C O X V t_{i n v} \cdot Q s \tag{9.32}\\
& Q D i=-W L C O X V t_{i n v} \cdot Q d \tag{9.33}\\
& Q G i=Q S i+Q D i+Q B i \tag{9.34}
\end{align*}
$$

Bias-dependent overlap capacitance model

An accurate overlap capacitance model is essential. This is especially true for the drain side where the effect of the capacitance is amplified by the transistor gain. The overlap capacitance changes with gate to source and gate to drain biases. In LDD MOSFETs a substantial portion of the LDD region can be depleted, both in the vertical and lateral directions. This can lead to a large reduction of the overlap capacitance. This LDD region can be in accumulation or depletion. We use a single equation for both regions by using such smoothing parameters as $V_{g s, \text { overlap }}$ and $V_{\text {gd,overlap }}$ for the source and drain side, respectively. Unlike the case with the intrinsic capacitance, the overlap capacitances are reciprocal. In other words, $C_{g s, \text { overlap }}=C_{s g, \text { overlap }}$ and $C_{g d, \text { overlap }}=C_{d g, \text { overlap }}$.

The bias-dependent overlap capacitance model in BSIM6 is adopted from BSIM4. The overlap charge is given by:

$$
\begin{align*}
& \frac{Q_{g s, o v}}{N F \cdot W_{e f f C V}}=C G S O \cdot V_{g s}+ \\
& \quad C G S L \cdot\left[V_{g s}-V_{f b s d}-V_{g s, \text { overlap }}-\frac{C K A P P A S}{2}\left(\sqrt{1-\frac{4 V_{g s, \text { overlap }}}{C K A P P A S}}-1\right)\right] \tag{9.35}
\end{align*}
$$

$$
\begin{align*}
& \frac{Q_{g d, o v}}{N F \cdot W_{e f f C V}}=C G D O \cdot V_{g d}+ \\
& \quad C G D L \cdot\left[V_{g d}-V_{f b s d}-V_{g d, o v e r l a p}-\frac{C K A P P A D}{2}\left(\sqrt{1-\frac{4 V_{g d, o v e r l a p}}{C K A P P A D}}-1\right)\right] \tag{9.36}\\
& V_{g s, \text { overlap }}=\frac{1}{2}\left[V_{g s}-V_{f b s d}+\delta_{1}-\sqrt{\left(V_{g s}-V_{f b s d}+\delta_{1}\right)^{2}+4 \delta_{1}}\right] \tag{9.37}\\
& V_{g d, \text { overlap }}=\frac{1}{2}\left[V_{g d}-V_{f b s d}+\delta_{1}-\sqrt{\left(V_{g d}-V_{f b s d}+\delta_{1}\right)^{2}+4 \delta_{1}}\right] \tag{9.38}\\
& \delta_{1}=0.02 \mathrm{~V} \tag{9.39}
\end{align*}
$$

Outer Fringing Capacitance

The fringing capacitance consists of a bias-independent outer fringing capacitance and a bias-dependent inner fringing capacitance. Only the bias-independent outer fringing capacitance is modeled. If CF is not given then outer fringe capacitance is calculated as

$$
\begin{equation*}
C F=\frac{2 \cdot E P S R O X \cdot \epsilon_{0}}{\pi} \cdot \ln \left[C F R C O E F F \cdot\left(1+\frac{0.4 e-6}{T O X}\right)\right] \tag{9.40}
\end{equation*}
$$

10 Parameter Extraction Procedure

The objective of this section is to provide guidelines for the extraction of the main model parameters. The procedure is structured in such a way that parameters linked to specific psychical phenomena are extracted from analyses where these effects are prominent. Although parameter extraction is not always a straight-forward procedure, the aim is to minimize the effort invested and the number of the essential loops performed.

If all the steps of the described procedure are followed then a global model card is obtained which means that the model can be used across the entire width/length plane of the technology. If a local fitting is targeted, then only the parameters of Section 10.1 need to be extracted for each DUT. However, in that case binning is necessary if the model card is to be used for the entire geometry range of the technology. Irrespectively of the choice between global and local fitting, different model cards should be extracted for nmos and pmos devices or for different technologies.

Before proceeding to the extraction of any parameter, it is very important that TNOM is set to the value of the temperature at which the measurements were carried out. Also, it is recommended that if they are available, the values of the process parameters are provided. The most common process parameters are shown in Table 3.

Parameter Name	Physical Description
EPSROX	Relative Gate Dielectric Constant
EPSRSUB	Relative Dielectric Constant of the Channel
TOXE	Electrical Gate Equivalent Oxide Thickness
TOXP or DTOX	Physical Gate Equivalent Oxide Thickness
NDEP	Channel Doping Concentration
NGATE	Gate Doping Concentration
NSD	S/D Doping Concentration
XJ	S/D Jucntion Depth
XW/XL	Channel W/L Offset due to Mask/Etch Effect

Table 3: Process parameters which are recommended to be provided before parameter extraction.

10.1 Extraction of Geometry Independent Parameters

The first part of the model parameter extraction procedure is to extract the parameters that are related to the main physical phenomena, which define transistor's behavior, and are also geometry independent. For that, a wide and long channel device should be chosen. At this point, WWIDE and LLONG parameters must be assigned to the values of the width and length of this large chosen DUT. This ensures that once the behavior of the long/wide channel device is fitted, it cannot be further affected by the values scaling parameters that will be extracted in the next steps.

10.1.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \&

$$
V_{B}=0 V
$$

At this step process parameters and parameters related to quantum mechanical effect are extracted. Even if values have been already assigned to process parameters, a fine tuning should be made in order to fit accurately the electrical behavior of the device. From $C_{G G}$ vs. V_{G} analysis the following process parameters can be extracted: NDEP, TOXE, VFB and NGATE. Each of these parameters affects a different region or in a different way the $C_{G G}$ capacitance, so they should be extracted accordingly. More specifically:

- VFB is defining the flat-band voltage of the device and it can be extracted by studying the region from depletion till the onset of strong-inversion.
- NDEP is affecting $C_{G G}$ in the depletion region. If possible, NDEP, which defines the doping level, is better to be extracted from $C_{G B}$ vs. V_{G} analysis (S and D terminals are grounded).
- TOXE is affecting the deep accumulation and strong-inversion regions.
- NGATE is related to the poly-silicon depletion effect, so it affects the slope of $C_{G G}$ in the strong-inversion region.

Furthermore, the value of $C_{O X}$ is affected by the Quantum Mechanical effect. So, the parameters: ADOS, BDOS, QM0 and ETAQM are also extracted from $C_{G G}$ vs. V_{G} analysis, when focusing at the slope of $C_{G G}$ at the onset of the strong-inversion region.
10.1.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right], V_{S}=0 V \&$

$$
V_{B}=0 V
$$

In this step, the V_{G} dependence of the drain current - I_{D}, is extracted. Different parameters are extracted in two different regions of operation, namely linear mode (i.e. $V_{D} \ll V_{G}-V_{T H}$) and saturation (i.e. $V_{D} \gg V_{G}-V_{T H}$). It is very important that during extraction in this step, both I_{D} and the transconductance $-g_{m}$ (even g_{m}^{\prime} and $g_{m}^{\prime \prime}$) are extracted at once.

Linear Mode

- Focusing in weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), NFACTOR, which is related to the sub-threshold slope of the I_{D}, can be extracted. Furthermore, a fine tuning of the NDEP and VFB parameters is performed. In case the values of NDEP and VFB obtained during the fitting of I_{D} vs. V_{G} characteristic differ much from those obtained during the fitting of $C_{G G}$ vs. V_{G} characteristic (Section 10.1.1), parameters NDEPCV and VFBCV can be used for dynamic operation (CV) and NDEP and VFB for static operation (IV). In general, using different values for NDEP and NDEPCV for IV and CV operation is not recommended unless necessary.
- From strong-inversion region, the mobility U0, the parameter for the effective field ETAMOB, the parameters related to the effect of mobility reduction due to vertical field UA and EU and the parameters for the coulomb scattering effect UD and UCS, are extracted. Furthermore, the parameters for S/D series resistances are also extracted under the same bias conditions. If RDSMOD $=\mathbf{0}$ (internal S / D series resistances), RDSW is extracted. Otherwise, RSW and RDW are extracted.

Saturation

- From weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), CDSCD paramerer, which is linked to the dependence of the sub-threshold slope on drain bias, is extracted.
- Focusing in strong-inversion region, the parameters that are connected to the velocity saturation effect, namely VSAT, PSAT, PTWG and PSATX, can be extracted. PSATX does need to be changed.

Finally, from accumulation to depletion region, in both linear mode and saturation, the parameters related to GIDL effect are extracted. First, the selector GIDLMOD should be set to 1 to activate GIDL/GILS currents and then the parameters AGIDL, BGIDL, CGIDL and EGIDL are extracted. Ideally GIDL and GILS currents should be equal, so it is sufficient to extract AGIDL, BGIDL, CGIDL and EGIDL parametrers. But in case GIDL and GISL currents differ, then parameters AGISL, BGISL, CGISL and EGISL can also be used.
10.1.3 Gate Current I_{G} vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 V$

From I_{G} vs. V_{G} analysis, parameters related to the gate current can be extracted. First, the tunneling components should be activated by setting to 1 the selectors IGCMOD and IGBMOD. Different parameters are extracted in different regions of operation and more specifically:

Accumulation to weak-inversion Region

- AIGBACC, BIGBACC, CIGBACC and NIGBACC, which are linked to the gate-to-substrate current component determined by ECB.
- AIGS, BIGS and CIGS, which are linked to the tunneling current between the gate and the source diffusion region and AIGD, BIGD and CIGD, which are linked to the tunneling current between the gate and the drain diffusion region.
- DLCIG and DLCIGD, which are linked to the S/D overlap length for $I_{G S}$ and $I_{G D}$ respectively.

Weak to strong-inversion Region

- AIGBINV, BIGBINV, CIGBINV, EIGBINV and NIGBINV, which are linked to the gate-to-substrate current component determined by EVB.
- AIGC, BIGC, CIGC, NIGC and PIGCD, which are linked to the gate-tochannel current. PIGCD is expressing the V_{D} dependence of gate-to-channel current.
10.1.4 Drain Current I_{D} vs. V_{D} Analysis @ various $V_{G}, V_{S}=0 V \& V_{B}=0 V$

In this step, both I_{D} vs. V_{D} and output conductance - $g_{d s}\left(\right.$ even $\left.g_{d s}^{\prime}\right)$ vs. V_{D} characteristics are studied at once. Different effects impact both the characteristics, so the parameters related to those effects are extracted. In detail,

- DELTA, which is a smoothing factor for the transition between $V_{D S}$ and $V_{D S, s a t}$.
- PDITS and PDITSD, linked to DITS effect.
- PCLM, PCLMG and FPROUT linked to the CLM effect.
- PDIBLC, linked to the impact of DIBL effect on $R_{\text {out }}$.
- PVAG, linked to the V_{G} dependence on Early voltage.

10.1.5 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$

Velocity saturation (VS) and channel length modulation (CLM) effects not only affect the static behavior of the transistor but the dynamic as well. The extraction of VSAT and PCLM from I_{D} vs. V_{G} and I_{D} vs. V_{D} characteristics should be sufficient in order to capture these effects for CV operation. To verify that, $C_{G G}$ vs. V_{G} characteristic for different $V_{D S} \neq 0 V$, from linear mode to saturation must be studied. If different values for VSAT and PCLM are necessary for accurate fitting of the CV behavior at different V_{D} biases, then VSATCV and PCLMCV can be used.

10.1.6 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B}

In this step almost the same procedure as in Section 10.1.2 will be repeated in order to extract the parameters that are linked to the body effect. Similar to Section 10.1.2, it is also very important that during the extraction in this step both I_{D} and g_{m} are studied at once.

Linear Mode

- Focusing in weak-inversion region, CDSCB, which is linked to the V_{B} (or V_{S}) dependence of the sub-threshold slope, is extracted. Also K2, which is linked to the $V_{T H}$ shift due to vertical non-uniform doping, is extracted in the same region.
- In strong-inversion region, $\mathbf{U C}$, which is linked to the V_{B} (or V_{S}) dependence of mobility, is extracted. The parameter for V_{B} (or V_{S}) dependence of S/D series resistances, PRWB, is also extracted under the same bias conditions.

Saturation

- In strong-inversion region, the parameter that is connected to V_{B} (or V_{S}) dependence of the velocity saturation effect, i.e. PSATB, is extracted.

In order to validate that the values of the parameters, which are linked to V_{B} (or V_{S}) dependencies, are correctly extracted, it is useful to check I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G} \& V_{B} \neq 0 V\left(\right.$ or $\left.V_{S} \neq 0 V\right)$ and, if needed, to fine tune the values of the parameters.

10.1.7 Fitting Verification

When all the extraction steps of this part have been performed, the fitting of the model should be checked for all the analyses carried out up to this point. Parameters can be fine tuned for better fitting in all regions.

10.2 Extraction of Short Channel Effects \& Length Scaling Parameters

Once the behavior of the wide/long channel device has been accurately modeled, the next step is the extraction of the parameters that are either related to short channel effects or express the different length dependencies. So at this part, devices across the entire length range of the technology, from the shortest to the longest one, are studied simultaneously. In order to avoid the impact of narrow channel effects or of the width dependencies these devices should have the same wide channel. The extraction that is carried out follows the same flow as in Section 10.1, but now a set of devices with constant wide channel but different channel lengths is used.

10.2.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V \&$

 $V_{B}=0 V$In this step, parameters related to overlap and fringing capacitances as well as those that are linked to the length dependence of doping concentration and flat-band voltage are extracted. More specifically:

- NDEPL1, NDEPLEXP1, NDEPL2 and NDEPLEXP2, which are the length scaling parameters for the doping concentration, are extracted from $C_{G G}$ in the depletion region. If possible, it is recommended that those parameters are extracted from $C_{G B}$ vs. V_{G} analysis (S and D terminals are grounded).
- Extraction of parameters related to overlap and fringing capacitances is carried out by studying the entire range of V_{G} bias of $C_{G G}$ vs. V_{G} characteristic. These parameters are: CGSO, CGDO, CGBO, CGSL, CGDL, CKAPPAS, CKAPPAD and CF. If possible, it is recommended that CGSO, CGDO, CGBO and CF are extracted from $C_{G D}$ vs. V_{G} at low V_{B} (when S and D terminals are connected together and B terminal is grounded), while CGSL, CGDL, CKAPPAS and CKAPPAD are extracted from $C_{G D}$ vs. V_{G} at high V_{B} (when S, D and B terminals are connected together).
- DLC, which is the channel-length offset parameter for the CV model, is extracted in the strong-inversion region of $C_{G G}$.
- VFBCVL and VFBCVLEXP, which express the length dependence of flat-band voltage at CV, are extracted from depletion region till the onset of strong-inversion. In order to be able to use VFBCVL and VFBCVLEXP parameters, VFBCV must be $\neq 0$.
10.2.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right], V_{S}=0 V$ \&

$$
V_{B}=0 V
$$

In this step, parameters related to short channel effects or to length dependencies of I_{D} vs. V_{G}, are extracted. Similar to the procedure described in Section 10.1.2, the parameters are divided in two groups, those which are extracted in linear mode (i.e. $V_{D} \ll V_{G}-V_{T H}$) and those which are extracted in saturation (i.e. $V_{D} \gg V_{G}-V_{T H}$). It is very important that during the extraction both I_{D} and g_{m} of all the devices are studied at once.

Linear Mode

- Focusing in weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), NFACTORL and NFACTORLEXP, which are related to the length dependence of the sub-threshold slope of I_{D} vs. V_{G}, can be extracted. Furthermore, LINT, which is the channel length offset parameter, is used to fit both the sub-threshold slope and the $V_{T H}$. For fitting the $V_{T H}$ of the devices also DVTP0 and UD can prove to be useful. UD should be used only for fine tuning because it mainly affects the region above threshold. It is recommended that the parameters NDEPL1, NDEPLEXP1, NDEPL1 and NDEPLEXP1 keep the values extracted from the $C_{G G}$ vs. V_{G} analysis (Section 10.2.1). But, if the fitting of the $V_{T H}$ across the entire length range cannot be achieved without changing the values of NDEPL1, NDEPLEXP1, NDEPL1 and NDEPLEXP1, then these parameters are used for static operation (IV) and NDEPCVL1, NDEPCVLEXP1, NDEPCVL1 and NDEPCVLEXP1 parameters are used for dynamic operation (CV).
- In strong-inversion region, the parameters related to the length dependence of: i) the mobility; UOL and UOLEXP, ii) the effect of mobility reduction due to vertical field; UAL, UALEXP, EUL and EULEXP and iii) the coulomb scattering effect; UDL and UDLEXP, are extracted. Furthermore, parameters for the length dependence of S/D series resistances, namely RDSWL and RDSWLEXP (when RDSMOD $=0$) or RSWL, RSWLEXP, RDWL and RDWLEXP (when RDSMOD $=1$), are also extracted under the same bias conditions.

Saturation

- In weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), CDSCDL and CDSCDLEXP paramerers, which are linked to the length dependence of the sub-threshold slope dependence on drain bias, are extracted. Moreover, parameters for DIBL effect, which control $V_{T H}$ when $V_{D S} \neq 0$, namely ETA0 and DSUB, are also extracted in the same region.
- Focusing in strong-inversion region, the length scaling parameters linked to the velocity saturation effect, i.e VSATL, VSATLEXP, PSATL, PSATLEXP, PTWGL and PTWGLEXP, can be extracted.

Finally, from accumulation to depletion region, in both linear mode and saturation, the parameters AGIDLL/AGISLL, which are related the length dependence of GIDL effect (GIDL/GISL currents), are extracted.

10.2.3 $\quad I_{G}$ vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 V$

From I_{G} vs. V_{G} analysis, parameters related to the length dependence of gate current are extracted. These parameters are: AIGCL, AIGSL, AIGDL and PIGCDL.

10.2.4 I_{D} vs. V_{D} Analysis @ various $V_{G}, V_{S}=0 V \& V_{B}=0 V$

In this step, both I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics should be studied at once. Similar to the procedure described in Section 10.2.4 the parameters that are extracted are:

- DELTAL and DELTALEXP, which are related to the length dependence of the smoothing factor for the transition between $V_{D S}$ and $V_{D S, s a t}$.
- PDITSL, linked to the length dependence of DITS effect.
- PCLML, PCLMLEXP, FPROUTL and FPROUTLEXP linked to the length dependence of CLM effect.
- PDIBLCL and PDIBLCLEXP, linked to the length dependence of the impact of DIBL effect on $R_{\text {out }}$.

It is very important to be mentioned here, that if the slope of $g_{d s}$ vs. V_{D} characteristic at low levels of inversion is steeper than the measurements, then ETA0 should be decreased and DVTP1 can be used to achieve an accurate fit for the $V_{T H}$ in saturation.
10.2.5 $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$

The extraction of the length scaling parameters of VSAT and PCLM from I_{D} vs. V_{G} and I_{D} vs. V_{D} characteristics (Steps 10.2.2 and 10.2.4) should be sufficient in order to capture VS and CLM effects for CV operation. To verify that, $C_{G G}$ vs. V_{G} characteristic of all devices, for different $V_{D S} \neq 0 V$, from linear mode to saturation, must be studied. If different values for VSATL, VSATLEXP, PCLML and PCLMLEXP are necessary
for accurate fitting of the CV behavior across L, then VSATCVL, VSATCVLEXP, PCLMCVL and PCLMCVLEXP can be used.

10.2.6 $\quad I_{D}$ vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B} (or various V_{S})

In this step almost the same procedure as in Section 10.1.6 will be repeated in order to extract the length scaling parameters that are linked to the body effect. Similar to Section 10.1.6, it is also very important that during the extraction in this step both I_{D} and g_{m} of all devices are studied at once.

Linear Mode

- Focusing in weak-inversion region, K2L and K2LEXP, which are linked to the length dependence $V_{T H}$ shift due to vertical non-uniform doping, are extracted.
- In strong-inversion region, UCL and UCLEXP, which are linked to the length dependence of mobility reduction with $V_{B}\left(\right.$ or $\left.V_{S}\right)$ bias, are extracted. The parameters for the length dependence of S / D series resistances with V_{B} (or V_{S}) bias, namely PRWBL and PRWBLEXP, are also extracted under the same bias conditions.

Saturation

- In weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), the parameters related to length dependence of DIBL effect dependence on $V_{B}\left(\right.$ or $\left.V_{S}\right)$ bias, namely ETAB and ETABEXP, are extracted.

In order to validate that the values of the length scaling parameters, which are linked to V_{B} (or V_{S}) dependencies, are correctly extracted, it is useful to check I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G} \& V_{B} \neq 0 V$ (or $V_{S} \neq 0 V$) and, if needed, to fine tune the values of the parameters.

10.2.7 Fitting Verification

When all the steps for the extraction of short channel effects and length scaling parameters have been performed, the fitting of the model should be checked for all the analyses carried out in Section 10.2 and parameters can be fine tuned for better fitting.

10.3 Extraction of Narrow Channel Effects \& Width Scaling Parameters

The next step in the parameter extraction procedure is the extraction of the parameters that are either related to narrow channel effects or express the different width dependencies. So at this part, devices across the entire width range of the technology, from the narrowest to the widest one, are studied simultaneously. In order to avoid the impact of short channel effects or of the length dependencies these devices should have the same long channel. The extraction that is carried out follows the same flow as in Section 10.2, but now a set of devices with constant long channel but different channel widths is used.
10.3.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V$ \& $V_{B}=0 V$

In this step, parameters related to the width dependencies of the CV behavior of the device, e.g. width dependence of the doping concentration and flat-band voltage, are extracted. More specifically:

- NDEPW and NDEPWEXP, which are the width scaling parameters for the doping concentration, are extracted from $C_{G G}$ in the depletion region. If possible, it is recommended that those parameters are extracted from $C_{G B}$ vs. V_{G} analysis (S and D terminals are grounded).
- DWC, which is the channel-width offset parameter for the CV model, is extracted in the strong-inversion region of $C_{G G}$.
- VFBCVW and VFBCVWEXP, which express the width dependence of flat-band voltage at CV , are extracted along the entire V_{G} bias range of $C_{G G}$ characteristic. In order to be able to use VFBCVW and VFBCVWEXP parameters, VFBCV must be $\neq 0$.
10.3.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right], V_{S}=0 V$ \&

$$
V_{B}=0 V
$$

In this step, parameters related to width dependencies of I_{D} vs. V_{G}, are extracted. Similar to the procedure described in Section 10.1.2, the parameters are divided in two
groups, those which are extracted in linear mode (i.e. $V_{D} \ll V_{G}-V_{T H}$) and those which are extracted in saturation (i.e. $V_{D} \gg V_{G}-V_{T H}$). It is very important that during the extraction both I_{D} and g_{m} of all the devices are studied at once.

Linear Mode

- Focusing in weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), NFACTORW and NFACTORWEXP, which are related to the width dependence of the sub-threshold slope of I_{D} vs. V_{G}, can be extracted. Furthermore, WINT, which is the channel width offset parameter, is used to fit both the sub-threshold slope and the $V_{T H}$ across W. It is recommended that the parameters NDEPW and NDEPWEXP keep the values extracted from the $C_{G G}$ vs. V_{G} analysis (Section 10.3.1). But, if the fitting of the $V_{T H}$ across the entire width range cannot be achieved without changing the values of NDEPW and NDEPWEXP, then these parameters are used for static operation (IV) and NDEPCVW and NDEPCVWEXP parameters are used for dynamic operation (CV).
- In strong-inversion region, the parameters related to the width dependence of mobility reduction due to vertical field effect, namely UAW, UAWEXP, EUW and EUWEXP, are extracted.

Saturation

- Focusing in strong-inversion region, the width scaling parameters linked to the velocity saturation effect, i.e. VSATW and VSATWEXP, can be extracted.

Finally, from accumulation to depletion region, in both linear mode and saturation, the parameters AGIDLW/AGISLW, which are related the width dependence of GIDL effect (GIDL/GISL currents), are extracted.

In order to validate that the values of the width scaling parameters are correctly extracted, it is useful to check I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various V_{G}, $V_{S}=0 V \& V_{B}=0 V$ (or $\left.V_{S} \neq 0 V\right)$ and, if needed, to fine tune the values of the parameters.

10.3.3 Gate Current I_{G} vs. V_{G} Analysis @ various $V_{D}, V_{S}=0 V \& V_{B}=0 V$

From I_{G} vs. V_{G} analysis, parameters related to the width dependence of gate current are extracted. These parameters are: AIGCW, AIGSW and AIGDW.

10.3.4 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$

The extraction of the width scaling parameters of VSATW and VSATWEXP from I_{D} vs. V_{G} and I_{D} vs. V_{D} characteristics (Step 10.3.2) should be sufficient in order to capture VS for CV operation. To verify that, $C_{G G}$ vs. V_{G} characteristic of all devices, for different $V_{D S} \neq 0 V$, from linear mode to saturation, must be studied. If different values for VSATW and VSATWEXP are necessary for accurate fitting of the CV behavior across W, then VSATCVW and VSATCVWEXP can be used.

10.3.5 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right] \&$ various V_{B} (or various V_{S})

In this step, from weak-inversion region of linear mode, K2W and K2WEXP, which are linked to the width dependence $V_{T H}$ shift due to vertical non-uniform doping, can be extracted. For validation purposes, it is useful to check: i) I_{D} vs. V_{G} and g_{m} vs. V_{G} characteristics in weak and strong-inversion and for both linear mode and saturation, and ii) I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G} \& V_{B} \neq 0 V\left(\right.$ or $\left.V_{S} \neq 0 V\right)$ and, if needed, extract K2W and K2WEXP to fit both (i) and (ii).

10.3.6 Fitting Verification

When all the extraction steps for the width scaling have been performed, the fitting of the model should be checked for all the analyses carried out in Section 10.3and parameters can be further tuned for better fitting.

10.4 Extraction of Parameters for Narrow/Short Channel Devices

The final part in the parameter extraction procedure from a geometrical point of view, is the extraction of the parameters for narrow/short channel devices. These devices have the minimum dimensions so it is more difficult to capture their behavior. Since the narrow/short channel device parameters can affect the already performed fitting across length and width, it is recommended that two different sets of devices are studied simultaneously, i.e. one set with a constant short channel but different channel widths
(from narrowest to widest) and one set with a constant narrow channel but different channel lengths (from the shortest to the longest one).

10.4.1 Gate Capacitance $C_{G G}$ vs. V_{G} Analysis @ $V_{S}=0 V, V_{D}=0 V \&$
 $$
V_{B}=0 V
$$

In this step, geometry dependent parameters for modeling the CV behavior of the narrow/short channel devices, are extracted. More specifically:

- NDEPWL and NDEPWLEXP, which are used to fit the doping concentration of small channel devices, are extracted from $C_{G G}$ in the depletion region. If possible, it is recommended that those parameters are extracted from $C_{G B}$ vs. V_{G} analysis (S and D terminals are grounded).
- LWLC and WWLC, which are coefficients of length/width dependencies for CV model, are extracted in the strong-inversion region of $C_{G G}$.
- VFBCVWL and VFBCVWLEXP, which are used to fit the flat-band voltage at CV, are extracted from depletion till the onset of strong-inversion region of $C_{G G}$ characteristic. In order to be able to use VFBCVWL and VFBCVWLEXP parameters, VFBCV must be $\neq 0$.

10.4.2 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right], V_{S}=0 V \&$ $V_{B}=0 \mathrm{~V}$

In this step, geometry dependent parameters for modeling I_{D} of the narrow/short channel devices, are extracted. Similar to the procedure described in Section 10.1.2, the parameters are divided in two groups, those which are extracted in linear mode (i.e. $V_{D} \ll V_{G}-V_{T H}$) and those which are extracted in saturation (i.e. $V_{D} \gg V_{G}-V_{T H}$). It is very important that during the extraction both I_{D} and g_{m} of all the devices are studied at once.

Linear Mode

- Focusing in weak-inversion region $\left(I_{D}\right.$ vs. V_{G} characteristic when y-axis is in logarithmic scale), NFACTORWL and NFACTORWLEXP, which are used to fit
the sub-threshold slope of I_{D} vs. V_{G} for small channel devices, can be extracted. It is recommended that the parameters NDEPWL and NDEPWLEXP keep the values extracted from the $C_{G G}$ vs. V_{G} analysis (Section 10.4.1). But, if the fitting of the $V_{T H}$ for both sets of devices cannot be achieved without changing the values of NDEPWL and NDEPWLEXP, then these parameters are used for static operation (IV) and NDEPCVWL and NDEPCVWLEXP parameters are used for dynamic operation (CV).
- In strong-inversion region, the parameters which are used to model the effect of mobility reduction due to vertical field in small channel devices, namely UAWL, UAWLEXP, EUWL and EUWLEXP, are extracted.

Saturation

- Focusing in strong-inversion region, the parameters which are used to model to the velocity saturation effect in small channel devices, i.e. VSATWL and VSATWLEXP, can be extracted.

In order to validate that the values of the parameters, modeling the behavior of narrow/short channel devices, are correctly extracted, it is useful to check I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G}, V_{S}=0 V \& V_{B}=0 V$ and, if needed, to fine tune the values of the parameters.

10.4.3 $C_{G G}$ vs. V_{G} Analysis @ $V_{D S} \neq 0 V \& V_{B}=0 V$

The extraction of the parameters, which are used to model to the velocity saturation effect in small channel devices, VSATWL and VSATWEXP, from I_{D} vs. V_{G} and I_{D} vs. V_{D} characteristics (Step 10.4.2) should be sufficient in order to capture VS for CV operation. To verify that, $C_{G G}$ vs. V_{G} characteristic of all devices, for different $V_{D S} \neq 0 V$, from linear mode to saturation, must be studied. If different values for VSATWL and VSATWLEXP are necessary for accurate fitting of the CV behavior for both sets of devices, then VSATCVWL and VSATCVWLEXP can be used.
10.4.4 Drain Current I_{D} vs. V_{G} Analysis @ $V_{D}=\left[V_{D, l i n}, V_{D, s a t}\right]$ \& various V_{B} (or various V_{S})

In this step, from weak-inversion region of linear mode, K2WL and K2WLEXP, which are linked to the $V_{T H}$ shift due to vertical non-uniform doping in small channel
devices, can be extracted. For validation purposes, it is useful to check: i) I_{D} vs. V_{G} and g_{m} vs. V_{G} characteristics in weak and strong-inversion and for both linear mode and saturation, and ii) I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G} \& V_{B} \neq 0 V$ (or $V_{S} \neq 0 V$) and, if needed, extract K2WL and K2WLEXP to fit both (i) and (ii).

10.4.5 Fitting Verification

When all the steps for narrow/short channel devices have been performed, the fitting of the model should be checked for all the analyses carried out in Section 10.4and parameters can be fine tuned for better fitting.

10.5 Extraction of Temperature Dependence Parameters

Up to this point of the parameter extraction procedure, the temperature dependence of the parameters has been ignored since all the parameters were extracted at TNOM. In this part, the parameters that are related to the impact of temperature on the behavior of devices are extracted, and for that, data across the temperature range of the technology are necessary. The behavior of devices is studied with the same geometrical sequence as the previous steps, while the temperature dependence parameters are extracted in the same regions of operation as the parameters of the corresponding physical effects.

10.5.1 Wide \& Long Channel Devices

The first step, in the extraction of temperature dependence parameters, is to extract the behavior of a long and wide channel device @ different T and for different analyses. It is recommended that the same device as the one in Section 10.1 is used. In detail:
I_{D} vs. V_{G} analysis @ $V_{D}=V_{D, l i n}, V_{S}=0 V \& V_{B}=0 V$

- From weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), the parameters TBGASUB and TBGBSUB, which control the temperature dependence of E_{g}, are extracted. Also, TNFACTOR is extracted in order to fit the sub-threshold slope of I_{D} in different T, while KT1 and KT1EXP are extracted for fitting the $V_{T H}$ across T .
- From strong-inversion region, the mobility temperature exponent, UTE and the temperature coefficients: i) for mobility reduction due to vertical field effect, namely UA1 and UD1, ii) for coulomb scattering effect, UCSTE and iii) for S/D series resitances, PRT, are extracted.
I_{D} vs. V_{G} analysis @ $V_{D}=V_{D, s a t}, V_{S}=0 V \& V_{B}=0 V$
- From strong-inversion region, the parameters that are used to model to the temperature dependence of velocity saturation effect, i.e. AT and PTWGT, are extracted.

It is very important that in the above analyses both I_{D} and g_{m} of all the devices are studied at once. Furthermore, from accumulation to depletion region, in both linear mode and saturation of I_{D} vs. V_{G} analysis, the parameter TGIDL, which controls the temperature dependence of GIDL effect, is extracted.
I_{D} vs. V_{D} Analysis @ various $V_{G}, V_{S}=0 V \& V_{B}=0 V$
From I_{D} vs. V_{D} analysis in different temperatures, TDELTA, which is related to the temperature dependence of the smoothing factor for the transition between $V_{D S}$ and $V_{D S, s a t}$, is extracted.
I_{D} vs. V_{G} Analysis @ $V_{D}=V_{D, \text { lin }} \&$ various V_{B} (or various V_{S})

- From weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale) KT2, which is linked to the temperature dependence of $V_{T H}$ shift due to vertical non-uniform doping with $V_{B}\left(\right.$ or $\left.V_{S}\right)$ bias, is extracted.
- From strong-inversion region, the temperature coefficient for mobility reduction with $V_{B}\left(o r V_{S}\right)$ bias, namely UC1, is extracted.

For validation purposes, it is useful to check: i) I_{D} vs. V_{G} and g_{m} vs. V_{G} characteristics in weak and strong-inversion and for both linear mode and saturation, and ii) I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics @ various $V_{G} \& V_{B} \neq 0 V\left(\right.$ or $\left.V_{S} \neq 0 V\right)$ and, if needed, extract KT2 and UC1 to fit both (i) and (ii).

10.5.2 Length Scaling of Wide Channel Devices

The following step in the extraction of temperature dependence parameters, is to study the temperatures dependences across L. For this, data @ different T of a set of devices with constant wide channel but different channel lengths are used.
I_{D} vs. V_{G} analysis @ $V_{D}=V_{D, l i n}, V_{S}=0 V \& V_{B}=0 V$

- From weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), the parameter KT1L is extracted for fitting the $V_{T H}$ across L , at different T.
- From strong-inversion region, the length scaling parameters for: i) mobility temperature exponent, UTEL and for the temperature coefficients or mobility reduction due to vertical field effect, namely UA1L and UD1L, are extracted.
I_{D} vs. V_{G} analysis @ $V_{D}=V_{D, s a t}, V_{S}=0 V \& V_{B}=0 V$
- From weak-inversion region (I_{D} vs. V_{G} characteristic when y-axis is in logarithmic scale), the parameter TETA0, which is related to the temperature dependence of DIBL effect and thus is controlling the $V_{T H}$ in saturation, is extracted.
- From strong-inversion region, the parameters that are used to model the temperature dependence of velocity saturation effect across L, i.e. ATL and PTWGTL, are extracted.

It is very important that in the above analyses both I_{D} and g_{m} of all the devices are studied at once. For validating that the values of length scaling parameters for temperature dependence parameters are extracted correctly, it is useful to check also I_{D} vs. V_{D} and $g_{d s}$ vs. V_{D} characteristics and, if needed, to fine tune their value by repeating Step 10.5.2.

Figure 11: Parameters Extraction Procedure.

11 Instance Parameters

Name	Unit	Default	Min	Max	Description
L	m	10 u	-	-	Designed Gate Length
W	m	10 u	-	-	Designed Gate Width (per finger)
NF	-	1	1	-	Number of fingers
NRS	-	1	-	-	Number of source diffusion squares
NRD	-	1	-	-	Number of drain diffusion squares
VFBSDOFFV	-	0	-	-	Source-Drain flat band offset
MINZ	-	0	0	1	Minimize either no. of drain or source ends
XGW	m	0	0	-	Distance from gate contact center to dev edge
NGCON	-	1	1	2	Number of gate contacts
RGATEMOD	-	0	0	2	Gate resistance model selector
RBODYMOD	-	0	0	2	Substrate resistance network model selector
GEOMOD	-	0	0	10	Geometry-dependent parasitic model selector- specifying how the end S/D diffusion are con- nected
RGEOMOD	-	0	0	8	Bias independent parasitic resistance model selector
RBPB	Ohm	50	1 mV	-	Resistance between bNodePrime and bNode
RBPD	Ohm	50	1 mV	-	Resistance between bNodePrime and dbNode
RBPS	Ohm	50	1 mV	-	Resistance between bNodePrime and sbNode
RBDB	Ohm	50	1 mV	-	Resistance between dbNode and bNode
RBSB	Ohm	50	1 mV	-	Resistance between sbNode and bNode
SA	-	0	0	-	Distance between OD edge from Poly from one side
SB	-	0	0	-	Distance between OD edge from Poly from other side
SD	-	0	0	-	Distance between neighboring fingers
SCA	-	0	-	Integral of the first distribution function for scatted well dopant	
SCB	-	0	Integral of second distribution function for scattered well dopant		

SCC	-	0	0	-	Integral of third distribution function for scat- tered well dopant
SC	-	0	0	-	Distance to a single well edge
AS	m^{2}	0	0	-	Source to Substrate Junction Area
AD	m^{2}	0	0	-	Drain to Substrate Junction Area
PS	m	0	0	-	Source to Substrate Junction Perimeter
PD	m	0	0	-	Drain to Substrate Junction Perimeter

12 Model Controllers and Process Parameters

Note: binnable parameters are marked as: ${ }^{(b)}$

Name	Unit	Default	Min	Max	Description and Scaling Parameters
TYPE	-	1	-1	1	NMOS $=1$, PMOS=-1
CVMOD	-	0	0	1	IV-CV: Consistent:0, Different:1
GEOMOD	-	0	0	10	For description, please refer Table 1
RGEOMOD	-	0	0	8	Bias independent parasitic resistance model selector, refer Table 2
RGATEMOD	-	0	0	2	Gate resistance Model selector
RBODYMOD	-	0	0	2	Substrate resistance network model selector RDSMOD -
COVMOD	-	0	0	2	0:Bias dependent internal, independent exter- nal, $1:$ External RDS, 2:Internal RDS
GIDLMOD	-	0	0	1	Bias-independent overlap capacitance:0, Bias- dependent overlap capacitance:1
SHMOD	-	0	0	1	Turn off GIDL model:0, Turn-on GIDL model:1
PERMOD	-	1	0	1	Turn off Self Heating model:0, Turn-on :1

XL	m	0	-	-	L offset for channel length due to mask/etch effect
XW	m	0	-	-	W offset for channel length due to mask/etch effect
$\operatorname{LINT}^{(b)}$	m	0	-	-	Length reduction parameter (dopant diffusion effect)
$\mathrm{WINT}^{(b)}$	m	0	-	-	Width reduction parameter (dopant diffusion effect)
DLC ${ }^{(b)}$	m	0	-	-	Length reduction parameter for CV (dopant diffusion effect)
DWC ${ }^{(b)}$	m	0	-	-	Width reduction parameter for CV (dopant diffusion effect)
TOXE	m	3.0n	-	-	SiO_{2} equivalent gate dielectric thickness
TOXP	m	= TOXE	-	-	Physical dielectric thickness
DTOX	m	0.0	-	-	Difference between effective dielectric thickness and physical thickness
NDEP ${ }^{(b)}$	m^{-3}	1 e 24	-	-	channel (body) doping concentration. Global Scaling Parameters - NDEPL1, NDEPLEXP1, NDEPL2, NDEPLEXP2, NDEPW, NDEPWEXP, NDEPWL, NDEPWLEXP
NSD ${ }^{(6)}$	m^{-3}	1 e 26	2 e 25	1 e 27	S/D doping concentration
EASUB	$e \mathrm{~V}$	4.05	-	-	Electron affinity of substrate
NGATE ${ }^{(b)}$	m^{-3}	5 e 25	-	-	parameter for Poly Gate doping. Set $N G A T E=0$ for metal gates
$\mathrm{VFB}^{(6)}$	V	-0.5	-	-	Flat band Voltage
EPSROX	-	3.9	1	-	relative dielectric constant of the gate insulator
EPSRSUB	-	11.9	1	-	relative dielectric constant of the channel material
NIOSUB	m^{-3}	1.1e16	-	-	intrinsic carrier concentration of channel at 300.15K
$\mathrm{XJ}^{(b)}$	m	1.5e-7	-	-	S/D junction depth
DMCG		0	0	-	Distance of Mid-Contact to Gate edge

DMCI		DMCG	0	-	Distance of Mid-Contact to Isolation
DMDG		0	0	-	Distance of Mid-Diffusion to Gate edge
DMCGT		0	0	-	Distance of Mid-Contact to Gate edge in Test

13 Basic Model Parameters

Note: binnable parameters are marked as: ${ }^{(b)}$

Name	Unit	Default	Min	Max	Description
LLONG	m	$10 \mu m$	-	-	Length of extracted long channel device
WWIDE	m	$10 \mu m$	-	-	Width of extracted long channel device
CIT $^{(b)}$	F / m^{2}	0	-	-	Interface trap capacitance
NFACTOR $^{(b)}$		0	-	-	Subthreshold Swing factor. Global Scaling Parameters - NFACTORL, NFACTORLEXP, NFACTORW, NFACTORWEXP, NFACTORWL
CDSCD $^{(b)}$	F / m^{2}	1 e-9	-	-	Drain-bias sensitivity of Subthreshold Swing. Global Scaling Parameters - CDSCDL, CDSCDLEXP
CDSCB $^{(b)}$	F / m^{2}	0	-	-	Body-bias sensitivity of Subthreshold Swing. Global Scaling Parameters - CDSCBL, CDSCBLEXP
DVTP0 $^{(b)}$	-	$1 \mathrm{e}-10$	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket im- plant
DVTP1 $^{(b)}$	-	0	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket im- plant
DVTP2 $^{(b)}$	-	0	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket im- plant
DVTP3 $^{(b)}$	-	0	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket im- plant
DVTP4 $^{(b)}$	-	0	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket im- plant

DVTP5 ${ }^{(6)}$	-	0	-	-	Coefficient of drain-inducred $V_{t h}$ shift for long channel devices with pocket implant
PHIN ${ }^{(b)}$	V	0.045	-	-	Vertical nonuniform doping effect on surface potential
K2 ${ }^{(b)}$	V	0	-	-	Vth shift due to nonuniform vertical doping. Global Scaling Parameters K2L, K2LEXP, K2W, K2WEXP
ETA0 $0^{(b)}$	-	0.08	-	-	DIBL coefficient
$\mathrm{DSUB}^{(b)}$	-	0.375	>0	-	DIBL exponent coefficient
ETAB $^{(b)}$	-	-0.07	-	-	Body bias sensitivity to DIBL effect. Global Scaling Parameters - ETABEXP
$\mathrm{U} 0^{(b)}$	$m^{2} / V-s$	$67 \mathrm{e}-3$	-	-	Low field mobility. Global Scaling Parameters - U0L, U0LEXP
ETAMOB	-	1.0	-	-	effective field parameter
$\mathrm{UA}^{(b)}$	$(\mathrm{cm} / \mathrm{MV})^{E U}$	0.001	>0.0	-	Phonon / surface roughness scattering parameter. Global Scaling Parameters - UAL, UALEXP, UAW, UAWEXP, UAWL
$\mathrm{EU}^{(b)}$	cm/MV	1.5	>0.0	-	Phonon / surface roughness scattering parameter. Global Scaling Parameters - EUL, EULEXP, EUW, EUWEXP, EUWL
$\mathrm{UD}^{(b)}$	cm/MV	0.001	> 0.0	-	Columbic scattering parameter. Global Scaling Parameters - UDL, UDLEXP
$\mathrm{UCS}^{(b)}$	-	2.0	1	2	Columbic scattering parameter.
$\mathrm{UC}^{(b)}$	-	0.0	-	-	Body-bias sensitivity on mobility. Global Scaling Parameters - UCL, UCLEXP
$\mathrm{VSAT}^{(b)}$	m / s	1 e 6	-	-	Saturation velocity. Global Scaling Parameters - VSATL, VSALEXP, VSATW, VSATWEXP

DELTA $^{(6)}$	-	0.125	>0	0.5	Smoothing factor for Vds to Vdsat. Global Scaling Parameters - DELTAL, DELTALEXP
PSAT ${ }^{(b)}$	-	1.0	0.25	1.0	Velocity saturation exponent. Global Scaling Parameters - PSATL, PSATLEXP
PTWG ${ }^{(b)}$	V^{-2}	0	-	-	Correction factor for velocity saturation. Global Scaling Parameters PTWGL, PTWGLEXP
PSATX	-	1	0.25	4	Fine tuning of PTWG effect
PSATB ${ }^{(6)}$	-	0	-	-	Velocity saturation exponent for nonzero $V_{b s}$
PCLM ${ }^{(b)}$	-	0.00	-	-	Channel Length Modulation (CLM) parameter. Global Scaling Parameters PCLML, PCLMLEXP
PCLMG	-	0	-	-	Gate bias dependent parameter for channel Length Modulation (CLM)
PSCBE1 ${ }^{(b)}$	-	4.24 e 8	-	-	Substrate current body-effect coefficient
PSCBE2 ${ }^{(b)}$	-	1.0e-8	-	-	Substrate current body-effect coefficient
PDITS ${ }^{(b)}$	-	0	-	-	Drain-induced Vth shift
PDITSL	-	0	-	-	L dependence of Drain-induced Vth shift
PDITSD ${ }^{(b)}$	${ }^{-}$	0	-	-	VDS dependence of Drain-induced Vth shift
RSWMIN ${ }^{(b)}$	$\Omega-\mu_{m}^{W R}$	0.0	0.0	-	source extension resistance per unit width at high $V_{g s}$
$\mathrm{RSW}^{(b)}$	$\Omega-\mu_{m}^{W R}$	10	0.0	-	Zero bias source extension resistance per unit width. Global Scaling Parameters - RSWL, RSWLEXP
RDWMIN ${ }^{(b)}$	$\Omega-\mu_{m}^{W R}$	0.0	0.0	-	Drain extension resistance per unit width at high $V_{g s}$

$\mathrm{RDW}^{(b)}$	$\Omega-\mu_{m}^{W R}$	10	0.0	-	Zero bias drain extension resistance per unit width. Global Scaling Parameters - RDWL, RDWLEXP
RDSWMIN ${ }^{(b)}$	$\Omega-\mu_{m}^{W R}$	0.0	0.0	-	LDD resistance per unit width at high $V_{g s}$ for $R D S M O D=0$
$\mathrm{RDSW}^{(b)}$	$\Omega-\mu_{m}^{W R}$	10	0.0	-	Zero bias LDD resistance per unit width for RDSMOD=0. Global Scaling Parameters - RDSWL, RDSWLEXP
PRWG ${ }^{(b)}$	V^{-1}	1	0	-	gate bias dependence of S/D extension resistance
PRWB ${ }^{(b)}$	V^{-1}	0	0	-	body bias dependence of S/D extension resistance. Global Scaling Parameters PRWBL, PRWBLEXP
$\mathrm{WR}^{(b)}$	-	1.0	-	-	W dependence parameter of S/D extension resistance
RSH	Ω	0	0	-	Sheet resistance
PDIBLC ${ }^{(b)}$	-	$2 \mathrm{e}-4$	0	-	DIBL effect on Rout. Global Scaling Parameters - PDIBLCL, PDIBLCLEXP
PDIBLCB ${ }^{(b)}$	-	0	0	-	Body-bias sensitivity on DIBL
PVAG ${ }^{(b)}$	-	1	-	-	$V_{g s}$ dependence on early voltage
FPROUT $^{(b)}$	-	0	0	-	$g_{d s}$ degradation factor due to pocket implant. Global Scaling Parameters FPROUTL, FPROUTLEXP
AGIDL $^{(b)}$	-	0	-	-	Pre-exponential coefficient for GIDL. Global Scaling Parameters - AGIDLL, AGIDLW
BGIDL ${ }^{(b)}$	-	2.3e-9	-	-	exponential coefficient for GIDL
CGIDL ${ }^{(b)}$	-	0.5	-	-	exponential coefficient for GIDL
EGIDL ${ }^{(b)}$	-	0.8	-	-	band bending parameter for GIDL

AGISL ${ }^{(b)}$	-	0	-	-	Pre-exponential coefficient for GISL (AGISL< 0 means GISL parameters will same as GIDL parameters). Global Scaling Parameters - AGISLL, AGISLW
BGISL $^{(b)}$	-	$2.3 \mathrm{e}-9$			exponential coefficient for GISL
CGISL ${ }^{(b)}$	-	0.5			exponential coefficient for GISL
EGISL ${ }^{(b)}$	-	0.8	-		band bending parameter for GISL
ALPHA0 ${ }^{(b)}$	-	0.0	-	-	First parameter of impact ionization current. Global Scaling Parameters ALPHA0L, ALPHA0LEXP
BETA0 ${ }^{(b)}$	-	0.0	-	-	First $V_{d s}$ dependent parameter of impact ionization current
$\mathrm{AIGC}^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	$\begin{aligned} & 1.36 \mathrm{e}-2 \\ & \text { (NMOS) } \\ & \text { and } \\ & 9.8 \mathrm{e}-3 \\ & \text { (PMOS) } \end{aligned}$	-	-	Parameter for $I_{g c s}$ and $I_{g c d}$. Global Scaling Parameters - AIGCL, AIGCW
$\mathrm{BIGC}^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	1.71e-3 (NMOS) and 7.59e-4 (PMOS)	-	-	Parameter for $I_{g c s}$ and $I_{g c d}$
$\mathrm{CIGC}^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	0.075 (NMOS) and 0.03 (PMOS)	-	-	Parameter for $I_{g c s}$ and $I_{g c d}$
AIGS $^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	$\begin{aligned} & \hline 1.36 \mathrm{e}-2 \\ & \text { (NMOS) } \\ & \text { and } \\ & 9.8 \mathrm{e}-3 \\ & \text { (PMOS) } \end{aligned}$	-	-	Parameter for $I_{g s}$. Global Scaling Parameters - AIGSL, AIGSW

BIGS $^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	1.71e-3 (NMOS) and 7.59e-4 (PMOS)	-	-	Parameter for $I_{g s}$
$\mathrm{CIGS}^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	0.075 (NMOS) and 0.03 (PMOS)	-	-	Parameter for $I_{g s}$
$\mathrm{DLCIG}^{(b)}$	m	LINT	-	-	Source/Drain overlap length for $I_{g s}$
AIGD ${ }^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	1.36e-2 (NMOS) and 9.8e-3 (PMOS)	-	-	Parameter for $I_{g d}$. Global Scaling Parameters - AIGDL, AIGDW
BIGD ${ }^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	1.71e-3 (NMOS) and 7.59e-4 (PMOS)	-	-	Parameter for $I_{g d}$
CIGD ${ }^{(b)}$	$\left(F s^{2} / g\right)^{0.5}$	0.075 (NMOS) and 0.03 (PMOS)	-	-	Parameter for $I_{g d}$
DLCIGD $^{(b)}$	m	DLCIG	-	-	Source/Drain overlap length for $I_{g d}$
POXEDGE ${ }^{(b)}$	-	1.0	-	-	Factor for the gate oxide thickness in source/drain overlap regions
PIGCD ${ }^{(b)}$	-	1.0	-	-	$V_{d s}$ dependence of $I_{g c s}$ and $I_{g c d}$. Global Scaling Parameters - PIGCDL, PIGCDLEXP
$\mathrm{NTOX}^{(b)}$	-	1.0	-	-	Exponent for the gate oxide ratio
TOXREF	m	3.0e-9	-	-	Nominal gate oxide thickness for gate dielectric tunneling current model only
VFBSDOFF $^{(b)}$	V	0.0	-	-	Flatband Voltage Offset Parameter

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \text { NDEPCV }{ }^{(b)} & m^{-3} & \text { NDEP } & - & - & \begin{array}{l}\text { channel (body) doping concentration } \\
\text { for CV. Global Scaling Parameters } \\
-\quad \text { NDEPCVL1, NDEPCVLEXP1, }\end{array}
$$

NDEPCVL2, NDEPCVLEXP2,\end{array}\right]\)| NDEPCVW, NDEPCVWEXP, NDE- |
| :--- |
| PCVWL, NDEPCVWLEXP |$|$

ADOS	-	0	0	-	Quantum mechanical effect prefactor cum switch in inversion
BDOS	-	1.0	0	-	Charge centroid parameter - slope of CV curve under QME in inversion
QM0	-	$1 \mathrm{e}-3$	>0.0	-	Charge centroid parameter - starting point for QME in inversion
ETAQM	-	0.0	0	-	Bulk charge coefficient for charge cen- troid in inversion
DLBIN		0.0	-	-	Length reduction parameter for binning
DWBIN		0.0	-	-	Width reduction parameter for binning
LMLT		1.0	>0.0	-	Length shrinking factor
WMLT		1.0	>0.0	-	Width shrinking factor

14 High-Speed/RF Model Parameters

Name	Description	Default
XRCRG1 (b)	Parameter for distributed channel-resistance effect for both intrinsic-input resistance and charge-deficit NQS mod- els(Warning message issued if binned XRCRG1 ≤ 0.0) dis- tributed channel-resistance effect for both intrinsic-input re- sistance and charge-deficit NQS models(Warning message is- sued if binned XRCRG1 $\leq 0.0)$	12.0
XRCRG2 (b)	Parameter to account for the excess channel diffusion resis- tance for both intrinsic input resistance and charge-deficit NQS models	1.0
RBPB (Also an instance parameter)	Resistance connected between bNodePrime and bNode	50.0 ohm
RBPD (Also an instance parameter)	Resistance connected between bNodePrime and dbNode (If less than 1.0e-3ohm, reset to 1.0e-3ohm)	50.0 ohm

$\begin{aligned} & \text { RBPS (Also } \\ & \text { an instance } \\ & \text { parameter) } \end{aligned}$	Resistance connected between bNodePrime and sbNode (If less than 1.0e-3ohm, reset to $1.0 \mathrm{e}-3 \mathrm{ohm}$)	50.0ohm
$\begin{aligned} & \text { RBDB (Also } \\ & \text { an instance } \\ & \text { parameter) } \end{aligned}$	Resistance connected between dbNode and bNode	50.0ohm
$\begin{aligned} & \text { RBSB (Also } \\ & \text { an instance } \\ & \text { parameter) } \end{aligned}$	Resistance connected between sbNode and bNode	50.0ohm
GBMIN	Conductance in parallel with each of the five substrate resistances to avoid potential numerical instability due to unreasonably too large a substrate resistance (Warning message issued if less than 1.0e-20 mho)	$\begin{aligned} & \text { 1.0e- } \\ & 12 \mathrm{mho} \end{aligned}$
RBPS0	Scaling prefactor for RBPS	50 Ohms
RBPSL	Length Scaling parameter for RBPS	0.0
RBPSW	Width Scaling parameter for RBPS	0.0
RBPSNF	Number of fingers Scaling parameter for RBPS	0.0
RBPD0	Scaling prefactor for RBPD	50 Ohms
RBPDL	Length Scaling parameter for RBPD	0.0
RBPDW	Width Scaling parameter for RBPD	0.0
RBPDNF	Number of fingers Scaling parameter for RBPD	0.0
RBPBX0	Scaling prefactor for RBPBX	100 Ohms
RBPBXL	Length Scaling parameter forRBPBX	0.0
RBPBXW	Width Scaling parameter for RBPBX	0.0
RBPBXNF	Number of fingers Scaling parameter for RBPBX	0.0
RBPBY0	Scaling prefactor for RBPBY	100 Ohms
RBPBYL	Length Scaling parameter forRBPBY	0.0
RBPBYW	Width Scaling parameter for RBPBY	0.0
RBPBYNF	Number of fingers Scaling parameter for RBPBY	0.0
RBSBX0	Scaling prefactor for RBSBX	100 Ohms

RBSBY0	Scaling prefactor for RBSBY	100 Ohms
RBDBX0	Scaling prefactor for RBDBX	100 Ohms
RBDBY0	Scaling prefactor for RBDBY	100 Ohms
RBSDBXL	Length Scaling parameter for RBSBX and RBDBX	0.0
RBSDBXW	Width Scaling parameter for RBSBX and RBDBX	0.0
RBSDBXNF	Number of fingers Scaling parameter for RBSBX and RBDBX	0.0
RBSDBYL	Length Scaling parameter for RBSBY and RBDBY	0.0
RBSDBYW	Width Scaling parameter for RBSBY and RBDBY	0.0
RBSDBYNF	Number of fingers Scaling parameter for RBSBY and RBDBY	0.0

15 Flicker and Thermal Noise Model Parameters

Parameter Name	Description	Default Value
NOIA	Flicker noise parameter A	$6.25 e 41(\mathrm{eV})^{-1} s^{1-E F} \mathrm{~m}^{-3}$ for \quad NMOS; 6.188e40 $(\mathrm{eV})^{-1} s^{1-E F} m^{-3}$ for PMOS
NOIB	Flicker noise parameter B	$3.125 e 26(e V)^{-1} s^{1-E F} m^{-1}$ for \quad NMOS; $1.5 e 25(e V)^{-1} s^{1-E F} m^{-1}$ for PMOS
NOIC	Flicker noise parameter C	$8.75(\mathrm{eV})^{-1} \mathrm{~s}^{1-E F} \mathrm{~m}$
EM	Saturation field	$4.1 \mathrm{e} 7 \mathrm{~V} / \mathrm{m}$
AF	Flicker noise exponent	1.0
EF	Flicker noise frequency exponent	1.0
KF	Flicker noise coefficient	$0.0{ }^{\text {A2-EF }} s^{1-E F}$
LINTNOI	Length Reduction Parameter Offset	0.0 m
NTNOI	Noise factor for short-channel devices for TNOIMOD $=0$ only	1.0
TNOIA	Coefficient of channel-length dependence of total channel thermal noise	1.5
TNOIB	Channel-length dependence parameter for channel thermal noise partitioning	3.5
TNOIC	Length dependent parameter for Correlation Coefficient	0
RNOIA	Thermal Noise Coefficient	0.577
RNOIB	Thermal Noise Coefficient	0.5164
RNOIC	Correlation Coefficient parameter	0.395

16 Layout-Dependent Parasitic Model Parameters

Parameter Name	Description	Default Value
DMCG	Distance from S/D contact center to the gate edge	0.0 m
DMCI	Distance from S/D contact center to the iso- lation edge in the channel-length direction	DMCG
DMDG	Same as DMCG but for merged device only	0.0 m
DMCGT	DMCG of test structures	0.0 m
NF (instance parameter only)	Number of device fingers (Fatal error if less than one)	1
DWJ	Offset of the S/D junction width	DWC (in CVmodel)
MIN stance rameter only	Whether to minimize the number of drain or source diffusions for even-number fingered device	0 (minimize the drain dif-
XGW(Also an instance parameter)	Distance from the gate contact to the channel edge	0.0 m
XGL	Offset of the gate length due to variations in patterning	0.0 m
XL	Channel length offset due to mask/ etch ef- fect	0.0 m
XW	Channel width offset due to mask/etch effect	0.0 m
NGCON(Also an instance parameter)	Number of gate contacts (Fatal error if less than one; if not equal to 1 or 2, warning mes- sage issued and reset to 1)	1

17 Asymmetric Source/Drain Junction Diode Model Parameters

Parameter Name (separate for source and drain side as indicated in the names)	Description	Default Value
IJTHSREV IJTHDREV	Limiting current in reverse bias region	$\begin{aligned} & \text { IJTHSREV }=0.1 \mathrm{~A}, \\ & \text { IJTHDREV }=\text { IJTH- } \\ & \text { SREV } \end{aligned}$
$\begin{aligned} & \text { IJTHSFWD } \\ & \text { IJTHDFWD } \end{aligned}$	Limiting current in forward bias region	$\begin{aligned} & \text { IJTHSFWD }=0.1 \mathrm{~A}, \\ & \text { IJTHDFWD }=\text { IJTHS- } \\ & \text { FWD } \end{aligned}$
XJBVS XJBVD	Fitting parameter for diode breakdown	$\begin{aligned} & \text { XJBVS }=1.0, \mathrm{XJBVD}= \\ & \text { XJBVS } \end{aligned}$
BVS BVD	Breakdown voltage (If not positive, reset to 10.0 V)	$\begin{aligned} & \mathrm{BVS}=10.0 \mathrm{~V}, \mathrm{BVD}= \\ & \mathrm{BVS} \end{aligned}$
JSS JSD	Bottom junction reverse saturation current density	$\begin{aligned} & \mathrm{JSS}=1.0 \mathrm{e}-4 \mathrm{~A} / \mathrm{m} 2, \mathrm{JSD} \\ & =\mathrm{JSS} \end{aligned}$
JSWS JSWD	Isolation-edge sidewall reverse saturation current density	$\begin{aligned} & \text { JSWS }=0.0 \mathrm{~A} / \mathrm{m}, \mathrm{JSWD} \\ & =\mathrm{JSWS} \end{aligned}$
JSWGS JSWGD	Gate-edge sidewall reverse saturation current density	$\begin{aligned} & \text { JSWGS } \quad=0.0 \mathrm{~A} / \mathrm{m} \text {, } \\ & \text { JSWGD }=\text { JSWGS } \end{aligned}$
JTSS JTSD	Bottom trap-assisted saturation current density	$\begin{aligned} & \mathrm{JTSS}=0.0 \mathrm{~A} / \mathrm{m} \mathrm{JTSD}= \\ & \mathrm{JTSS} \end{aligned}$
$\begin{aligned} & \hline \text { JTSSWS } \\ & \text { JTSSWD } \end{aligned}$	STI sidewall trap-assisted saturation current density	$\begin{aligned} & \text { JTSSWS }=0.0 \mathrm{~A} / \mathrm{m} 2 \\ & \text { JTSSWD }=\mathrm{JTSSWS} \end{aligned}$
$\begin{aligned} & \text { JTSSWGS } \\ & \text { JTSSWGD } \end{aligned}$	Gate-edge sidewall trap-assisted saturation current density	$\begin{aligned} & \hline \text { JTSSWGS }=0.0 \mathrm{~A} / \mathrm{m} \\ & \text { JTSSWGD }=\mathrm{JTSSWGS} \end{aligned}$
JTWEFF	Trap-assistant tunneling current density width dependence	0.0
NJTS NJTSD	Non-ideality factor for JTSS and JTSD	$\begin{aligned} & \text { NJTS }=20.0 \text { NJTSD }= \\ & \text { NJTS } \end{aligned}$

$\begin{aligned} & \text { NJTSSW } \\ & \text { NJTSSWD } \end{aligned}$	Non-ideality factor for JTSSWS and JTSSWD	$\begin{aligned} & \text { NJTSSW }=20.0 \\ & \text { NJTSSWD }=\text { NJTSSW } \end{aligned}$
$\begin{aligned} & \text { NJTSSWG } \\ & \text { NJTSSWGD } \end{aligned}$	Non-ideality factor forJTSSWGS and JTSSWGD	NJTSSWG $=$ 20.0 NJTSSWGD $=$ NJTSSWG
XTSS, XTSD	Power dependence of JTSS, JTSD on temperature	$\begin{aligned} & \mathrm{XTSS}=0.02 \mathrm{XTSD}= \\ & 0.02 \end{aligned}$
XTSSWS, XTSSWD	Power dependence of JTSSWS, JTSSWD on temperature	XTSSWS $=0.02$ XTSSWD $=0.02$
$\begin{aligned} & \text { XTSSWGS, } \\ & \text { XTSSWGD } \end{aligned}$	Power dependence of JTSSWGS, JTSSWGD on temperature	$\begin{aligned} & \text { XTSSWGS }=0.02 \\ & \text { XTSSWGD }=0.02 \end{aligned}$
VTSS VTSD	Bottom trap-assisted voltage dependent parameter	$\begin{aligned} & \text { VTSS }=10 \mathrm{~V} \text { VTSD }= \\ & \text { VTSS } \end{aligned}$
$\begin{aligned} & \hline \text { VTSSWS } \\ & \text { VTSSWD } \end{aligned}$	STI sidewall trap-assisted voltage dependent parameter	VTSSWS $\quad=10 \mathrm{~V}$ VTSSWD $=$ VTSSWS
VTSSWGS VTSSWGD	Gate-edge sidewall trap-assisted voltage dependent parameter	VTSSWGS $=10 \mathrm{~V}$ VTSSWGD $=$ VTSS- WGS
TNJTS TNJTSD	Temperature coefficient for NJTS and NJTSD	$\begin{aligned} & \text { TNJTS=0.0 } \quad \text { TNJTSD } \\ & =\text { TNJTS } \end{aligned}$
TNJTSSW TNJTSSWD	Temperature coefficient for NJTSSW and NJTSSWD	$\begin{aligned} & \text { TNJTSSW }= \\ & 0.0 \quad \text { TNJTSSWD } \\ & =\text { TNJTSSW } \end{aligned}$
TNJTSSWG TNJTSSWGD	Temperature coefficient for NJTSSWG and NJTSSWG	TNJTSSWG $=0.0$ TNJTSSWGD $=$ TNJTSSWG
CJS CJD	Bottom junction capacitance per unit area at zero bias	$\begin{array}{ll} \hline \mathrm{CJS}=5.0 \mathrm{e}-4 & \mathrm{~F} / \mathrm{m} 2 \\ \mathrm{CJD}=\mathrm{CJS} & \end{array}$
MJS MJD	Bottom junction capacitance grating coefficient	$\mathrm{MJS}=0.5 \mathrm{MJD}=\mathrm{MJS}$
$\begin{aligned} & \text { MJSWS } \\ & \text { MJSWD } \end{aligned}$	Isolation-edge sidewall junction capacitance grading coefficient	$\begin{aligned} & \text { MJSWS }=0.33 \text { MJSWD } \\ & =\text { MJSWS } \end{aligned}$
CJSWS CJSWD	Isolation-edge sidewall junction capacitance per unit area	$\begin{aligned} & \text { CJSWS }=5.0 \mathrm{e}-10 \quad \mathrm{~F} / \mathrm{m} \\ & \text { CJSWD }=\text { CJSWS } \end{aligned}$
CJSWGS CJSWGD	Gate-edge sidewall junction capacitance per unit length	$\begin{aligned} & \text { CJSWGS } \quad=\text { CJSWS } \\ & \text { CJSWGD }=\text { CJSWS } \end{aligned}$

$\left.$| MJSWGS
 MJSWGD | Gate-edge sidewall junction capacitance
 grading coefficient | MJSWGS =MJSWS
 MJSWGD =MJSWS |
| :--- | :--- | :--- |
| PBS | Source-side bulk junction built-in poten-
 tial | 1.0 V |
| PBD | Drain-side bulk junction built-in potential | PBD=PBS |
| PBSWS
 SWD | PB- | Isolation-edge sidewall junction built-in
 potential | | PBSWS =1.0V PBSWD |
| :--- |
| =PBSWS | \right\rvert\, | PBSWGS PB- | Gate-edge sidewall junction built-in po-
 tential | PBSWGS =PBSWS PB-
 SWGD |
| :--- | :--- | :--- |

18 Temperature Dependence and Self Heating Parameters

Parameter Name	Description	Default Value
TNOM	Temperature at which parameters are extracted	$27^{0} \mathrm{C}$
DTEMP	Variability handle for temperature	0
UTE (b)	Mobility temperature exponent	-1.5
UCSTE(b)	Temperature coefficient of coulombic mobility	-4.775e-3
TDELTA	Temperature coefficient for DELTA	0.0
TGIDL (b)	Temperature coefficient for GIDL/GISL	0.0
IIT (b)	Temperature coefficient for BETA0	0.0
KT1 (b)	Temperature coefficient for threshold voltage	-0.11V
KT1EXP	Temperature exponent for threshold voltage	1.0
KT1L (b)	Channel length dependence of the temperature coefficient for threshold voltage	0.0 Vm
KT2(b)	Body-bias coefficient of Vth temperature effect	0.022
UA1 (b)	Temperature coefficient for UA	$1.0 \mathrm{e}-9 \mathrm{~m} / \mathrm{V}$
UC1 (b)	Temperature coefficient for UC	$\begin{aligned} & \hline 0.056 \mathrm{~V}-1 \quad \text { for } \quad \text { MOB- } \\ & \mathrm{MOD}=1 ; \quad 0.056 \mathrm{e}-9 \mathrm{~m} / \mathrm{V}^{2} \\ & \text { for MOBMOD }=0 \text { and } 2 \end{aligned}$
UD1 (b)	Temperature coefficient for UD	$0.0(1 / m)^{2}$
AT (b)	Temperature coefficient for saturation velocity	$3.3 \mathrm{e} 4 \mathrm{~m} / \mathrm{s}$
PTWGT	Temperature coefficient for PTWG	0.0
PRT (b)	Temperature coefficient for Rdsw	0.0ohm-m
NJS, NJD	Emission coefficients of junction for source and drain junctions, respectively	NJS $=1.0 ; \mathrm{NJD}=\mathrm{NJS}$
XTIS, XTID	Junction current temperature exponents for source and drain junctions, respectively	XTIS $=3.0 ;$ XTID $=$ XTIS
TPB	Temperature coefficient of PB	0.0V/K
TPBSW	Temperature coefficient of PBSW	0.0V/K

TPBSWG	Temperature coefficient of PBSWG	$0.0 \mathrm{~V} / \mathrm{K}$
TCJ	Temperature coefficient of CJ	$0.0 \mathrm{~K}-1$
TCJSW	Temperature coefficient of CJSW	$0.0 \mathrm{~K}-1$
TCJSWG	Temperature coefficient of CJSWG	$0.0 \mathrm{~K}-1$
TVFBSDOFF	Temperature coefficient of VFBSDOFF	$0.0 \mathrm{~K}-1$
TNFACTOR(b) Temperature coefficient of NFACTOR	0.0	
TETA0	Temperature coefficient of ETA0	0.0
RTH0	Thermal resistance for self-heating calcula- tion	0.0
CTH0	Thermal capacitance for self-heating calcula- tion	$1.0 \mathrm{E}-5$
WTH0	Width-dependence coefficient for self heating calculation	0.0

19 Stress Effect Model Parameters

Parameter Name	Description	Default Value
SA (Instance Parameter)	Distance between OD edge to Poly from one side (If not given or (≤ 0), stress effect will be turned off)	0.0
SB (Instance Parameter)	Distance between OD edge to Poly from other side (If not given or $(\leq 0$), stress effect will be turned off)	0.0
SD (Instance Parameter)	Distance between neighbouring fingers (For $\mathrm{NF}>1$:If not given or (≤ 0), stress effect will be turned off)	0.0
SAref	Reference distance between OD and edge to poly of one side (>0.0)	1E-06[m]
SBref	Reference distance between OD and edge to poly of the other side (>0.0)	1E-06[m]
WLOD	Width parameter for stress effect	0.0[m]
KU0	Mobility degradation/enhancement coefficient for stress effect	0.0[m]
KVSAT	Saturation velocity degradation/ enhancement parameter for stress effect (1 \leq kvsat ≤ 1)	0.0[m]
TKU0	Temperature coefficient of KU0	0.0
LKU0	Length dependence of ku0	0.0
WKU0	Width dependence of ku0	0.0
PKU0	Cross-term dependence of ku0	0.0
LLODKU0	Length parameter for u0 stress effect (>0)	0.0
WLODKU0	Width parameter for u0 stress effect (>0)	0.0
KVTH0	Threshold shift parameter for stress effect	$0.0[\mathrm{Vm}]$
LKVTH0	Length dependence of kvth0	0.0
WKVTH0	Width dependence of kvth0	0.0
PKVTH0	Cross-term dependence of kvth0	0.0
LLODVTH	Length parameter for Vth stress effect (>0)	0.0
WLODVTH	Width parameter for Vth stress effect (>0)	0.0
STK2	K2 shift factor related to Vth0 change	0.0[m]

LODK2	K2 shift modification factor for stress effect (>0)	0.0
STETA0	eta0 shift factor related to Vth0 change	$0.0[\mathrm{~m}]$
LODETA0	eta0 shift modification factor for stress effect (>0)	1.0

20 Well-Proximity Effect Parameters

Parameter Name	Description	Default Value
SCA (Instance Pa- rameter)	Integral of the first distribution func- tion for scattered well dopant (If not given, calculated)	0.0
SCB (Instance Pa- rameter)	Integral of the second distribution func- tion for scattered well dopant (If not given, calculated)	0.0
SCC (Instance Pa- rameter)	Integral of the third distribution func- tion for scattered well dopant (If not given, calculated)	0.0
SC (Instance Pa- rameter)	Distance to a single well edge (If not given or ≤ 0.0, turn off WPE)	$0.0[\mathrm{~m}]$
WEB	Coefficient for SCB (>0.0)	0.0
WEC	Coefficient for SCC (>0.0)	0.0
KVTH0WE(b)	Threshold shift factor for well proxim- ity effect	0.0
K2WE (b)	K2 shift factor for well proximity effect	0.0
KU0WE (b)	Mobility degradation factor for well proximity effect	0.0
SCREF	Reference distance to calculate SCA, SCB and SCC (<0)	$1 \mathrm{e}-6[\mathrm{~m}]$

21 Parameter equivalence between BSIM6 \& BSIM4

The equivalent parameters are the closest match between two models. There values may be different in two models.

Region	BSIM6 Parameter Name	BSIM4 Parameter Name	Comment
Core Parameters	GEOMOD RGEOMOD RDSMOD COVMOD L W XL XW LINT WINT DLC DWC TOXE TOXP NF NDEP NGATE VFB, VFBCV	GEOMOD RGEOMOD RDSMOD COVMOD L W XL XW LINT WINT DLC DWC TOXE TOXP NF NDEP or VTH0/VTHO NGATE VFB, VFBCV	
Material properties	EASUB NI0SUB EPSRSUB EPSROX		Corresponds to BSIM4 mtrlmod=1
Threshold Voltage	NDEPL1, NDEPLEXP1, NDEPL2, NDEPLEXP2 NDEPW, NDEPWEXP, NDEPWL, NDEPWLEXP K2W	DVT0,DVT1, DVT2, LPE0 DVT0W, DVT1W, DVT2W, K3, W0 K3B ,	Length scaling Width and Narrow-short Scaling

	DVTP0, DVTP1, DVTP2, DVTP3, DVTP4, DVTP5 PHIN ETA0 ETAB DSUB K2 K2L, L2LEXP	same as BSIM4 PHIN ETA0 ETAB DSUB K2 K1, LPEB	
Subthreshold Swing	$\begin{aligned} & \text { CIT } \\ & \\ & \text { NFACTOR } \\ & \text { CDSCD } \\ & \text { CDSCB } \\ & \text { NFACTOR } \end{aligned}$	CIT CDSC CDSCD CDSCB NFACTOR	
Drain Saturation Voltage	VSAT, DELTA	VSAT, DELTA	
Mobility Model	U0 ETAMOB U0L U0LEXP UA EU UD UCS UC	$\begin{aligned} & \\ & - \\ & \\ & \text { UP } \\ & \text { LPA } \\ & \text { UA } \\ & \text { EU } \\ & \text { UD } \\ & \text { UCS } \\ & \text { UC } \\ & \hline \end{aligned}$	BSIM6 uses MOBMOD=3 from BSIM4 default value of 1 corresponds to BSIM4
Channel Length Modulation and DITS	PCLM PCLMG PSCBE1 PSCBE2 PDITS	PCLM PCLMG PSCBE1 PSCBE2 PDITS	

	PDITSL PDITSD		PDITSL PDITSD	
Velocity Saturation	$\begin{array}{\|l\|} \hline \text { VSAT } \\ \text { PTWG } \\ \text { PSAT } \\ \text { PSATX } \\ \text { PSATB } \end{array}$		VSAT	
Rs, Rd parameter	XJ VFBSDOFF NRS/NRD MINZ NSD RSH PRWG PRWB WR RDSWMIN RSWMIN RDWMIN RDSW RSW RDW DMCG DMCI DMDG DMCGT		XJ VFBSDOFF NRS/NRD MINZ NSD RSH PRWG PRWB WR RDSWMIN RSWMIN RDWMIN RDSW RSW RDW DMCG DMCI DMDG DMCGT	$\begin{aligned} & \text { BSIM6 uses } \\ & \text { RDSMOD=1 } \\ & \text { from BSIM4 } \end{aligned}$
Impact Ionization	$\begin{aligned} & \text { ALPHA0, } \\ & \text { PHA0L, } \\ & \text { PHA0LEXP } \\ & \text { BETA0 } \end{aligned}$	$\begin{aligned} & \text { AL- } \\ & \text { AL- } \end{aligned}$	ALPHA0, ALPHA1 BETA0	
GIDL/GISL	AGIDL BGIDL CGIDL EGIDL		AGIDL BGIDL CGIDL EGIDL	

	AGISL	AGISL	
	BGISL	BGISL	
	CGISL	CGISL	
	EGISL	EGISL	
	CF	CF Model	-
CFRCOEFF			
	CFI	BSIMSOI	
	CGSO	CGSO	
	CGDO	CGDO	
	CGBO	CGBO	
	CGSL	CGSL	
	CGDL	CGDL	
	CKAPPAS	CKAPPAS	
	CKAPPAD	CKAPPAD	
	ADOS, BDOS, QM0,	ADOS, BDOS	

22 Appendix A : Smoothing Function

22.1 Polynomial Smoothing

The polynomial smoothing is used for a smooth transition between boundaries, maintaining exact values at all the corner points. Consider the function

$$
\begin{align*}
f(x) & =x \quad \text { if } x>\frac{\Delta x}{2} \tag{22.1}\\
& =k \quad \text { if } x<\frac{-\Delta x}{2} \tag{22.2}
\end{align*}
$$

where k is some constant. The function is undefined for the region $\frac{-\Delta x}{2}<x<\frac{\Delta x}{2}$. If this region is approximated by a polynomial function, the complete function and even derivatives can be made continuous. Now consider the more generalized case

$$
\begin{align*}
f(x) & =x & & \text { if } x>x_{1} \tag{22.3}\\
& =k & & \text { if } x<x_{2} \tag{22.4}
\end{align*}
$$

To express (22.4) in the form of (22.2), x is linearly transformed into z. Defining

$$
\begin{align*}
x_{0} & =\frac{x_{1}+x_{2}}{2} \tag{22.5}\\
\Delta x & =x_{1}-x_{2} \tag{22.6}
\end{align*}
$$

then the boundary points becomes

$$
\begin{align*}
& x_{1}=x_{0}+\frac{\Delta x}{2} \tag{22.7}\\
& x_{2}=x_{0}-\frac{\Delta x}{2} \tag{22.8}
\end{align*}
$$

Let $z=\frac{x-x_{0}}{\Delta x}$. Thus the above boundary points in z domain becomes,

$$
\begin{align*}
& z_{1}=\frac{x_{1}-x_{0}}{\Delta x}=\frac{1}{2} \tag{22.9}\\
& z_{2}=\frac{x_{2}-x_{0}}{\Delta x}=-\frac{1}{2} \tag{22.10}
\end{align*}
$$

so that the function becomes

$$
\begin{align*}
f(z) & =\quad z \cdot \Delta x-x_{0} \quad \text { if } z>\frac{1}{2} \tag{22.11}\\
& =k \quad \text { if } z<-\frac{1}{2} \tag{22.12}
\end{align*}
$$

the region $-\frac{1}{2} \leq z \leq \frac{1}{2}$ is modeled by the polynomial function whose order depends on the number of boundary conditions. For example, to have continuous derivatives upto third order, we need seventh order polynomial as there are 8 boundary conditions.

$$
\begin{equation*}
f(z)=a \cdot z^{7}+b \cdot z^{6}+c \cdot z^{5}+d . z^{4}+e \cdot . z^{3}+f \cdot z^{2}+g \cdot z+1 \tag{22.13}
\end{equation*}
$$

Then boundary conditions can be applied to derivatives to determine the polynomial coefficients. For the case of continuous third order derivatives, we found that

$$
\begin{equation*}
f(x)=x_{0}+\Delta x \cdot\left[\frac{5}{64}+\frac{z}{2}+z^{2} \cdot\left[\frac{15}{16}-z^{2} \cdot\left(\frac{5}{4}-z^{2}\right)\right]\right] \tag{22.14}
\end{equation*}
$$

while for continuous second order derivative

$$
\begin{equation*}
f(x)=x_{0}+\Delta x \cdot\left[\frac{3}{32}+\frac{z}{2}+z^{2} \cdot\left[\frac{3}{4}-z^{2} \cdot\left(\frac{3}{4}-\frac{z^{2}}{2}\right)\right]\right] \tag{22.15}
\end{equation*}
$$

with $z=\frac{x-x_{0}}{\Delta x}$. Figure 12 illustrate the concept of polynomial smoothing.
An Example : Let the function be given as

$$
\begin{align*}
& f(x)=x \quad \text { if } x>-90 \tag{22.16}\\
& =-100 \quad \text { if } x<-110 \tag{22.17}
\end{align*}
$$

with the condition that third derivative to exist. From (22.6)

$$
\begin{align*}
x_{0} & =-100 \tag{22.18}\\
\Delta x & =20 \tag{22.19}\\
z & =\frac{x+100}{20} \tag{22.20}
\end{align*}
$$

and function becomes,

$$
\begin{align*}
f(z) & =20 . z+100 \quad \text { if } z>\frac{1}{2} \tag{22.21}\\
& =-100 \quad \text { if } z<-\frac{1}{2} \tag{22.22}
\end{align*}
$$

Figure 12: Illustration of Polynomial Smoothing

Boundary Conditions

$$
\begin{align*}
f\left(\frac{1}{2}\right) & =-90, f\left(-\frac{1}{2}\right)=-100 \tag{22.23}\\
f^{\prime}\left(\frac{1}{2}\right) & =20, f^{\prime}\left(-\frac{1}{2}\right)=0 \tag{22.24}\\
f^{\prime \prime}\left(\frac{1}{2}\right) & =0, f^{\prime \prime}\left(-\frac{1}{2}\right)=0 \tag{22.25}\\
f^{\prime \prime \prime}\left(\frac{1}{2}\right) & =0, f^{\prime \prime \prime}\left(-\frac{1}{2}\right)=0 \tag{22.26}
\end{align*}
$$

We have 8 boundary conditions. So let

$$
\begin{equation*}
f(z)=a . z^{7}+b . z^{6}+c . z^{5}+d . z^{4}+e . z^{3}+f . z^{2}+g . z+1 \tag{22.27}
\end{equation*}
$$

Now we have 8 equations and 8 unknowns and hence all the coefficients can be derived. By substituting (22.23-22.26) in (22.27) we get

$$
\begin{align*}
& a=0, b=20, c=0 \\
& d=-25, e=0, f=\frac{75}{4} \tag{22.28}\\
& g=10, h=-\frac{6300}{64} \tag{22.29}
\end{align*}
$$

Thus

$$
\begin{equation*}
f(z)=20 \cdot z^{6}-25 \cdot z^{4}+\frac{75}{4} \cdot z^{2}+10 \cdot z-\frac{6300}{64} \tag{22.30}
\end{equation*}
$$

Figure:13 shows the above function. As can be seen that due to polynomial nature, the

Figure 13: Polynomial Smoothing Function
approximated function undergoes smooth transitions around the boundary points.

References

[1] Y. Tsividis, Operation and Modeling of the MOS Transistor 2nd ed. Oxford, 1999.
[2] Y. S. Chauhan, M. A. Karim, S. Venugopalan, S. Khandelwal, P. Thakur, N. Paydavosi, A. Sachid, A. B.and Niknejad, and C. Hu, "Bsim6:symmetric bulk mosfet model," Workshop on Compact Modeling, Santa Clara, USA, June 2012.
[3] J.-M. Sallese, M. Bucher, F. Krummenacher, and P. Fazan, "Inversion charge linearization in mosfet modeling and rigorous derivation of the ekv compact model," Solid-State Electronics, vol. 47, no. 4, pp. 677-683, April 2003.
[4] F. Pregaldiny, F. Krummenacher, B. Diagne, F. Pecheux, J.-M. Sallese, and C. Lallement, "Explicit modeling of the double-gate mosfet with vhdl-ams," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 19, no. 3, pp. 239-256, May 2006.
[5] BSIM4 user manual. [Online]. Available: http://www-device.eecs.berkeley.edu/ bsim/
[6] C. C. Hu, Modern Semiconductor Devices for Integrated Circuits. Pearson Education, 2010.
[7] MOS Model 11 manual. [Online]. Available: http://www.nxp.com/models/simkit/ mos-models/model-11.html
[8] K. K. Hung, P. Ko, and Y. C. Cheng, "A physics-based mosfet noise model for circuit simulator," IEEE Transaction on Electron Devices, vol. 37, no. 5, pp. 13231333, 1990.
[9] A. J. Scholten, R. Langevelde, L. F. Tiemeijer, and D. B. M. Klaassen, "Compact modeling of noise in cmos," in CICC, 2006.
[10] R. A. Bianchi, G. Bouche, and O. Roux-ditBuisson, "Accurate modeling of trench isolation induced mechanical stress effect on mosfet electrical performance," in 2007 Symposium on VLSI Technology, 2007.
[11] T. Hook, J. Brown, P. Cottrell, E. Adler, D. Hoyniak, J. Johnson, and R. Mann, "Lateral ion implant straggle and mask proximity effect," IEEE Transaction on Electron Devices, vol. 50, no. 9, pp. 1946-1951, 2003.
[12] Compact Model Council. [Online]. Available: http://www.geia.org/index.asp?bid= 597

23 Ackowledgements

We deeply appreciate the feedback we received from (in alphabetical order):
Shantanu Agnihotri(IIT Kanpur)
Maria Anna Chalkiadaki(EPFL)
Kaiman Chan (TI)
Brian Chen (Accelicon)
Sergey Cherepko (ADI)
Geoffrey Coram (ADI)
Krishnanshu Dandu (TI)
Anupam Dutta (IBM)
Christian Enz (EPFL)
Keith Green (TI)
Andre Juge (ST)
Tracey Krakowski (TI)
Francois Krummenacher (EPFL)
Pragya Kushwaha (IIT Kanpur)
Waikit Lee (TSMC)
Samuel Mertens (Agilent)
Selim Mohamed (Mentor)
Islam Shaboon (Mentor)
Saurabh Sirohi (IBM)
Jing Wang (IBM)
Joddy Wang (Synopsys)
Qingxue Wang (Synopsys)
Wenli Wang (Cadence)
Josef Watts (IBM)
Richard Williams (IBM)
Weimin Wu (TI)

Jane Xi (Synopsys)
Jushan Xie (Cadence)
Chandan Yadav(IIT Kanpur)
Fang Yu (Synopsys)
Fulong Zaho (Cadence)

Manual created: March 19, 2014

