
WRspice Reference Manual

Whiteley Research Incorporated
Sunnyvale, CA 94086

Release 4.3.21
October 26, 2024

c© Whiteley Research Incorporated, 2017.

WRspice is part of the XicTools software package for integrated circuit design from White-
ley Research Inc. WRspice was authored by S. R. Whiteley, with extensive adaptation of
the Berkeley SPICE3 program. This manual was prepared by Whiteley Research Inc., ac-
knowledging the material originally authored by the developers of SPICE3 in the Electrical
Engineering and Computer Sciences Department of the University of California, Berkeley.

WRspice, and the entire XicTools suite, including this manual, is provided as open-source
under the Apache-2.0 license, as much as applicable per individual tools, some of which are
GNU-licensed.

WRspice and subsidiary programs and utilities are offered as-is, and the suitability of these
programs for any purpose or application must be established by the user, as neither Whiteley
Research Inc., or the University of California can imply or guarantee such suitability.

ii

This page intentionally left blank.

Contents

1 Introduction to WRspice 1

1.1 History of WRspice . 1

1.2 WRspice Overview . 5

1.3 Types of Analysis . 8

1.4 Multi-threading . 11

1.4.1 Multi-Threaded Loading . 11

1.4.2 Multi-Threaded Looping . 12

1.5 Program Control . 13

1.6 Post-Processing and Run Control . 14

1.7 Introduction to Interactive Simulation . 14

2 WRspice Input Format 21

2.1 Input Format . 21

2.1.1 Case Sensitivity . 22

2.1.2 Numeric Values . 23

2.1.3 Units . 23

2.2 Variable Expansion in Input . 24

2.3 Title, Comments, Job Separation, and Inclusions . 25

2.3.1 Title Line . 25

2.3.2 Comments . 25

2.3.3 .title Line . 25

2.3.4 .end Line . 26

2.3.5 .newjob Line . 26

2.3.6 .include or .inc Line . 27

2.3.7 .lib Line . 27

2.3.8 .mosmap Line . 29

2.4 Initialization . 29

2.4.1 .global Line . 29

2.4.2 .ic Line . 30

2.4.3 .nodeset Line . 30

iii

iv CONTENTS

2.4.4 .options Line . 30

2.4.4.1 Simulation Options . 31

2.4.5 .table Line . 35

2.4.6 .temp Line . 36

2.5 Parameters and Expressions . 36

2.5.1 Single-Quoted Expressions . 36

2.5.2 .param Line . 37

2.5.2.1 Subcircuit Parameters . 38

2.5.2.2 Pre-Defined Parameters . 39

2.5.3 .if, .elif, .else, and .endif Lines . 39

2.6 Subcircuits . 41

2.6.1 .subckt Line . 41

2.6.1.1 Subcircuit Expansion . 42

2.6.1.2 wrspice Mode . 43

2.6.1.3 spice3 Mode . 44

2.6.2 .ends Line . 44

2.6.3 Subcircuit Calls . 44

2.6.4 Subcircuit/Model Cache . 45

2.7 Analysis Specification . 46

2.7.1 Chained Sweep Analysis . 47

2.7.2 .ac Line . 48

2.7.3 .dc Line . 49

2.7.3.1 Phase-Mode DC Analysis . 50

2.7.4 .disto Line . 51

2.7.5 .noise Line . 53

2.7.6 .op Line . 54

2.7.7 .pz Line . 57

2.7.8 .sens Line . 58

2.7.9 .tf Line . 58

2.7.10 .tran Line . 59

2.8 Output Generation . 61

2.8.1 .save Line . 61

2.8.2 .print Line . 62

2.8.3 .plot Line . 62

2.8.4 .four Line . 62

2.8.5 .width Line . 63

2.9 Parameter Measurement and Testing . 63

2.9.1 .measure Line . 63

CONTENTS v

2.9.2 .stop Line . 63

2.10 Control Script Execution . 64

2.10.1 .exec, .control, .postrun, and .endc Lines 64

2.10.2 .check, .checkall, .monte, and .noexec Lines 66

2.11 Verilog Interface . 66

2.11.1 .verilog, .endv Lines . 67

2.11.2 .adc Line . 68

2.12 Circuit Elements . 69

2.13 Device Models . 70

2.13.1 Default Models . 72

2.13.2 Analysis at Different Temperatures . 72

2.14 Passive Element Lines . 74

2.14.1 Capacitors . 74

2.14.2 Capacitor Model . 75

2.14.3 Inductors . 75

2.14.4 Inductor Model . 76

2.14.5 Coupled (Mutual) Inductors . 77

2.14.6 Resistors . 77

2.14.7 Resistor Model . 78

2.14.8 Switches . 80

2.14.9 Switch Model . 80

2.14.10 Transmission Lines (General) . 81

2.14.10.1 Model Level . 82

2.14.10.2 Electrical Characteristics . 82

2.14.10.3 Initial Conditions . 83

2.14.10.4 Timestep and Breakpoint Control 83

2.14.10.5 History List . 85

2.14.11 Transmission Line Model . 86

2.14.12 Uniform RC Line . 86

2.14.13 Uniform Distributed RC Model . 86

2.15 Voltage and Current Sources . 87

2.15.1 Device Expressions . 88

2.15.2 POLY Expressions . 93

2.15.3 Tran Functions . 94

2.15.3.1 Exponential . 96

2.15.3.2 Gaussian Random . 97

2.15.3.3 Interpolation . 98

2.15.3.4 Pulse . 99

vi CONTENTS

2.15.3.5 Pattern Generation . 100

2.15.3.6 Gaussian Pulse . 101

2.15.3.7 Piecewise Linear . 103

2.15.3.8 Single-Frequency FM . 105

2.15.3.9 Amplitude Modulation . 106

2.15.3.10 Sinusoidal . 107

2.15.3.11 Sinusoidal Pulse . 108

2.15.3.12 Table Reference . 108

2.15.4 Dependent Sources . 109

2.15.4.1 Voltage-Controlled Current Sources 109

2.15.4.2 Voltage-Controlled Voltage Sources 110

2.15.4.3 Current-Controlled Current Sources 111

2.15.4.4 Current-Controlled Voltage Sources 112

2.16 Semiconductor Devices . 113

2.16.1 Junction Diodes . 113

2.16.2 Diode Model . 114

2.16.3 Bipolar Junction Transistors (BJTs) . 116

2.16.4 BJT Models (both NPN and PNP) . 116

2.16.5 Junction Field-Effect Transistors (JFETs) . 118

2.16.6 JFET Models (both N and P Channel) . 119

2.16.7 MESFETs . 120

2.16.8 MESFET Models (both N and P Channel) . 121

2.16.9 MOSFETs . 121

2.16.10 MOSFET Models (both N and P channel) . 122

2.16.10.1 MOS Default Values . 123

2.16.10.2 MOS Model Binning . 123

2.16.10.3 SPICE2/3 Legacy Models . 124

2.16.10.4 Imported MOS Models . 127

2.16.10.5 HSPICE MOS Level 49 Compatibility in WRspice 129

2.17 Superconductor Devices . 132

2.17.1 Josephson Junctions . 132

2.17.1.1 Josephson Junction Description 137

2.17.1.2 Josephson Junction (Tunnel Junction Model) 138

2.17.2 Josephson Junction Model . 144

2.17.2.1 Josephson Junction Model (RSJ Modxel) 144

2.17.2.2 RSJ Model Temperature Dependence 150

2.17.2.3 Josephson Tunnel Junction Model 151

2.17.2.4 TJM Model Temperature Dependence 156

CONTENTS vii

3 The WRspice User Interface 159

3.1 Starting WRspice . 159

3.2 Environment Variables . 162

3.2.1 Unix/Linux . 163

3.2.2 Microsoft Windows . 163

3.2.3 WRspice Environment Variables . 163

3.3 Sparse Matrix Package . 167

3.4 Initialization Files . 168

3.4.1 The tbsetup Command . 169

3.5 The Tool Control Window . 170

3.6 Text Entry Windows . 174

3.6.1 Single-Line Text Entry . 174

3.6.2 Selections and Clipboards . 174

3.6.3 GTK Text Input Key Bindings . 175

3.7 The File Manager . 175

3.8 The Text Editor . 177

3.9 The Mail Client . 179

3.10 The Tools Menu Tools and Panels . 180

3.10.1 The Fonts Tool . 180

3.10.2 The Files Tool . 181

3.10.3 The Circuits Tool . 181

3.10.4 The Plots Tool . 182

3.10.5 Plot Options Panel . 182

3.10.6 Plot Colors Panel . 183

3.10.7 The Vectors Tool . 184

3.10.8 The Variables Tool . 184

3.10.9 Shell Options Panel . 184

3.10.10 Simulation Options Panel . 185

3.10.11 Command Options Panel . 186

3.10.12 The Runops Tool . 187

3.10.13 Debug Options . 187

3.11 The Plot Panel . 188

3.11.1 Zooming in . 189

3.11.2 Text String Selection . 190

3.11.3 Trace Drag and Drop . 191

3.11.4 Multidimensional Traces . 191

3.11.5 Scale Icons . 193

3.11.6 Field Width Icons . 193

viii CONTENTS

3.12 The Mplot Panel . 193

3.13 The Print Control Panel . 194

3.13.1 Print Drivers . 195

3.14 The WRspice Help System . 197

3.14.1 XicTools Update . 199

3.14.2 The HTML Viewer . 199

3.14.3 The Help Database . 204

3.14.4 Help System Forms Processing . 204

3.14.5 Help System Initialization File . 205

3.15 The WRspice Shell . 205

3.15.1 Command Line Editing . 205

3.15.2 Command Completion . 206

3.15.3 History Substitution . 206

3.15.4 Alias Substitution . 207

3.15.5 Global Substitution . 207

3.15.6 Quoting . 207

3.15.6.1 Single and Double Quoting . 207

3.15.6.2 Single-Character Quoting . 208

3.15.6.3 Back-Quoting, Command Evaluation 208

3.15.7 I/O Redirection . 208

3.15.8 Semicolon Termination . 209

3.15.9 Variables and Variable Substitution . 209

3.15.10 Commands and Scripts . 210

3.15.11 The FIFO . 212

3.16 Plots, Vectors and Expressions . 212

3.16.1 Plots and Vectors . 212

3.16.1.1 The constants Plot . 214

3.16.2 Vector Characteristics . 215

3.16.3 Vector Creation and Assignment . 215

3.16.4 Analysis Vectors and Access Mapping . 216

3.16.5 Special Vectors . 218

3.16.6 Vector Expressions . 219

3.16.7 Operators in Expressions . 220

3.16.8 Math Functions . 222

3.16.9 Statistical Functions . 227

3.16.10 Measurement Functions . 228

3.16.11 HSPICE Compatibility Functions . 229

3.16.12 Expression Lists . 232

CONTENTS ix

3.16.13 Set and Let . 233

3.17 Batch Mode . 236

3.17.1 Scripts and Batch Mode . 237

3.18 Loadable Device Modules . 239

3.18.1 Creating Loadable Modules from Veriolog-A 240

3.18.1.1 Requirements . 240

3.18.1.2 How It Works . 241

3.18.1.3 The ADMS Scripts . 241

3.18.1.4 How to Build a Module . 242

3.18.1.5 Building the Examples . 243

3.18.1.6 What if it Doesn’t Work? . 243

3.18.2 Support for AMDS/Verilog-A . 243

3.18.2.1 The “insideADMS” define . 243

3.18.2.2 The ADMS “attributes” . 244

3.18.2.3 Read-Only Parameters . 244

3.18.2.4 Initialization Blocks and Global Events 245

3.18.2.5 System Tasks . 245

3.19 The WRspice Daemon and Remote SPICE Runs . 252

4 WRspice Commands 253

4.1 Control Structures . 256

4.1.1 The cdump Command . 259

4.2 String Comparison and Global Return Value . 259

4.2.1 The strcmp Command . 259

4.2.2 The strcicmp Command . 260

4.2.3 The strprefix Command . 260

4.2.4 The strciprefix Command . 260

4.2.5 The retval Command . 260

4.3 User Interface Setup Commands . 261

4.3.1 The mapkey Command . 261

4.3.2 The setcase Command . 262

4.3.3 The setfont Command . 263

4.3.4 The setrdb Command . 263

4.3.5 The tbupdate Command . 264

4.3.6 The wrupdate Command . 264

4.4 Shell Commands . 264

4.4.1 The alias Command . 265

4.4.2 The cd Command . 265

x CONTENTS

4.4.3 The echo Command . 265

4.4.4 The echof Command . 265

4.4.5 The history Command . 266

4.4.6 The pause Command . 266

4.4.7 The pwd Command . 266

4.4.8 The rehash Command . 266

4.4.9 The set Command . 266

4.4.10 The shell Command . 268

4.4.11 The shift Command . 268

4.4.12 The unalias Command . 268

4.4.13 The unset Command . 268

4.4.14 The usrset Command . 268

4.5 Input and Output Commands . 269

4.5.1 The codeblock Command . 269

4.5.2 The dumpnodes Command . 271

4.5.3 The edit Command . 271

4.5.4 The listing Command . 271

4.5.5 The load Command . 272

4.5.6 The print Command . 273

4.5.7 The printf Command . 276

4.5.8 The return Command . 276

4.5.9 The sced Command . 277

4.5.10 The source Command . 277

4.5.10.1 Implicit Source . 278

4.5.10.2 Input Format Notes . 278

4.5.11 The sprint Command . 279

4.5.12 The write Command . 279

4.5.13 The xeditor Command . 280

4.6 Simulation Control Commands . 281

4.6.1 The ac Command . 283

4.6.2 The alter Command . 283

4.6.3 The alterf Command . 283

4.6.4 The aspice Command . 284

4.6.5 The cache Command . 284

4.6.6 The check Command . 285

4.6.7 The dc Command . 291

4.6.8 The delete Command . 291

4.6.9 The destroy Command . 291

CONTENTS xi

4.6.10 The devcnt Command . 292

4.6.11 The devload Command . 292

4.6.12 The devls Command . 293

4.6.13 The devmod Command . 293

4.6.14 The disto Command . 294

4.6.15 The dump Command . 294

4.6.16 The findlower Command . 295

4.6.17 The findrange Command . 295

4.6.18 The findupper Command . 296

4.6.19 The free Command . 296

4.6.20 The jobs Command . 296

4.6.21 The mctrial Command . 296

4.6.22 The measure Command . 297

4.6.22.1 Point and Interval Specification 297

4.6.22.2 Syntax Compatibility . 300

4.6.22.3 Measurements . 301

4.6.22.4 Post-Measurement Commands 302

4.6.22.5 Referencing Results in Sources 303

4.6.23 The noise Command . 304

4.6.24 The op Command . 304

4.6.25 The pz Command . 304

4.6.26 The reset Command . 304

4.6.27 The resume Command . 305

4.6.28 The rhost Command . 305

4.6.29 The rspice Command . 305

4.6.30 The run Command . 306

4.6.31 The save Command . 306

4.6.32 The sens Command . 307

4.6.33 The setcirc Command . 307

4.6.34 The show Command . 307

4.6.35 The state Command . 309

4.6.36 The status Command . 309

4.6.37 The step Command . 309

4.6.38 The stop Command . 309

4.6.39 The sweep Command . 311

4.6.39.1 Without explicit device parameter setting 311

4.6.39.2 Explicit parameter setting . 313

4.6.40 The tf Command . 313

xii CONTENTS

4.6.41 The trace Command . 313

4.6.42 The tran Command . 314

4.6.43 The vastep Command . 314

4.6.44 The where Command . 314

4.7 Data Manipulation Commands . 314

4.7.1 The compose Command . 315

4.7.2 The cross Command . 316

4.7.3 The define Command . 316

4.7.4 The deftype Command . 317

4.7.5 The diff Command . 318

4.7.6 The display Command . 318

4.7.7 The fourier Command . 318

4.7.8 The let Command . 319

4.7.9 The linearize Command . 320

4.7.10 The pick Command . 320

4.7.11 The seed Command . 321

4.7.12 The setdim Command . 321

4.7.13 The setplot Command . 321

4.7.14 The setscale Command . 322

4.7.15 The settype Command . 323

4.7.16 The spec Command . 324

4.7.17 The undefine Command . 325

4.7.18 The unlet Command . 325

4.8 Graphical Output Commands . 325

4.8.1 The asciiplot Command . 326

4.8.2 The combine Command . 326

4.8.3 The hardcopy Command . 327

4.8.4 The iplot Command . 328

4.8.5 The mplot Command . 329

4.8.5.1 Selections . 329

4.8.6 The plot Command . 330

4.8.7 The plotwin Command . 332

4.8.8 The xgraph Command . 332

4.9 Miscellaneous Commands . 333

4.9.1 The bug Command . 333

4.9.2 The help Command . 333

4.9.3 The helpreset Command . 334

4.9.4 The qhelp Command . 334

CONTENTS xiii

4.9.5 The quit Command . 334

4.9.6 The rusage Command . 334

4.9.6.1 Real Valued Database Entries 336

4.9.6.2 Integer Valued Database Entries 337

4.9.7 The stats Command . 338

4.9.8 The version Command . 338

4.10 Variables . 338

4.10.1 Shell Variables . 339

4.10.2 Command-Specific Variables . 342

4.10.3 Plot Variables . 346

4.10.4 Simulation Option Variables . 353

4.10.4.1 Real-Valued Parameters . 353

4.10.4.2 Integer-Valued Parameters . 357

4.10.4.3 Boolean Parameters . 360

4.10.4.4 String Parameters . 364

4.10.5 Syntax Control Variables . 366

4.10.6 Batch Mode Option Variables . 369

4.10.7 Unused Option Variables . 370

4.10.8 Debugging Variables . 370

5 Margin Analysis 373

5.1 Operating Range Analysis . 373

5.2 Operating Range Analysis File Format . 380

5.2.1 Initializing Header . 380

5.2.2 Control Statements . 381

5.2.3 Circuit Description . 382

5.3 Example Operating Range Analysis Control File . 383

5.4 Monte Carlo Analysis . 387

5.5 Example Monte Carlo Analysis Control File . 388

5.6 Atomic Monte Carlo and Range Analysis . 392

5.7 Circuit Margin Optimization . 393

A File Formats 395

A.1 Rawfile Format . 395

A.2 Help Database Files . 397

A.2.1 Anchor Text . 401

A.2.2 .mozyrc File . 402

A.3 Example Data Files . 404

A.3.1 Circuit 1: Simple Differential Pair . 404

xiv CONTENTS

A.3.2 Circuit 2: MOS Output Characteristics . 405

A.3.3 Circuit 3: Simple RTL Inverter . 405

A.3.4 Circuit 4: Four-Bit Adder . 405

A.3.5 Circuit 5: Transmission Line Inverter . 407

A.3.6 Circuit 6: Function and Table Demo . 407

A.3.7 Circuit 7: MOS Convergence Test . 408

A.3.8 Circuit 8: Verilog Pseudo-Random Sequence 410

A.3.9 Circuit 9: Josephson Junction I-V Curve . 411

A.3.10 Circuit 10: Josephson Gap Potential Modulation 411

B Utility Programs 413

B.1 The csvtoraw Utility: CSV to Rawfile Conversion . 413

B.2 The mmjco Utility: Tunnel Junction Model Calculator 413

B.2.1 Running mmjco . 414

B.2.1.1 Command Line Operations . 414

B.2.1.2 Interactive mmjco Commands 415

B.2.1.3 File Name Encoding . 416

B.2.2 File Formats . 418

B.2.2.1 TCA file formats . 418

B.2.2.2 Fit file format . 419

B.2.2.3 Sweep file format . 419

B.2.3 References . 420

B.3 The multidec Utility: Coupled Lossy Transmission Lines 421

B.4 The printtoraw Utility: Print to Rawfile Conversion 421

B.5 The proc2mod Utility: BSIM1 Model Generation . 422

B.6 The wrspiced Daemon: Remote SPICE Controller . 422

B.6.1 SPICE Server Configuration . 422

B.6.2 Starting the Daemon . 423

B.6.3 Client Configuration . 424

Chapter 1

Introduction to WRspice

1.1 History of WRspice

In the early days of radio, before the term “electronics” came into use, experimenters and scientists
(engineers designed bridges then) built circuits on whatever could be found that was appropriate. One
popular substrate was the wooden breadboard as found in most kitchens. The breadboard could be used
to secure the tube sockets and other appendages through use of screws. Thus, the term “breadboard”
as a substrate for the building of electronic circuits was born.

Breadboards, in one form or another, were used for the construction of all electronic prototype
circuits until the integrated circuit was invented in 1957. Even well afterward, the integrated circuit was
only another component on the breadboard. A new circuit could be easily (well, in principle) debugged,
modified, enhanced, or otherwise engineered toward perfection, as all points of the circuit were accessible
for testing and measurement.

After it became possible to put more than a small number of devices on an integrated circuit chip,
design of such chips became quite challenging. Obviously there was no opportunity to solder in new
components, or even probe the internal connections. The circuit had to be perfect as designed, or it
wouldn’t work properly. This is almost never the case for any but the simplest design for any but those
engineers with godlike intelligence (or luck). Clearly new tools and methods were needed.

The rescue came in the early 1970’s with the distribution of a computer program called SPICE
(Simulation Program for Integrated Circuit Engineering), developed at the University of California,
Berkeley. SPICE was a big (for its day) Fortran computer program, requiring the power of a mainframe
computer. A circuit was described in a certain syntax, which was punched into IBM computer cards.
The terminology this inspired persists to this day, as a line of SPICE input is often referred to as
a “card”, and a complete circuit description as a “deck”. In the bad old days, the engineer would
laboriously punch the cards, deliver them to the Computer Center, and receive the line printer output
a few hours later. It would generally take several iterations before the first page of output would not
say “Run Aborted...”. Old-time engineers abhorred this activity, which seemed suitable for office wimps
and students only. After a few years, and the advent of Tektronix direct view storage terminals, SPICE
became the preeminent means of designing not just integrated circuits, but the old-fashioned kind as
well.

SPICE is the progenitor of most circuit simulators currently in use. As the source code was available
for next to nothing, major organizations customized it for their own needs, and smoothed over some of

1

2 CHAPTER 1. INTRODUCTION TO WRSPICE

the rougher edges. It remains a numerically intensive program which can tax even the largest of today’s
computers.

Looking back, one can identify several important milestones in the accessibility of computer power
to the technically inclined masses. The first example was the ability to run the BASIC programming
language on a desktop computer, introduced in the late 1970’s with the Tektronix 4051. This 8-bit
machine with a built-in direct view storage tube for the first time allowed engineers and scientists to
have directly applicable computer power at their desk or laboratory bench. Also at about this time,
the UNIX operating system running on a VAX minicomputer became popular, largely supplanting the
ahead-of-their-time desktop computers. The VAX, although it was a mainframe, was very cost effective
as compared to the competition, and UNIX was a much more desirable operating system for scientific
and engineering purposes than others available. As with the 4051, it allowed computer accessibility at
the point of need, through use of a terminal. Although one could compile and run SPICE on a VAX,
it would tend to radically hog the VAX’s resources, bringing the system to an annoying unresponsive
state. As a consequence, many system managers forbade the use of SPICE on their machines, thus
SPICE users were still faced with interfacing to the company CDC or IBM or Cray, and the attendant
CPU time charges and batch mode operation. This situation persisted until the advent of the UNIX
workstation in the early 1980’s.

The original workstations were able to run SPICE, however the execution speed was quite slow by
modern standards. Still, they were often faster than a heavily loaded central mainframe, and although
expensive, were cost effective over time as compared to CPU charges for a mainframe. Many more engi-
neers were able to take advantage of the convenience of running their simulations on local workstations,
but due to the expense of the early workstations, the vast majority still had to slug it out with the
mainframe.

In the early 1980’s, the IBM personal computer came on the scene, and the real computer revolution
was at hand. However, these micros had severe limitations which prevented them from even loading
a program as large as SPICE, thus they offered no solution to engineers and scientists needing major
number crunching ability. They did, however, provide the ability to run BASIC (thanks to Bill Gates),
thus the personal computer began to displace the VAX in many instances, which had in turn displaced
the earliest desktop BASIC machines. As the number of machines grew, and thanks to the ingenuity
and manufacturing skills resident in the Far East, the cost of these desktop computers dropped rapidly.
Intel, designer and purveyor of the microprocessor which was at the heart of the IBM compatible PC,
made tons of money, which it wisely reinvested in newer and more capable models. However, the original
operating system, DOS, which ran universally on PC’s, was designed for and significantly incorporated
the limitations of the earliest microprocessors used in PC’s. These limitations have echos even today in
certain Microsoft products.

Thus, it was not with a bang but with a whimper that the first inexpensive desktop computers which
were capable of running SPICE and similar applications appeared. The Intel 386 microprocessor made
this possible. Unlike its predecessors, the 386 was a true 32 bit architecture, more powerful than a room
full of VAX hardware. It could easily sit on a desk, and cost, even in the early days, less than ten
thousand dollars for a fully equipped system. Alas, however, the 386 PC was like a Ferrari which was
deliberately equipped to emulate a Volkswagen. In order for the 386 to be compatible with its relatively
brain-dead predecessors, Intel included an emulation mode in the instruction set. In this mode, called
“real mode” by Intel, the 386 would behave as a somewhat faster version of earlier microprocessors, and
thus be compatible with DOS, and all of the software written for DOS. So thorough was the emulation
that even though the 386 could access 4 gigabits of memory directly, it was prevented from doing so
under DOS, so that games and other archaic programs which could possibly make use of the memory
address wrap around at 1 megabyte would perform as on earlier chips. To this day under DOS, the 386
and its descendants operate in this emulation mode, leaving the high-power native mode unused.

1.1. HISTORY OF WRSPICE 3

Intel assumed that a software vendor, meaning Microsoft, would soon produce a successor to DOS
that would unleash the full power of its new chips. Alas, Microsoft responded by ignoring this potential
in its own products, and appeared unsupportive of the exploitation of this power by other software
vendors. The size of the DOS market evidently influenced this business decision. However, thankfully,
a few small companies saw the potential. The first was Phar Lap, which by working directly with Intel
delivered a product known as a DOS extender. Intel and Phar Lap, and others, created a specification
under which extended DOS applications could coexist with regular DOS programs to a large extent.
The DOS extender allowed programs of arbitrary size to be compiled and executed in the 32-bit native
mode, which Intel termed “protected mode”. The term derives from the memory mapping which allows
all applications to have their own address space, and not clobber one another as they can under DOS. At
last, with this product and the right compiler, it was possible to run SPICE on a desktop PC, without
worrying about the memory limitations of DOS.

Microsoft eventually began to exploit some aspects of protected mode in the Windows product,
however, Windows was completely incompatible with extended DOS software at the time. Microsoft’s
objective was to influence developers of large applications to port to Windows, for which they made
available a $500.00 software development kit. Unfortunately Windows at that time had a memory
management system which most judged inadequate for applications such as SPICE, plus the support
for earlier versions of the Intel microprocessors in Windows added rather severe performance penalties.
Thus, in spite of the lack of Windows compatibility, the DOS extender market greatly expanded, and
several large commercial applications made use of this technology. DOS extenders were eventually being
included with many advanced compilers for “free”.

The DOS extenders extended the life span of DOS, however many limitations remained. One such
limitation was the lack of multi-tasking. Although some products such as Quarterdeck’s DesqView
provided some crude multitasking, clearly the time had arrived that a completely new operating system
was in order. These new operating systems began arriving in 1992. Vendors of advanced workstations,
such as Sun and Next, released versions of their UNIX-derived operating systems for Intel machines.
IBM introduced OS2 2.0, which was a 32-bit version of the OS2 operating system. Microsoft has released
the NT operating system, the first version of Windows that “really” used protected mode.

The contender that will probably most interest engineers and scientists is UNIX. This operating sys-
tem has a multi-decade history of use and improvement, with features and performance other operating
systems are striving to emulate. Proprietary operating systems based on UNIX are available from sev-
eral vendors, unfortunately, the cost, still quite high due to the licensing fee extracted by the copyright
holder, is a deterrent. However, UNIX clones, which operate the same but use non-copyrighted software,
are now widely available. The most popular of these are Linux and FreeBSD, both of which are available
on the Internet, and on CD for a small fee. Both provide the advanced user with a state-of-the-art
operating system, capable of running the plethora of applications available on the Internet. Linux has
become quite popular with the general technically-inclined public, while FreeBSD has found a large niche
as an Internet server, due to its reliability and speed. The running of massive applications on a desktop
computer (or even a laptop) is now a reality. A properly equipped Intel-compatible computer running
FreeBSD can be considered in every respect a ‘’Unix workstation”.

The original Fortran version of SPICE became widespread in the industry, and the creators of SPICE
dispersed and went on to new projects. As SPICE became more widely used on modern hardware, its
age began to show. Thus, the Berkeley groups set about to rewrite SPICE in a modern programming
language (C), and added new features and functionality. The result was SPICE3. Unlike the previous
versions of SPICE, SPICE3 was designed for interactive use. Furthermore, there were built-in features
for plotting output on-screen, as well as enhanced control over the run in progress. SPICE3 has to date
not received the widespread acceptance of its predecessor, mainly because is lacks the long history of
use. Early releases did have bugs, and certain features were lacking. The new code, being written in a
structured form, is relatively easy to modify, thus SPICE3 should become a standard in time, however

4 CHAPTER 1. INTRODUCTION TO WRSPICE

it is also competing with commercial versions of SPICE with many of the same features. The original
SPICE is still being shipped “as is”, and although it is robust and stable, there are parts of the code
that seemingly nobody understands.

In the early 1980’s, IBM had a large project to introduce a computer based on Josephson junction
logic. IBM used internal software to model these circuits, as SPICE was not designed to support Joseph-
son junctions. To provide a generally available software simulation tool for the analysis of Josephson
circuits, the Cryoelectronics group at Berkeley modified SPICE to include Josephson junctions. This
version of SPICE, JSPICE, was distributed by the Cryoelectronics group to the handful of interested
researchers. It quickly became the dominant tool for the simulation of these circuits (outside of IBM).

However, being based in SPICE, there were many aspects of the program which could stand im-
provement. Making these improvements would entail a complete rewriting of the SPICE code, a rather
formidable task with the Fortran source. Nevertheless, this was done in large measure for internal use
at Hypres, a small company engaged in superconductive electronics. The Hyspice program contained
a numerical core written in C, which was supported by much of the original SPICE Fortran. The al-
gorithms were modified to increase execution speed, while providing full support (rather than a tacked
on appendage) for Josephson junctions. The execution speed for Josephson circuits increased by about
a factor of 3–5 over the older JSPICE. Hyspice, however, was basically a batch mode program similar
to JSPICE, although it was designed to work with a graphics post-processor, which was a separate
application.

While entering a consulting and contract design practice, the author of Hyspice required a simulation
tool in order to pursue design activities. Hyspice was proprietary to a former employer, and was obsolete
anyway. JSPICE was even more obsolete. Thus, the author decided to modify SPICE3 to incorporate
a Josephson model. Further modifications were anticipated so as to provide uncompromising capability
and flexibility in the simulation of circuits using Josephson devices (without affecting the ability to
simulate conventional circuits). The resulting program, named JSPICE3, also had to be compatible
with the author’s 386 computer, yet be portable to other computers and operating systems should the
need arise. JSPICE3 evolved for several years. Along the way, new features were added, including a
schematic capture front-end. The program, still available from Whiteley Research Inc., currently runs
on most UNIX platforms, and is still being used in several industrial and educational facilities.

The author, once again getting restless, founded Whiteley Research Inc., in Sunnyvale, CA in 1996.
The company was to develop a new successor to JSPICE3, and other tools for schematic capture and
mask layout editing. After about one solid year of development, the XicTools toolset was announced.
The electrical circuit simulator, part of the core of the XicTools and known as WRspice, is a descendent
of the JSPICE3 program, and maintains full compatibility. The new program was migrated to the C++
programming language, for improved maintainability. Compatibility with the older SPICE program was
improved, as support for certain capabilities in SPICE, such as the POLY directive, that were missing
from SPICE3 were incorporated inWRspice. WRspice is more network-aware than its predecessors, and in
fact can control the dispatching of jobs to remote machines, so that repetitive operations, such as Monte
Carlo analysis, can exploit all of the machines in the user’s workgroup in parallel. Incidently, Monte
Carlo analysis is a new feature, too. Most of WRspice can be controlled graphically using point-and-click,
yet is prompt-line compatible with its predecessors.

Probably the most popular industrial-strength SPICE simulator is HSPICEtm from Synopsys, Inc.
Although “next generation” simulators from several vendors offer greater simulation speed and support
larger circuits, the variety and completeness of HSPICE device models, algorithm flexibility, and usage
history have made HSPICE a target simulator for most if not all process design kits provided by foundry
services. WRspice has evolved to incorporate some of the features of HSPICE, such as support for
parameters and single-quoted expressions, and device model extensions, to enable compatibility with
these design kits. Further, when there is a conflict between HSPICE and Berkeley SPICE defaults, such

1.2. WRSPICE OVERVIEW 5

as in the assumed temperature, WRspice has adopted the HSPICE conventions. This is to conform to
industry standards and current user expectations. Though derived from Berkeley Spice3, WRspice seeks
to emulate HSPICE behavior as much as possible.

However, there are some rather fundamental differences, for example:

1. WRspice is designed for interactive use and contains an integrated graphical package, HSPICE is
batch-mode only and a separate plotting program is required.

2. Not being interactive, HSPICE has no notion of a shell, or shell expansion. The default treatment
of the dollar-sign character is therefor very different.

1.2 WRspice Overview

WRspice is a general-purpose circuit simulation program based on the venerable Berkeley SPICE (Sim-
ulation Program for Integrated Circuit Engineering). Although completely compatible with modern
implementations of Berkeley SPICE, and partially compatible with many commercial extensions, WR-

spice is an entirely new simulator written in the C++ programming language for ease of development
and maintenance with high performance. WRspice includes a built-in Verilog parser/simulator for mixed
analog/digital simulations. Verilog is a popular IEEE standard hardware description language used to
model digital logic circuits.

The overall structure of WRspice is shown in Figure 1.1. The core of the program is the numerical
analysis kernel, which actually solves the nonlinear circuit equations. This engine is controlled by a large
block of logic, which in turn is controlled through interaction with the keyboard and mouse, or under
control of a script file, or even under the control of another program. Repeated analyses, or analyses
dependent upon the outcome of simulating variables, can be set up through use of control language
scripts. Input can be entered as description files, or graphically from a schematic representation. Output
can be plotted on the screen, with powerful ability to manipulate and transform the data. The basic user
interface is very similar to a UNIX shell, with automatic command completion, a history mechanism,
and other features known to UNIX users.

WRspice uses the same basic algorithm to solve the nonlinear circuit equations as the original version
of SPICE. This is a modified nodal analysis, where a matrix A is determined, and a solution vector X is
obtained from an excitation vector B by inverting the expression AX = B. In WRspice, the coefficients
of X are node voltages, and branch currents of voltage sources and inductors. The coefficients of B
are independent source currents, plus terms which are added during the linearization process. The
coefficients of A are the small-signal admittance parameters of each device, plus factors which relate
branch currents to other circuit currents.

When the input description is submitted, WRspice sets the coefficients of the A matrix corresponding
to each device in the circuit. The B vector is also defined from knowledge of the source values. The
solution vector X is then obtained through an in-place LU decomposition of A. If all circuit elements
are linear, then X represents the output vector at the initial time point. However, in general, the
circuits contain nonlinear elements, and X at this point can be considered only an approximation to the
correct solution. This is because the A matrix contains only first order terms, and approximations of
the contributions of higher order terms have been added to the B vector. Initially, these “predictor”
terms represent an educated guess, however after solving for X, one can obtain more accurate estimates.
These better estimates are then incorporated into a new B vector, a new A matrix is obtained, and the
LU solution repeated. This iterative process continues until the predictor terms converge to a stable
value within an error tolerance. This process is known as Newton’s method.

6 CHAPTER 1. INTRODUCTION TO WRSPICE

Graphical User Interface

Script Interpreter

Control Logic

✛
✚

✘
✙
✛
✚

✘
✙
✛
✚

✘
✙Schematic Capture Simulator Core Graphics Processor

Figure 1.1: Block diagram of the WRspice interactive circuit simulation tool.

A transient analysis solves the equation set at increments of time over the range specified by the
user. The time increment is determined by an algorithm which predicts the maximum allowable time step
given past behavior. Clearly, to simulate as rapidly as possible, the number of time steps and iterations
should be minimized. There are a number of variables which can be set in WRspice which affect this
behavior, and it is difficult to generalize from one circuit to another which are the best conditions. For
example, one can lengthen the average time step, however this will generally require more iterations at
each time step, which may lead to slower execution time. Also, one can reduce the number of iterations
by increasing the error tolerance, however this may result in excessive errors in the output.

Figure 1.2 below shows a flow diagram of the solution algorithm for transient analysis.

Some distributions of WRspice separate the device models from the program, placing them into a
dynamically linked library, which is loaded at run-time. In some cases, the user has control of this
library and can add or delete devices at will. All device-related information in this manual pertains to
the library supplied by Whiteley Research Inc. with the WRspice product. Local system administrators
should be consulted for information on locally-added devices.

The default device library contains the devices familiar from SPICE2 and SPICE3, including resistors,
capacitors, inductors, mutual inductors, independent and dependent voltage and current sources, lossy
and lossless transmission lines, switches, and the five most common semiconductor devices: diodes, BJTs,
JFETs, MESFETs, and MOSFETs, plus Josephson junctions, similar to the RSJ model first included
in SPICE2 by Jewett[11]. The original device models from SPICE3 are provided, along with a number
of third-party models, particularly for MOS transistors.

WRspice is based on JSPICE3, which in turn was derived from SPICE3F4, which developed from
SPICE2G.6. While WRspice is being developed to include new features, it will continue to support those
capabilities and models which remain in extensive use in the SPICE community.

WRspice is part of the XicTools design system from Whiteley Research, Inc. These tools are designed
to be modular, yet interactive. In particular, WRspice will work seamlessly with the Xic graphical
front-end for schematic capture, if the Xic program is present. Otherwise WRspice can be utilized in a
stand-alone mode. From the Xic graphical editor, WRspice can be called upon to perform simulations,

1.2. WRSPICE OVERVIEW 7

Done

✟
✟

✟
✟
✟
✟

❍
❍

❍
❍
❍
❍

❍
❍

❍
❍

❍
❍

✟
✟

✟
✟

✟
✟

time = time + delta

✟
✟

✟
✟
✟
✟

❍
❍

❍
❍
❍
❍

❍
❍

❍
❍

❍
❍

✟
✟

✟
✟

✟
✟

Solve AX = B

LU dcmp A

Load A and B

Predict

Update Sources

time = 0

Read Input

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

✲

✛

time > end?

Converged?

N

N

Figure 1.2: Flow diagram of the algorithm used by WRspice.

8 CHAPTER 1. INTRODUCTION TO WRSPICE

if WRspice is present. In this case, since it is used in a background mode, the WRspice binary can exist
on a remote machine.

The XicTools package has been developed primarily under BSD-4.4 Unix (FreeBSD), which is the
reference operating system. The tools have been ported to many other UNIX-type operating systems,
including Linux, Sun Solaris and SunOS 4.1.x, HPUX, and DEC Alpha-OSF. The tools are also now
available for Microsoft Windows.

Unix/Linux releases of WRspice use the GTK toolkit running on the X window system for the
graphical user interface. If X is not available, or if the user so chooses, WRspice will run without
graphics (other than crude ASCII-mode plots).

1.3 Types of Analysis

Like its predecessors, WRspice supports various forms of nonlinear dc, nonlinear transient, and linear ac
analyses.

DC Analysis
The dc analysis portion of WRspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. A dc analysis is automatically performed prior to a transient
analysis to determine the transient initial conditions, and prior to an ac small-signal analysis to
determine the linearized, small-signal models for nonlinear devices. The dc analysis can also be
used to generate dc transfer curves: a specified independent voltage or current source is stepped
over a user-specified range and the dc output variables are stored for each sequential source value.
In WRspice, dc analysis can be combined with other analysis types to generate a family of analysis
results representing data from each point of the dc analysis. The dc analysis is not available if
Josephson junctions are present in the circuit.

AC Analysis
The ac small-signal portion ofWRspice computes the ac output variables as a function of frequency.
The program first computes the dc operating point of the circuit and determines linearized, small-
signal models for all of the nonlinear devices in the circuit. The resultant linear circuit is then
analyzed over a user-specified range of frequencies. The desired output of an ac small-signal
analysis is usually a transfer function (voltage gain, transimpedance, etc). If the circuit has only
one ac input, it is convenient to set that input to unity and zero phase, so that output variables
have the same value as the transfer function of the output variable with respect to the input.
The ac analysis can be combined with a dc sweep so that ac analysis is performed at each point
over a range of bias conditions. The ac analysis is not available on circuits containing Josephson
junctions.

Transient Analysis
The transient analysis portion of WRspice computes the transient output variables as a function
of time over a user-specified time interval. The initial conditions can be automatically determined
by a dc analysis. All sources which are not time dependent (for example, power supplies) are set
to their dc value. If Josephson junctions are present, or if the uic option is given, initial conditions
are assumed at the start of analysis rather than the result of the dc operating point analysis. With
Josephson junctions, all sources should start with zero output. Transient analysis can be combined
with a dc sweep so that the transient simulation is performed at each point over a range of bias
conditions.

Transfer Function Analysis
The transfer analysis portion of WRspice computes the dc or ac small signal transfer function,

1.3. TYPES OF ANALYSIS 9

input impedance, and output impedance of a network. For ac analysis, the dc operating point
is automatically determined through an operating point analysis. The transfer analysis can be
combined with a dc sweep so that the transfer function is computed at each point over a range of
bias conditions.

Pole-Zero Analysis
The pole-zero analysis portion of WRspice computes the poles and/or zeros in the small-signal
ac transfer function. The program first computes the dc operating point and then determines the
linearized, small-signal models for all the nonlinear devices in the circuit. This circuit is then used
to find the poles and zeros. Two types of transfer functions are allowed: one of the form

(output voltage)/(input voltage)

and the other of the form

(output voltage)/(input current).

These two types of transfer functions cover all the cases and one can find the poles/zeros of func-
tions like input/output impedance and voltage gain. The pole-zero analysis works with resistors,
capacitors, inductors, linear-controlled sources, independent sources, BJTs, MOSFETs, JFETs
and diodes. Transmission lines and Josephson junctions are not supported.

Distortion Analysis
The distortion analysis portion of WRspice computes steady-state harmonic and intermodulation
products for small input signal magnitudes. If signals of a single frequency are specified as the
input to the circuit, the complex values of the second and third harmonics are determined at every
point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds
the complex values of the circuit variables at the sum and difference of the input frequencies,
and at the difference of the smaller frequency from the second harmonic of the larger frequency.
Distortion analysis can be combined with a dc sweep so that distortion is analyzed at each point
over a range of bias conditions.

Distortion analysis is supported for the following nonlinear devices: diodes, bipolar transistors,
JFETs, MOS1-4, MESFETs. All linear devices are automatically supported by distortion analysis.
If there are switches present in the circuit, the analysis continues to be accurate provided the
switches do not change state under the small excitations used for distortion analysis.

Sensitivity Analysis
WRspice will calculate either the DC operating-point sensitivity or the AC small-signal sensitivity
of an output variable with respect to all circuit variables, including model parameters. WRspice

calculates the difference in an output variable (either a node voltage or a branch current) by
perturbing each parameter of each device independently. Since the method is a numerical approx-
imation, the results may demonstrate second-order effects in highly sensitive parameters, or may
fail to show very low but non-zero sensitivity. Further, since each variable is perturbed by a small
fraction of its value, zero-valued parameters are not analyzed (this has the benefit of reducing what
is usually a very large amount of data). Sensitivity analysis can be combined with a dc sweep so
that sensitivity can be analyzed at each point over a range of bias conditions.

Noise Analysis
The noise analysis portion of WRspice performs analysis of device-generated noise for the given
circuit. When provided with an input source and an output node, the analysis calculates the
noise contributions of each device (and each noise generator within the device) to the output node
voltage. It also calculates the level of input noise from the specified input source to generate
the equivalent output noise. This is done for every frequency point in a specified range — the
calculated value of the noise corresponds to the spectral density of the circuit variable viewed as

10 CHAPTER 1. INTRODUCTION TO WRSPICE

a stationary Gaussian stochastic process. Noise analysis can be combined with a dc sweep so that
noise can be computed at each point over a range of bias conditions.

After calculating the spectral densities, noise analysis integrates these values over the specified
frequency range to arrive at the total noise voltage/current (over this frequency range). This
calculated value corresponds to the variance of the circuit variable viewed as a stationary Gaussian
process.

Operating Range Analysis
WRspice has an integrated two-dimensional operating range analysis capability. The operating
range analysis mode is used in conjunction with the other analysis types, such as transient or ac. A
suitably configured source file and circuit description is evaluated over a one or two dimensional area
of parameter space, producing (optionally) an output file describing the results at each evaluated
point, or vectors giving the minimum and maximum values of the varying parameters for operation.
Results can be viewed graphically during or after simulation.

Monte Carlo Analysis
WRspice has a built-in facility for performing Monte Carlo analysis, where one or more circuit
variables are set according to a random distribution, and the circuit analyzed for functionality.
The file format and operation is very similar to operating range analysis.

Automated Looping
In WRspice, any analysis can be automatically repeated while stepping over a one or two dimen-
sional area of parameter space. Any circuit parameter may be varied.

Both dc and transient solutions are obtained by an iterative process which is terminated when both
of the following conditions hold:

1. The nonlinear branch currents converge to within a tolerance of 0.1 percent or 1 picoamp (1.0E-12
Amp), whichever is larger.

2. The node voltages converge to within a tolerance of 0.1 percent or 1 microvolt (1.0E-6 Volt),
whichever is larger.

Although the algorithm used in WRspice has been found to be very reliable, in some cases it will fail
to converge to a solution. When this failure occurs, the program will terminate the job.

Failure to converge in dc analysis is usually due to an error in specifying circuit connections, element
values, or model parameter values. Regenerative switching circuits or circuits with positive feedback
probably will not converge in the dc analysis unless the off option is used for some of the devices in the
feedback path, or the .nodeset card is used to force the circuit to converge to the desired state.

See the section describing operating point analysis (2.7.6) for a detailed description of the algorithms
and information on convergence issues.

WRspice runs can consume quite a bit of virtual memory, and it is possible to exceed machine limits
on many systems. The main consumer of memory is the data arrays from simulation runs. Each point is
a double precision number requiring 8 bytes. Typically, all nodes and branch currents are saved, though
this can be changed with the save command. One set of values is retained for each output increment.
For example, a circuit with 100 saved vectors running tran 1p 1n requires roughly 8 X 100 X 1000
bytes per run. This is allocated to the plot structure. By default, all plots are saved, so memory usage
increases with each run.

The maximum memory that can be used for plot data storage for a single run is set by the maxdata
variable. The Tool Control window displays memory statistics, and can be used to keep track of
memory in use.

1.4. MULTI-THREADING 11

The vectors are copied when a plot is produced (including iplots), thus this additional memory must
be available for plots to be displayed. In addition, iplots with a large number of data points (more than
about 10000) can noticeably slow the simulation run.

The free and destroy commands can be used to delete existing plots, making the memory available
for other purposes. The rusage command displays memory usage and memory limits. Note that once
WRspice obtains memory from the operating system, on many systems this memory is never returned.
Thus, the free command can make more memory available for WRspice, but not for other programs
which may also be running.

Exceeding virtual memory limits is not in general a fatal error, depending on when the error occurs.
Plots and iplots allocate all memory needed at the beginning of the operation, so an out of memory
condition will usually abort the operation and return the command prompt. It is possible, though, for
further errors to be generated by a memory failure which may cause a segmentation fault.

1.4 Multi-threading

WRspice can use multi-threading to accelerate certain types of analyses. This capability is not present in
the original Berkeley SPICE and most derivatives, and allows WRspice to take advantage of the presence
of multiple processor cores provided in modern microprocessor chips. Multi-threading allows different
cores to work on the same simulation job in parallel.

Multi-threading in WRspice is a new feature currently being incorporated. It should be considered
somewhat experimental at this point. Users are encouraged to try it and share their observations (and
report bugs!). Multi-threading does not guarantee a faster run, as it has its own overhead that must
be overcome to reduce overall run time. Experience will provide insight into which types of circuits and
analyses benefit from multi-threading and which do not, and what related threading parmeter values,
such of the number of threads to reserve, give the best results on a given machine.

All supported operating systems provide multi-threading, however parallel runs require multiple cores
or CPUs. Many Intel processors provide two instruction queues (threads) per core, so that the number
of available hardware threads is twice the number of cores.

1.4.1 Multi-Threaded Loading

Transient analysis has been cited as an algorithm not suitable for parallelization. This is due to the anal-
ysis being inherently sequential; previous results are required before a new calculation can be performed.
However, there is one point where parallelization can logically be employed; the load operation.

In dc and transient analysis, the load operation is performed before each iteration. During the load
operation, the device-specific code is run using the previous iteration results, and the circuit matrix
and right-hand side (rhs) vectors are loaded with the computed values. As the ordering of devices is
unimportant, different threads can be called upon to perform the load operation for different devices, in
parallel. The matrix and rhs loading operations are engineered to be atomic, so that different threads
do not interfere with one another while accessing these common resources.

The loading operation dominates the simulation time in many circuits, particularly when complex
device models such as BSIM are used. These circuits benefit most from multi-threaded loading.

When enabled, multi-threaded loading is used in dc analysis, including operating point analysis and
when finding the operating point ahead of ac small-signal analysis, and transient analysis. By default,
multi-threaded loading is disabled. It is enabled by setting the loadthrds variable to an integer value 1

12 CHAPTER 1. INTRODUCTION TO WRSPICE

or larger. This can be done in a .options line in the SPICE deck, or interactively from the command
line using the set command, or graphically from the General page of the Simulation Options panel
from the Tools menu.

The loadthrds variable sets the number of helper threads that will be created to assist the main thread
in evaluating device code. If 0 or not set, no helper threads are used.

Multiple threads will not necessarily make simulations run faster and in fact can have the opposite
effect. The latter is sadly true in Josephson circuits tested thus far. The problem is that multi-threading
adds a small amount of overhead, and the load function may be called hundreds of thousands of times in
these simulations. The model calculation for JJs runs very quickly, and the overhead becomes significant.
The same is true for other simple devices. Work to improve this situation is ongoing.

On the other hand, if there is a lot of computation in the device model, this will dominate the
overhead and we see shorter load times. This is true for BSIM MOS models, in circuits with more
than about 20 transistors. Such simulations can run 2–3 times faster than a single thread. One should
experiment with the value of the loadthrds variable. Most likely for best performance, the value plus the
main thread should equal the number of available hardware threads, which is usually twice the number
of available CPU cores.

1.4.2 Multi-Threaded Looping

A second potentially profitable use of multiple threads is when performing parameter sweeps, i.e. per-
forming repeated simulations of a circuit while varying one or more parameters. These simulations can
be done in any order, as long as the computed results are saved in a well-defined sequence. Thus, multiple
threads can be called upon to run the simulations concurrently.

In WRspice there are several ways to initiate this type of repeated analysis.

chained dc analysis
Most analysis specifications in WRspice can be followed by a dc sweep specification. In WRspice, a
“dc sweep” is a one or two-dimensional sweep of any ciruit paramter, which is far more powerful
than the original SPICE dc sweep which allowed only source outputs to be varied. In this “chained
dc” analysis, the basic analysis is performed at each point in parameter space of the sweep. The
result will be a family of multi-dimensional vectors, one dimension per parameter set. Multi-
threading is supported in this type of analysis.

the sweep command
The sweep command is an interactive command that automatically sets one or two shell variables
to points in a range, and initiates an arbitrary analysis at each point. At each point, a circuit
object is created from the shell-expanded SPICE input, which will reflect the state of the shell
variables. The specified analysis is then performed.

Unlike the chained dc analysis, the sweep can be run over any command, in particular a user’s
script. However, internally the command runs at the shell level and has a lot of overhead, so the
chained dc analysis would be preferable for speed when possible. At present, the sweep command
is not multi-threaded.

Monte-Carlo analysis
In Monte-Carlo analysis, repeated simulations are performed using a circuit object generated for
each trial, where parameter values have been randomly generated according to a probability dis-
tribution. The simulation run is analyzed by pass/fail logic, and only this result is typically saved.
At present, Monte Carlo analysis is not multi-threaded.

1.5. PROGRAM CONTROL 13

As mentioned, at present only the chained-dc analysis can be multi-threaded. This is accomplished
by setting the loopthrds variable to a positive integer. This can be done in a .options line in the SPICE
deck, or interactively from the command line using the set command, or graphically from the General
page of the Simulation Options panel from the Tools menu.

Multiple threads will be used automatically in a chained dc analysis if:

1. The loopthrds variable is set to an integer 1 or larger. This option variable indicates the number
of “helper” threads to use. It can be set to an integer in the range 0 through 31, with 0 being the
same as not set (single threading). The “best” value can be found experimentally, but the value
plus the main thread probably equals twice the number of available CPU cores.

2. The analysis specification supports multi-threading. Presently the following analyses can be multi-
threaded:

tran, without scrolling, segmenting, and with the nousertp mode not set.
ac
tf

Multi-threading in the sweep command and Monte Carlo analysis is not yet available, but will be
provided (it is hoped) in a future release. These analyses require a rebuild of the circuit object for each
trial, requiring that the entire input parser be thread safe. This is because shell variables are used to pass
parameters, requiring a re-parse of the circuit deck to create a modified internal circuit representation.
In chained dc analysis, the same circuit object is re-used multiple times.

The loopthrds and loadthrds can be used together. One should experiment to find the fastest settings.

1.5 Program Control

WRspice is intended for use as an interactive tool, though various batch-mode features are supported.
Circuit input is provided in the form of files which are loaded into WRspice. These files can be generated
by the user with a text editor, or be generated by a graphical editor program such as Xic. Once
loaded into WRspice, a circuit is subject to the many types of analysis and post-processing operations
available through WRspice commands. These commands can be given interactively through the text-
mode interface provided by WRspice, or in many cases through graphical operations.

The most common way directives are provided to WRspice is through the text-mode command line
interface. The command line interface behaves very much like a UNIX shell, through which commands
are entered, variables set, and output is printed. The shell provides most of the mechanisms familiar
from UNIX shells, including aliasing, history substitution, and command completion.

The command shell is normally established on the input terminal or terminal emulation window from
which WRspice was executed. WRspice takes control of this terminal, that is, all input typed will be
directed to WRspice, however the operating system job control commands can be used to place WRspice

in the background.

The WRspice shell provides a command language, which enables scripts containing commands to be
executed. Writing scripts enables automation of repetitive or complicated tasks. Control commands can
be added to circuit files, and in fact a unified input processing system handles both type of input. Input
files are loaded into WRspice with the source command. The “source” is in fact optional. If the file
name does not conflict with the name of a WRspice command, simply typing the name of the file will
perform the source operation.

14 CHAPTER 1. INTRODUCTION TO WRSPICE

When graphics is available, WRspice provides a small Tool Control window which contains menus.
The menus contain buttons which in turn bring up graphical tools which control most of WRspice. All
of the operations of these tools have analogous command line commands, though many users find the
graphical interface preferable.

WRspice contains a complete HTML-based help system, available with the help command. The
help windows provide an extensively cross-linked reference on the various commands and features. In
addition, the help windows can be used to view arbitrary HTML content on the Internet or on the user’s
local machine.

1.6 Post-Processing and Run Control

WRspice in interactive mode provides a powerful plotting capability for simulation output. Plots can be
generated on the fly while simulating, or after simulation is complete. The command language provides
interactive data manipulation and generation capability on output prior to plotting. Any number of
plots can be shown on-screen at a given time, and traces can be copied between plot windows via mouse
operations for easy comparison.

A trace command allows the value of expressions involving circuit variables to be printed as sim-
ulation progresses. Simulation can be paused by typing the interrupt character (Ctrl-C), and can be
resumed later. Simulation can also be paused after a certain number of data points, or when a logical
expression involving circuit variables becomes true.

The Verilog capability can be used to provide automata for control and monitoring of a circuit during
simulation. Verilog modules are defined within the circuit description, and are evaluated as simulation
(transient analysis only) progresses. This is clearly useful for mixed analog/digital systems, but has
additional utility for implementing event or error counters, etc., for output statistical analysis.

WRspice provides a measurement capability for providing timing or other information from a cir-
cuit simulation. Any number of measurements can be included in a circuit description. This can be
particularly useful in optimization scripts.

All of this capability is tied together in the WRspice shell, which provides command processing in
interactive mode, but also provides a scripting capability. Scripts can be written to automate complicated
analyses and data manipulation. All circuit output data, device and circuit parameters, and shell
variables and vectors are available in a rich programming environment.

1.7 Introduction to Interactive Simulation

WRspice is an interactive circuit simulation program. One can find details about preparing WRspice

input files in Chapter 2.1 — this section assumes some familiarity with this syntax, which is basically
that of SPICE2. This section is intended to be a quick introduction to the use of WRspice, and its
capabilities. The remaining chapters provide details and in-depth explanations of the various modes,
functions, and features.

If Xic is being run, circuits can be entered graphically, making the command line interface described
here somewhat unnecessary (there are users, however, who prefer the command line interface). However,
in order to use the full spectrum of capabilities, the command line interface is required.

To start WRspice, one can type

1.7. INTRODUCTION TO INTERACTIVE SIMULATION 15

wrspice input file

where input file is the name of the WRspice circuit description file to run. Alternately, one can simply
type

wrspice

in which case WRspice will start up without loading a circuit. A new circuit description file can be
loaded into WRspice by typing the command

source input file

If the name input file is different from any internal or external WRspice commands, the source command
can be eliminated, and the WRspice input file is loaded simply by typing the file name at the command
prompt. The file is parsed into an internal circuit representation, which is held in memory until explicitly
deleted. The list of circuits is shown in the panel brought up by the Circuits button in the Tools menu
of the Tool Control window. One can switch the “current circuit” with the setcirc command.

WhenWRspice starts, it normally displays a Tool Control window containing command menus. The
menu buttons bring up panels which control and display information. Most of the typed commands have
analogues within the display panels. These panels can be arranged on the screen, and the configuration
saved, so that when WRspice is started subsequently, the user’s screen arrangement will be presented.

In addition, WRspice “takes over” the text window from which it was launched. The command
interface is very much like a shell, and in fact it can be configured to run operating system commands
in a manner very similar to the C-shell.

If there are any analysis lines in the input file and the user wishes to run the analyses as given there,
one simply enters

run

WRspice will run the requested analyses and will prompt the user again when finished and the output
data are available. If the user wishes to perform an analysis that is not specified by a line in the input
file, one can type the analysis line just as it would appear in the input file, without the dot. For example,
the command

ac lin 20 0.99 1.01

will initiate an ac analysis with 20 frequency values between 0.99 and 1.01.

After the analysis is complete and the WRspice prompt is displayed, the values of the nodes are
available. Similarly, one can load the results from previous WRspice sessions using the load command.
In either case, to plot the voltage on nodes 4 and 5, for example, one could then issue the command

plot v(4) v(5).

To display a list of the circuit variables available for plotting, type display at the command prompt.
The output data items displayed are vectors, with a length generally equal to the number of analysis or
output points in the simulation.

To plot vectors with the plot package, one types

16 CHAPTER 1. INTRODUCTION TO WRSPICE

plot varlist

where varlist is a list of outputs (such as v(3)) or expressions (such as v(3)*time). WRspice will plot
a graph of the outputs on the screen. When finished plotting, WRspice will issue a prompt. Under
windowing systems such as X, the plot will be drawn in a newly created window somewhere on the
screen. This window will remain open until explicitly dismissed by the user, however the execution
returns to WRspice immediately, so that any number of plots can be on-screen simultaneously.

One can also specify combinations of outputs and functions of them, as in

plot v(1) + 2 * v(2)

or

plot log(v(1)) sin(cos(v(2))).

Notice that the vector name v(1) is not a function, but rather denotes the voltage at the node named
1. One can use most algebraic functions, including trig functions, log - (base 10), ln - (base e), and
functions such as mag, the magnitude of the complex number, phase, the phase, real, the real part,
and imag, the imaginary part. These all operate on real or complex values. A complete list of functions
and operations available can be found in 3.16. Generally, any command which expects a vector as an
argument will accept an expression.

The notation

plot something vs something else

means to plot something with something else on the X-axis.

The plot style can be modified through buttons and features found on the plot window. These and
other features can have default behavior changed through setting of shell variables. Shell variables are
set with the set command from the command line, and any alphanumeric variable can be set to a value
or a string. There are a number of such variables that are predefined to affect plotting. These can also be
altered graphically from the panel brought up by the Plot Opts button in the Tools menu. The panel
brought up by the Variables button in the Tools menu shows a listing of the shell variables currently
set.

For example, one can modify the plot command to plot a subset of the data available. The command

set ylimit = "1 2"

plot v(1) v(2)

will plot the two vectors when the values are between 1 and 2, and

set xlimit = "1 2"

plot v(1) v(2)

will plot them when the scale (time or frequency) is between 1 and 2. The variables will remain set until
they are unset, using

unset xlimit ylimit

1.7. INTRODUCTION TO INTERACTIVE SIMULATION 17

or the corresponding buttons in the Plot Options panel are made inactive.

The command

set xcompress 5

plot v(1) v(2)

plots only every fifth point, and

unset xcompress

set xindices 20 30

plot v(1) v(2)

plots the values between the 20th time point and the 30th. Any of these variables may be used together,
and they are also available in the asciiplot command (which produces an ASCII representation for use
with text-only printers).

Typing let without arguments is synonymous with the display command. The let command is
different from the set command, which sets non-vector shell variables, which may control various aspects
of WRspice operation. The let command is used to assign a new vector, for example

let aa = v(1)

will assign a new vector aa with all components equal to v(1). If no arguments are given, a listing of
output vectors from the most recent simulation is shown. This listing is also shown in the panel brought
up by the Vectors button in the Tools menu.

One can print the values of vectors with the print command:

print time

The command

print all

will print the values of all the data available. Incidentally, one can also use the keyword all with any
of the other commands that take vector names, like plot. There are also alias and history mechanisms
available (see 3.15 for details), and a shell command, which passes its arguments to the operating system
shell, or starts a subshell.

If the user wishes to save the output values in a data file known as a rawfile, one can then type

write filename v(4) v(5)

to put the values of v(4), and v(5) into filename. If the user wishes to save everything, one can type

write filename.

There are also many commands for tracing the analysis — one can print the values at a node for
each time point or cause WRspice to stop whenever a value gets to a certain point. Descriptions of the

18 CHAPTER 1. INTRODUCTION TO WRSPICE

commands stop, trace, and step can be found in 4.6. A listing of these commands that are currently
in force is available in the panel brought up with the Trace button in the Tools menu.

After the user is done with the values obtained from the simulation run, one can change the circuit
and re-run the analysis. If it is desired to edit the circuit itself, one can use the command edit — it
will bring up an internal text editor (or a favorite external editor) and allow changes to the circuit in
whatever way is necessary, and then when the editor is exited, WRspice can re-load the circuit and be
ready to run it again. Under UNIX with X windows, a default internal editor is provided. This editor
is also available as the “xeditor” command from the UNIX shell. Also, one can give another analysis
(ac, dc, tran, ...) command after the first one completes. If the analysis is not finished, i.e. the user
typed an interrupt (Ctrl-C), or the run stopped under the stop command, then one must type reset in
order to re-run an analysis from the beginning.

Each separate analysis that is performed will create one or more sets of values. Such a set of values
is called a plot — if several analyses have been performed, and the user wishes to switch from the results
of one to the results of another, the setplot command will inform the user as to which analysis results
are available and let the user choose one. The plots are displayed in the panel brought up by the Plots
button in the Tools menu.

To see what other commands are available, skip to Chapter 4, or type Ctrl-D in WRspice. For
information about a particular command, type help command , where command is one of those listed
by Ctrl-D. This introduction should be enough to get started.

Here is a sample WRspice run:

csh% wrspice

wrspice 10 -> source xtal.in

Circuit: crystal filter

wrspice 11 -> listing

(listing of the circuit is printed)

wrspice 12 -> run

wrspice 15 -> display

Here are the vectors currently active:

Title: crystal filter

Plotname: AC analysis curves.

Date: Thu Sep 26 12:16:34 PDT 1985

FREQ : frequency (complex, 20 long) [scale]

V(4) : voltage (complex, 20 long)

V(6) : voltage (complex, 20 long)

V(5) : voltage (complex, 20 long)

(and so on...)

wrspice 16 -> plot v(4)

(plot takes place)

wrspice 17 -> write outfile freq v(4)

wrspice 18 -> ac lin 30 1 2

wrspice 19 -> display

1.7. INTRODUCTION TO INTERACTIVE SIMULATION 19

Here are the vectors currently active:

Title: crystal filter

Plotname: AC analysis curves.

Date: Thu Sep 26 12:16:34 PDT 1985

FREQ : frequency (complex, 30 long) [scale]

V(4) : voltage (complex, 30 long)

V(6) : voltage (complex, 30 long)

V(5) : voltage (complex, 30 long)

(and so on...)

wrspice 20 -> print v(4) > tempfile

(print to tempfile takes place)

wrspice 21 -> shell lpr tempfile

(a printout is made of the results)

wrspice 22 -> load testh

Title: SPICE 3-C raw output test heading

Name: Transient analysis.

Date: 08/19/84 03:17:11

wrspice 23 -> display

Here are the variables currently active:

Title: SPICE 3-C raw output test heading

Plotname: Transient analysis.

Date: Sun Dec 1 11:18:25 PST 1985

TIME : time (real, 152 long) [scale]

v(1) : voltage (real, 152 long)

v(2) : voltage (real, 152 long)

v(3) : voltage (real, 152 long)

v(4) : voltage (real, 152 long)

v(5) : voltage (real, 152 long)

wrspice 24 -> print v(1)

(prints v(1) values)

wrspice 25 -> plot v(1)

(plot takes place)

wrspice 26 -> let xxx = log(v(1))

wrspice 27 -> plot xxx

(plot takes place)

wrspice 28 -> plot v(1) v(2) v(3) + 1 vs TIME * 2

20 CHAPTER 1. INTRODUCTION TO WRSPICE

(plot takes place)

wrspice 30 -> asciiplot v(1) v(2) TIME + 2 > File

wrspice 31 -> shell lpr File

(Pick up ASCII plot ...)

wrspice 33 -> quit

Warning: the following plot hasn’t been saved:

crystal filter, AC analysis curves.

Are you sure you want to quit? y

csh%

Note that WRspice will issue a warning if there is work in progress that has not been saved.

Chapter 2

WRspice Input Format

2.1 Input Format

In this document, text which is provided in typewriter font represents verbatim input to or output from
the program. Text enclosed in square brackets ([text]) is optional in the given example, as in optional
command arguments, whereas other text should be provided as indicated. Text which is italicized should
be replaced with the necessary input, as described in the accompanying text.

Input to WRspice consists of ASCII text, using either Unix or Microsoft Windows line termination
methods. Input is contained in one or more files. If more than one file name is provided to the source
command, the file contents will be concatenated in the order given, and/or split into multiple circuits if
.newjob lines are found.

There is provision in the syntax for file inclusions (referencing the content of another file) to arbitrary
depth. Once the input files are read, the lines are logically assembled into a “deck” for each circuit, and
each line is sometimes referred to as a “card”, teminology reflecting the punched-card heritage of the
program.

The first line of a deck is taken as a title line for any circuit described in the deck. If the deck
does not define a circuit (it may consist of commands text only), the title line is not used, but with a
few exceptions must be present in input. The title line can contain 7-bit ASCII characters only. If a
character is found in the title line with the most-significant bit set, the read is aborted, as this is taken
as binary input, and attempting to read a binary file would generate a cascade or errors or crash the
program. Binary characters can exist elsewhere in the file, if necessary for whatever reason.

One exception to the rule that the first line be a title line is if the first line of text in a file starts
with the characters “#!”, that line will be discarded when the file is read. This enables WRspice input
files to be self-executing using the mechanisms of the UNIX shell. For example, if the following line is
prepended to an input file

#! wrspice

and the file is made executable, then typing the name of the file will initiate WRspice on the circuit
contained in the file.

The remaining lines are either circuit element descriptions, or “dotcards”, or blocks of text surrounded
by dotcards. The circuit element lines define the devices found in the circuit, providing connection points

21

22 CHAPTER 2. WRSPICE INPUT FORMAT

which define the circuit topology, and device parameter values. The dotcards are lines whose initial token
is a keyword starting with ‘.’. These provide various control directives and data for use in simulating
the circuit, including device models. Some dotcards, such as .verilog and .control provide blocks of
lines in some other format, which is different form the SPICE format and is described separately.

The order of the circuit definition and control lines is arbitrary, except that continuation lines must
immediately follow the line being continued, and certain constructs contain blocks of lines, which may
be command scripts which must be ordered.

Certain special input file formats are recognized, such as operating range analysis control files, and
files generated by the Xic schematic capture front end. Exceptions to the rule of arbitrary line placement
will be described in the sections describing these files.

Fields on an element line and most dotcards are delimited by white space, a comma, an equal sign
(‘=’), or left or right parentheses; extra white space is ignored.

A line may be continued to the following line(s) in two ways. If the last character on a line is a
backslash character (\), the “newline” is effectively hidden, and the text on the following line will be
appended to the current line, however leading white space is stripped from the continuing line. If there
is more than one backslash at the end of the line, all will be stripped before the line is joined to the
following line. The traditional SPICE line continuation is also available, whereby a line may be continued
by entering a + (plus) as the first non-white space character of the following line, WRspice will continue
reading beginning with the character that follows.

Devices and device models are given names in input for reference. These name fields must begin with
a letter and cannot contain any delimiters. Circuit connection points (“nodes’) are also given arbitrary
names, however these may start with or just be an integer. The ground node must be named “0” (zero),
however. Note that “00” (for example) and ”0” are distinct in WRspice, but not in SPICE2. Non-ground
node names may have trailing or embedded punctuation (but this is generally not recommended).

2.1.1 Case Sensitivity

In WRspice, case sensitivity of various object names and strings is under program control. Historically
the following have all been case sensitive in WRspice:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

By default, starting in release 3.2.4, function names and user-defined function names were made
case-insensitive. Starting in release 3.2.15, parameter names were made case-insensitive. Finally, in
3.2.16, the remaining categories were made case-insensitive. Thus, in present releases, all identifiers are
case-insensitive. This seems to be the common practise in commercial simulators.

Case sensitivity must be established at program startup and can not be changed during operation.
There are two ways to accomplish this:

1. The “-c” command line option.

2.1. INPUT FORMAT 23

2. The setcase command called in a startup file.

2.1.2 Numeric Values

A number field may be an integer field (12, -44), a floating point field (3.14159), either an integer or
floating point number followed by an integer exponent (1E-14, 2.65e3), or either an integer or a floating
point number followed by one of the following scale factors. All of this is case-insensitive.

t 1e12
g 1e9
meg 1e6
k 1e3
mil 25.4e-6
m 1e-3
u 1e-6
n 1e-9
p 1e-12
f 1e-15
a 1e-18

2.1.3 Units

Immediately following the number and multiplier is an optional units string. The units string is composed
of the concatenation character ‘#’, unit specification abbreviations as listed with the settype command
(see 4.7.15), digit exponents, and possibly a separation character ‘ ’ (underscore). Giving the settype
command without arguments will list the unit abbreviations known to WRspice.

The units string must start with a letter, or the concatenation or separation character followed by
a letter, or two concatenation characters followed by a letter. The string consists of a sequence of
abbreviations, each optionally followed by a digit exponent. If the concatenation character appears
within the string, the abbreviations that follow provide denominator units. The same applies for the
separation character, only denominator units follow. The concatenation or separation character in this
context is logically equivalent to ‘/’.

The initial concatenation character is almost always optional. It is needed when there would be
possible misinterpretation, for example 1.0F is dimensionless 1e-15, whereas 1.0#F is 1.0 farads. If the
initial concatenation character is immedaiately followed by another concatenation character, then all
dimensions that follow are denominator units.

Some Examples:

24 CHAPTER 2. WRSPICE INPUT FORMAT

1.0#F#M2 1 farad per square meter
1.0#F M2 1 farad per square meter
1.0F M2 1e-15 per square meter
1.0##S 1 Hz
1.0 S 1 Hz
1.2#uA#S 1.2 microamps per second
1.2#uA S 1.2 microamps per second
1.2uA S 1.2 microamps per second
1.2#A S 1.2 amps per second
1.2A S 1.2 aHz (attohertz)
1.2uVS 1.2 microvolt-seconds

All multipliers and unit abbreviations are case-insensitive, but by convention we use lower case for
the multiplier and upper case for the first letter of the unit abbreviation.

If the unit specifier contains an unrecognized character or abbreviation, it is ignored, and the number
is dimensionless.

Internal representations of numbers carry along the unit specifier, which will appear in output, and
will propagate through calculations. Thus, for example, a number specified in volts, divided by a number
specified in ohms, would yield a number whose specification is amps.

It is possible to use a different concatenation character. If the variable units catchar is set to a string
consisting of a single punctuation character, then this character becomes the xoncatenation character.
Similarly, if the variable units sepchar is set to a string consisting of a single punctuation character, then
this character becomes the separation character.

2.2 Variable Expansion in Input

WRspice provides a unique and very useful feature: as the circuit description is being read, any shell
variable references found in the element lines or most dotcards are expanded. The reader should be aware
that just about any text within the circuit description can be specified through the shell substitution
mechanism.

Shell variables are tokens which begin with “$”, that have been previously defined within WRspice.
They most often appear for numeric values in the deck, and the actual value replaces the “$” token.
These variables are evaluated as the circuit is read in, or with the reset command once the circuit is
loaded. The variables must be known to the shell before the circuit is parsed, so if they are defined in the
input file, the definition must occur in .exec blocks or .options lines, which are evaluated before the
circuit is parsed, and not .control blocks, which are evaluated after the circuit is parsed. If the ‘$’ is
preceded with a backslash (‘\’), the shell substitution is suppressed, but the construct forms a comment
delimiter so that the remainder of the line is ignored.

Another type of expansion, single-quote expansion, is also performed as input is read. This is
most often used in .param lines, and is another means by which the circuit can be configured before
simulating through prior WRspice operations. Any text enclosed in single quotes (’) will be evaluated as
an expression as the file is read (before shell substitution) and the string will be replaced by the result.
Since evaluation is performed before shell substitution, the expression can not contain shell variables or
other ‘$’ references, but it can contain vectors (which must be defined before the circuit is read).

2.3. TITLE, COMMENTS, JOB SEPARATION, AND INCLUSIONS 25

2.3 Title, Comments, Job Separation, and Inclusions

2.3.1 Title Line

The first line of the circuit description is a title line. Any text (including a blank line) can appear in the
title line. The line is printed as part of generated output, but is otherwise unused by WRspice.

In the title line, the character sequences “\n” and “\t” are replaced with newline and tab characters,
respectively. Thus, it is possible to have a title string that prints multiple lines. The title line always
counts as a single line for internal line numbering, however.

2.3.2 Comments

General Form:
*any comment
any spice text \$ this text is ignored

Examples:
* rf=1k gain should be 100

*beginning of amplifier description

r1 1 0 100 \$ this is a comment

In the circuit description, an asterisk (‘*’) as the first non-white space character indicates that this
line is a comment line. Comments may be placed anywhere in the circuit description. Also, there is
provision for adding comments to the end of a line.

Comment lines which begin with ‘*@’ and ‘*#’ in the circuit description are special: they are taken
as executable statements as if included in .exec or .control blocks, respectively (see 2.10.1).

Comments at the end of a line may be added as follows:

• If the sequence “\$” appears in a line of SPICE input and is preceded by white space or is at the
beginning of the line, these and the characters that follow on the line are taken as a comment.

• If an isolated ‘$’ character is found, i.e., with white space or start of line preceding and white space
following, The ‘$’ and text that follows on the line will be taken as a comment.

• If an isolated ‘;’ character is found, i.e., with white space or start of line preceding and white space
following, The ‘;’ and text that follows on the line will be taken as a comment.

In addition, for compatibility with other simulators, the dollarcmt variable can be set. When set, any
‘$’ or ‘;’ character preceded by start of line, white space, or a comma, will be taken as the start of a
comment.

In .exec and .control blocks, comments are indicated for lines with the first non-whitespace char-
acter being ‘#’, for compatibility with the shell. In Verilog blocks, The C++ commenting style (“//”
for single line comments and “/* ... */” for multi-line comments) is recognized.

2.3.3 .title Line

General Form:
.title any text

26 CHAPTER 2. WRSPICE INPUT FORMAT

Example:
.title This is an alternate title

This simply replaces the title line text in output.

2.3.4 .end Line

General Form:
.end

This line is optional, but if it appears it should be the last line in the circuit description part of the
input file. The .end line is ignored in WRspice.

2.3.5 .newjob Line

General Form:
.newjob

The .newjob line is recognized in files directly read by WRspice, and not in files read through
.include/.lib directives (see below). When encountered during a source command, file parsing for
the present circuit terminates, and lines that follow are taken as belonging to a new circuit deck. The
script execution and other operations that usually occur at the end of a source operation are done
before parsing (for a new circuit) resumes.

Thus, one can place multiple circuit descriptions in a single file, separated by .newjob lines. Sourcing
the file is equivalent to sourcing each circuit independently and sequentially.

With no .newjob lines, when multiple files are listed on the command line in batch mode, or given to
the source command, they are simply concatenated. With .newjob lines, it is possible to give multiple
circuits within a single or several files. WRspice will source the circuits as if they were given individually,
in sequence. The circuits may or may not coincide with the physical files – lines in the files between
.newjob lines are concatenated. After a source of multiple circuits, the current circuit will be the last
circuit read.

Batch mode is similar. A single batch job can run multiple circuits. Logical circuts are read, run,
and output generated, in sequence. The individual circuits can be concatenetated into a single file,
separated with .newjob lines, or a .newjob line can be added to the top of the individual circuit files.
In the later case, “wrspice -b file1 file2 ...” would run each circuit in sequence. If the .newjob lines
weren’t present, WRspice would attempt to run a concatenation of the files. In batch mode, since it
is possible to run multiple circuits, the .cache/.endcache feature can be used to advantage, without
using a command script.

The line that follows a .newjob line is interpreted in exactly the same way as the first line of an
input file, i.e., it is interpreted as a circuit title line except in a few cases. If the first line of an input
file is a .newjob line, it will be ignored, except that when reading multiple files, it indicates that a new
circuit should start, rather than concatenation of the file to previous input.

Although circuits run in this manner are independent, note that variables set by scripts associated
with a circuit, for example, would remain set for the later circuits. Thus, there are potential side effects
which must be considered.

2.3. TITLE, COMMENTS, JOB SEPARATION, AND INCLUSIONS 27

The .cache/.endcache blocks work as they would in separate files. Only one cache block can appear
in a circuit, but of course a file containing multiple circuits can contain multiple cache blocks.

The .newjob lines separate the input into separate groups of lines, so one must take care to ensure
that all related .control, .verilog, etc., blocks and lines will appear in the correct group. There are
no “common” lines.

2.3.6 .include or .inc Line

General Form:
.include [h] filename
.inc [h] filename

Example:
.include models.def

.inc /projects/data.inc

.inc h /models/hspice models.inc

The keywords “.include” and “.inc” are equivalent. The .include line specifies that the named
file is to be read and added to the input at the location of the .include line. Included files may be
nested arbitrarily.

If the h option (case insensitive) is given, the dollarcmt variable is effectively set while the file, and
any recursive sub-files, are being read. Thus, the HSPICE ‘$’ comment syntax will be recognized in the
included files. The dollarcmt variable is reset to its prior value after the read.

This avoids having to explicitly set the dollarcmt variable when reading files intended for HSPICE.
It allows the normal WRspice shell substitution to work with the file containing the include line, which
would not be the case if the dollarcmt variable was set explicitly.

While the included file is being read, the current directory is pushed to the directory containing the
file. Thus, .include (and .lib) lines in the file will have paths resolveed relative to that directory, and
not the original current directory.

InWRspice, the keyword .spinclude is accepted as a synonym for .include. This is for compatibility
with Xic, which will replace .include lines with the file contents, but will pass .spinclude lines to
SPICE, after converting “.spinclude” to “.include”.

These lines are shell expanded when encountered, before the indicated file is accessed. This allows
the paths to include shell variables, which can be set interactively. Normal shell expansion, which applies
to all other lines, occurs after all includes are read, parameter expansion, etc., much later in the sourcing
process. Note that shell variables can’t be used in files included with the ‘h’ option, or when the dollarcmt
variable is set, as the ‘$’ will be taken as the start of a comment.

2.3.7 .lib Line

General Form:
.lib [h] path to file name

Example:
.lib /usr/local/parts/mylib mos25

.lib h /usr/cad/hspice models mymod

28 CHAPTER 2. WRSPICE INPUT FORMAT

This will look in path to file for lines enclosed as follows.

.lib name

... lines of SPICE text

.endl

The lines inside the block will be read into the input deck being parsed, similar to the .include line.

If the h option (case insensitive) is given, the dollarcmt variable is effectively set while the file, and
any recursive sub-files, are being read. Thus, the HSPICE ‘$’ comment syntax will be recognized in the
text. The dollarcmt variable is reset to its prior value after the read.

This avoids having to explicitly set the dollarcmt variable when reading files intended for HSPICE. It
allows the normal WRspice shell substitution to work with the file containing the .lib line, which would
not be the case if the dollarcmt variable was set explicitly.

While the file is being read, the current directory is pushed to the directory containing the file.
Thus, .include and .lib lines in the file will have paths resolveed relative to that directory, and not
the original current directory.

These lines are shell expanded when encountered, before the indicated file is accessed. This allows the
paths or block names to include shell variables, which can be set interactively. Normal shell expansion,
which applies to all other lines, occurs after all includes are read, parameter expansion, etc., much later
in the sourcing process. Note that shell variables can’t be used in files included with the ‘h’ option, or
when the dollarcmt variable is set, as the ‘$’ will be taken as the start of a comment.

The library file can contain any number of .lib blocks. The .lib block can itself contain .lib

references. The text can be any valid WRspice input. The name is an arbitrary text token, which should
be unique among the .lib blocks in a library file.

Example:
title line

.lib /usr/stevew/spice/stuff/mylibrary mosblock

... more lines

In /usr/stevew/spice/stuff/mylibrary:

.lib mosblock

m0 4 9 12 PSUB p1pvt l=0.25u w=2.4u

.endl

is equivalent to:

title line

m0 4 9 12 PSUB p1pvt l=0.25u w=2.4u

... more lines

In WRspice, the keyword .splib is accepted as a synonym for .lib. This is for compatibility with
Xic, which will replace .lib lines with the block of text from the library, but will pass .splib lines to
SPICE, after converting “.splib” to “.lib”.

2.4. INITIALIZATION 29

2.3.8 .mosmap Line

General Form:
.mosmap [ext level] [wrspice level]

Example:
.mosmap 127 14

.mosmap

This construct maps the level number found in MOS .model lines to another number in WRspice.
Different SPICE simulators may provide similar internal MOS model support, although with different
level numbers. Although an attempt has been made in WRspice to be compatible with HSPICE level
numbers, there may be differences, and there is less commonality with other SPICE programs. One can
in principle simply copy the model files and edit the level numbers to those expected in WRspice, but
this may be inconvenient.

Suppose that you have a set of model files provided by a foundry service, designed for another
simulator. These files provide parameters for the Berkeley BSIM-4.4 model, with level 99 (as an example).
In WRspice, the BSIM-4.4 model is assigned to level 14. Rather than copying and editing the files, one
can use to following construct in the WRspice input:

.mosmap 99 14

.include path to model file

The level 99 as found in the model file will be interpreted as level 14 in WRspice.

This line must appear logically ahead of, i.e., read before, the corresponding .model lines. Any
number of .mosmap lines can be used in the input. The mapping applies while the file is being read and
is not persistent.

In the most common usage, .mosmap is followed by two integers, the first being the model level
to map, and the second being a valid MOS level number in WRspice. If only one number appears,
any mapping associated with that number is removed for the remainder of the file read. If no number
appears, then all mappings are removed for the remainder of the read. These latter cases are probably
infrequently needed.

Note that the devmod command in WRspice can be used to change device model levels, which may
be more convenient than using .mosmap, and applies to all device types.

2.4 Initialization

2.4.1 .global Line

General Form:
.global node1 node2 ...

The arguments are node names. These declared node names remain unaltered when subcircuits are
expanded, thus the indicated nodes become accessible throughout the circuit.

30 CHAPTER 2. WRSPICE INPUT FORMAT

For example, the substrate node of all n-channel MOSFETS in the main circuit and subcircuits can
be tied to a node listed in the .global line. Then, substrate bias can be applied to all substrate nodes
with a single source, conveniently located in the main circuit.

2.4.2 .ic Line

General Form:
.ic v(nodname)=val | nodename=val ...

Example:
.ic v(11)=5 4=-5 v(2)=2.2

This line is for setting transient initial conditions. Note that the “v()” around the node name is
optional. It has two different interpretations, depending on whether the uic parameter is specified on
the .tran line. Also, one should not confuse this line with the .nodeset line. The .nodeset line is only
to help dc convergence, and does not affect final bias solution (except for multi-stable circuits). The two
interpretations of this line are as follows:

1. When the uic parameter is specified on the .tran line, then the node voltages specified on the .ic
line are used to compute the capacitor, diode, BJT, JFET, and MOSFET initial conditions. This
is equivalent to specifying the ic=... parameter on each device line, but is much more convenient.
The ic=... parameter can still be specified and will take precedence over the .ic values. Since no
dc bias (initial transient) solution is computed before the transient analysis, one should take care
to specify all dc source voltages on the .ic line if they are to be used to compute device initial
conditions.

2. When the uic parameter is not specified on the .tran line, the dc bias (initial transient) solution
will be computed before the transient analysis. In this case, the node voltages specified on the .ic
line will be forced to the desired initial values during the bias solution. During transient analysis,
the constraint on these node voltages is removed.

2.4.3 .nodeset Line

General Form:
.nodeset v(nodname)=val | nodename=val ...

Example:
.nodeset v(12)=4.5 v(4)=2.23

This line helps the program find the dc or initial transient solution by making a preliminary pass
with the specified nodes held to the given voltages. The restriction is then released and the iteration
continues to the true solution. The .nodeset line may be necessary for convergence of bistable or astable
circuits. In general, this line should not be necessary. Note that the “v()” around the node name is
optional.

2.4.4 .options Line

General Form:
.options opt1 opt2 ... (or opt=optval ...)

2.4. INITIALIZATION 31

Example:
.options reltol=.005 trtol=8

Options which control the operation of the simulator can be entered in theWRspice input file following
the .options keyword. In WRspice there are a number of variables which control simulation, many
familiar from traditional Berkeley SPICE. Any variable can be set on the .options line, and this is
similar to setting the variable from the shell with the set command, however the variables set from the
.options line are active only when the circuit is the current circuit, and they can not be unset with the
unset command.

Multiple .options lines can appear in input. The lines are shell-expanded and evaluated in top-
to-bottom order, and left-to-right for each line. The .options lines are expanded and evaluated after
execution of the .exec lines. The result of processing each option is immediately available, so that lines
like

.options aaa=1 bbb=$aaa

.options random tmpval = $&(gauss(.2,1))

will work. In the second line, the variable random will be set when the gauss function is evaluated, so
that it will return a random value, and not just the mean.

The variables set in the .options lines are set before variable expansion is performed on the rest of
the circuit text, so that global shell variables may be set in the .options lines.

The options which control simulation can also be entered from the keyboard by using the WRspice set
command, or equivalently from the graphical tools available from the Tools menu of the Tool Control
window (described in 3.5), in particular the Simulation Options tool.

Before a simulation starts, variables set in the shell and variables set in .options lines are merged
according to a rule as to how to resolve inconsistencies. The details of the merging process are described
in the next section, which lists the recognized circuit options. This section provides further information
on the use of option variables in WRspice.

2.4.4.1 Simulation Options

In any SPICE-like program, the .options line in input allows setting of variables and flags that control
aspects of the simulation run. WRspice provides this support as well, however in a more general context
as there is little difference between “options” and “variables”, as set with the set command. In WRspice,
an “option” is simply a variable set in the .options line of an input file that has been sourced.

The options are stored in a table within the circuit structure, and are in force when the circuit is the
current circuit. In the listing or variables provided from the set command given with no arguments, or
in the Variables tool from the Tools menu in the Tool Control window, the option variables that are
in force are indicated with a ‘+’ in the first column.

The variables set in the .options line may be available for substitution (into $variable references)
when the circuit is the current circuit, but otherwise do not affect the shell. For example, setting the
variable noglob from a .options line will not affect the global expansion of the shell, but references to
$noglob would behave as if the boolean noglob was set, while the circuit is the current circuit.

Shell variables set in the .options line are set before the rest of the SPICE text is expanded, so that
shell variable references in the text can be defined from the .options line, as in the .exec block. The
.exec lines are executed before the .options lines are expanded.

32 CHAPTER 2. WRSPICE INPUT FORMAT

Since options can be set in the shell, as well as from the circuit, WRspice must merge the two sets of
variables according to some rule. The rule allows three variations:

1. global mode (the default)
In global options merging, if a boolean variable is set in either the circuit or the shell, it is taken
as set. If a non-boolean variable is set in only one of the circuit or the shell, the variable is taken
as set using the given value. If a non-boolean variable is set in both the circuit and the shell, the
shell value will be used.

This is the default mode, and the only mode available in Berkeley SPICE3. This allows the
interactive user to use the set command to override options set in the circuit file. This may also
be somewhat dangerous, as the shell override may occur for a forgotten variable, causing the user
to wonder about strange results.

2. local mode
This is similar to global mode, except that in the case of a non-boolean variable being defined in
both the circuit and the shell, the circuit definition will apply.

In this mode, the set command can be used to set circuit variables that were not defined on
.options lines in the circuit file. The set command will have no effect on variables that were
defined in this way.

3. noshell mode
In this mode, the circuit will ignore variables set in the shell, and apply only variables set in
.options lines. This applies, however, only to the set of variables that affect circuit setup or
simulation, as listed in the table below. It also only applies during the actual circuit setup and
simulation runs. It does not apply when the shell is running commands, such as from .control

and .exec lines, or other scripts. The mode is taken as local in these cases.

There are two variables which control the option merging mode. Both, like any variables, can be set
from the shell or from the circuit via .options lines.

optmerge

This variable can be set to one of three string constants: “global”, “local”, or “noshell”.

noshellopts

This boolean variable is deprecated. When set, it will override optmerge if also given, and force
the “noshell” mode.

.

If set in both the shell and the circuit, resolution is according to these rules.

• If noshellopts is set in the circuit or from the shell, it will be in effect, setting noshell mode.

• Otherwise, if optmerge is set to “noshell” in either the circuit or the shell, noshell mode will be
in effect.

• Otherwise, if optmerge is set to “local” in either the circuit or the shell, local mode will be in
effect.

• Otherwise, the global mode is in effect.

2.4. INITIALIZATION 33

The table below is a listing of the “official” options. What makes these variables official options is
that most of these set a flag or value in the circuit data structure, which is used when simulations are
run. This is in addition to the setting of the variable in the normal database for variables, which is
used for shell variable substitution, etc. From the user’s perspective, there is no real distinction between
“options” and “variables”. A complete description of each of these variables is provided in 4.10.4.

Parameter
Name

Description

Real-Valued Parameters
abstol The absolute current error tolerance of the program.
chgtol The minimum charge used when computing the time step in transient analysis.
dcmu Mixing parameter to help dc convergence.
defad The default value for MOS drain diffusion area.
defas The default value for MOS source diffusion area.
defl The value for MOS channel length.
defw The value for MOS channel width.
delmin The minimum time step allowed.
dphimax The maximum allowed phase change per time step.
jjdphimax An alias for dphimax.
gmax The maximum conductance allowed in circuit equations.
gmin The minimum conductance allowed in circuit equations.
maxdata Maximum output data size in kilobytes.
minbreak The minimum time, in seconds, between breakpoints.
pivrel The relative ratio between the largest column entry and an acceptable pivot

value.
pivtol The absolute minimum value for a matrix entry to be accepted as a pivot.
rampup Time to ramp up sources in transient analysis.
reltol The relative error tolerance of the program.
temp The assumed circuit operating temperature.
tnom The nominal temperature for device model parameters.
trapratio The threshold for trapezoidal integration convergence failure detection.
trtol The transient time step prediction factor, the approximate overestimation of

the actual truncation error.
vntol The absolute voltage error tolerance of the program.
xmu The SPICE2 trapezoidal/Euler mixing parameter.

Read-Only Real-Valued Parameters
delta Transient analysis internal time step.
fstart AC analysis start frequency.
fstop AC analysis end frequency.
maxdelta Transient analysis maximum internal time step.
tstart Transient analysis start output time.
tstep Transient analysis print increment.
tstop Transient analysis final time.

Integer-Valued Parameters
bypass Set to 0 to disable element computation bypassing.
fpemode Set floating point error handling method (0–3).
gminsteps The number of increments to use for non-dynamic gmin stepping.

34 CHAPTER 2. WRSPICE INPUT FORMAT

interplev The interpolation level used for scale data.
itl1 The dc operating pointiteration limit.
itl2 The dc transfer curve iteration limit.
itl2gmin The iteration limit that applies during gmin stepping.
itl2src The iteration limit that applies during source stepping.
itl4 The transient timepoint iteration limit.
loadthrds The number of helper threads used for device evaluation and matrix loading.
loopthrds The number of helper threads used when performing repeated analysis.
maxord The maximum integration order.
srcsteps The number of increments to use for non-dynamic source stepping.
itl6 An alias for srcsteps.
vastep Verilog time step mapping.

Boolean Parameters
dcoddstep Always include range end point in dc sweep.
extprec Use extended precision when solving circuit equations.
forcegmin Enforce all nodes mave at least gmin conductivity to ground.
gminfirst Attempt gmin stepping before source stepping.
hspice Suppress warnings from unsupported HSPICE input.
jaccel Attempt to speed up Josephson junction transient analysis.
noiter Don’t Newton iterate.
nojjtp ¿Don’t use Josephson junction time step limiting.
noklu Don’t use KLU sparse matrix solver, use SPICE3 Sparse.
nomatsort With Sparse solver, don’t sort elements for cache locality.
noopiter Skip initial dc convergence attempt.
nopmdc Do not allow phase-mode DC analysis.
noshellopts Ignore circuit variables not set in .options line.
oldlimit Use SPICE2 voltage limiting.
oldsteplim Use SPICE3/WRspice-3 timestep limiting.
renumber Renumber lines after subcircuit expansion.
savecurrent Save device current special vectors.
spice3 Use the SPICE3 integration level control logic in transient analysis.
translate Map node numbers into matrix assuming nodes are not compact.
trapcheck Perform trapezoidal integration convergence testing in transient analysis.
trytocompact Enable compaction in LTRA (lossy transmission line) model.
useadjoint Create an adjoint matrix for BSIM device current monitoring.
vasilent Suppress run time text output from Verilog-A device models.

String Parameters
method Integration method: “trap” (default) or “gear”.
optmerge Options merging method: “global” (default) or “local” or “noshell”.
parhier Parameter substitution precedence: “global” (default) or “local”.
steptype Time advancement method: “interpolate” (default) or “hitusertp”,

“nousertp”, “fixedstep”.
tjm path Amplitude table file search path for Josephson junction model.

Batch and Output Parameters
acct Print accounting information in batch output.

2.4. INITIALIZATION 35

dev Print device list in batch output.
list Print a listing of the input file in batch output.
mod Print device model list in batch output.
node Print a tabulation of the operating point node voltages in batch output.
nopage Suppress page breaks in batch output.
numdgt Number of significant digets printed in output.
opts Print a summary of the specified options in batch output.
post Give post-simulation option.

Obsolete/Unsupported Parameters
cptime Obsolete SPICE2 parameter.
itl3 Obsolete SPICE2 parameter.
itl5 Obsolete SPICE2 parameter.
limpts Obsolete SPICE2 parameter.
limtim Obsolete SPICE2 parameter.
lvlcod Obsolete SPICE2 parameter.
lvltim Obsolete SPICE2 parameter.
nomod Obsolete SPICE2 parameter.

2.4.5 .table Line

General Form:
.table name [ac] x0 v0 x1 v1 ... xN vN

Examples:
.table tab1 0 .1 1n .2 2n .4 3n .2 4n .1 5n 0

.table xgain 0 0 1 1 1 1.5 4 2

.table acvals ac 0 1.0 0, 1e3 .98 .03, ...

.table zz (0 table xgain 4 2)

.table tab1 0 1 .2 .5 .4 table txx .8 .5e-2

The .table line defines a tabulation of data points which can be referenced from other lines in the
SPICE file. The data are listed in sequence with respect to the ordinate xN . The elements are separated
by white space or commas, and may optionally be surrounded by parentheses. Generally, the table
construct consists of many lines, using the ‘+’ or backslash line continuation mechanism. When a table
is referenced, the data value returned is interpolated from the values in the table.

The xi in the .table line are values of the independent variable (i.e., the variable given as an
argument to the referencing function). The vi entries can be numbers, or a reference to another table in
the form

table subtab name

in which case that table will be referenced to resolve the data point.

If the ac keyword is given, the data numbers vi are expected to be complex values, which are expressed
as two values; the real value followed by the imaginary value. Any sub-tables referenced must also have
the ac keyword given. The ac tables provide data for frequency-domain analysis. Without ac, all values
are real, and the table is intended for use in dc or transient analysis.

36 CHAPTER 2. WRSPICE INPUT FORMAT

A non-ac table is referenced through a tran-function (see 2.15.3). Tables with the ac keyword given
are referenced through the ac keyword in dependent and independent sources (see 2.15 and 2.15.4).

Let x be the input variable associated with the device referencing a table. The table is evaluated as
follows:

x < x0 val = v0(x0)
x0 < x < x1 val = v0(x) if v0 is a table

val = interpolation of v0(x0) and v1(x1) if v0 is a number

...

x > xN val = vN (x) if vN is a table
val = vN if vN a number
val = vN−1(xN) if vN is omitted

See the section A.3 for sample input files which illustrate the use of the .table line.

2.4.6 .temp Line

General Form:
.temp temperature [temperatures ...]

Examples:
.temp 25

.temp 0 25 50 75 100

In some versions of SPICE, this card provides a list of temperatures, and analysis will be performed
at each temperature in the list. The temperature values are Celsius.

In WRspice, the first temperature given will be used to construct a dummy .options line in the form

.options temp=value

This will appear before any other .options line, so the given temperature value will be overridden by
a value provided by the user in a .options line. The temperature can also be given with the temp
variable, set with the set command or otherwise. Additional temperatures listed in the .temp line are
ignored.

2.5 Parameters and Expressions

2.5.1 Single-Quoted Expressions

Text enclosed in single quotes (’) will be evaluated as an expression as the file is read and the string will
be replaced by the result. This will occur throughout the SPICE text, with the exception of .measure
lines, where single-quotes are traditionally (i.e., in HSPICE) used as expression delimiters.

Single-quoted expressions outside of .subckt blocks are expanded before variable substitution and
subcircuit expansion. In this case, since evaluation is performed before shell substitution, the expression
can not contain shell variables or other ‘$’ references. Single-quoted expressions that appear within

2.5. PARAMETERS AND EXPRESSIONS 37

.subckt blocks are evaluated after variable substitution during subcircuit expansion. Thus, these ex-
pressions can contain shell ’$’ constructs.

In general, single-quoted expressions can not contain vectors other than those defined in the constants
plot and “temper”. If a vector reference such as “v(1)” is found in a single-quoted expression being
evaluated, the expression will be parameter expanded as much as possible, but left in the form of an
expression. Thus, the construct can appear only where an expression is expected by the circuit parser,
such as for the definitions of resistance and capacitance for resistor and capacitor devices.

If the single-quoted expression appears to the left of an ’=’ sign, as an assignment, no substitution
is done. In this case, the quotes are ignored.

2.5.2 .param Line

General Form:
.param name = value [name = value] ...

.param func(arg1, ...) = expression

Example:
.param p1 = 1.23 p2 = ’2.5∗p1’
.param myabs(a) = ’a < 0 ? -a : a’

This assigns the text value to the text token name. The name must start with a letter or underscore.
If the text string name, delimited by space or one of ,)([]=’" but not with ‘=’ to the right is found in
the text, it is replaced by its value.

In 4.1.12 and later, node names are not parameter expanded by default. The boolean variable
pexnodes if set will enable parameter expansion of node names, for backward compatibility with files
that may have used this feature. Also in 4.1.12, device and subcircuit instance names are not parameter
expanded, nor or subcircuit and model names found in .subckt and .model lines.

The ‘%’ concatenation character is recognized. The concatenation character is used to separate the
token from the other text: for example RES%K allows RES to be identified as a token, and if RES is ‘1’ the
substitution would yield ‘1K’. The name token must be surrounded by non-alphanumeric characters.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

Substitutions occur on a second pass, so the order of definition and reference is not important (except
when used in .if or .elif, described below). Substitutions are not performed in Verilog blocks, but
are performed everywhere else. The .param lines always have global scope, meaning that they apply to
the entire circuit, whether or not they are located within .subckt blocks.

Values can contain parameter references, i.e., nesting is accepted.

It is also possible to define “user defined” functions using the second form above. This is similar to to
the define shell function, but functions defined in this manner exist only transiently, and will override
a function of the same name and argument count defined with the define command.

38 CHAPTER 2. WRSPICE INPUT FORMAT

2.5.2.1 Subcircuit Parameters

Parameters can also be defined in subcircuit invocation (.subckt) and call lines. When given in a
.subckt line, the definition applies within that subcircuit, unless overridden. When given in a call line,
the definition applies when expanding lines for that instance only.

The default scoping of parameter substitution when there is more than one definition for a name
is global. This means that the highest level definition has precedence in a subcircuit hierarchy. The
scoping rules are identical those of HSPICE.

The scoping rule set can be changed with the parhier option. This can be set in a .options line to
one of two literal keywords: “global” or “local”. The global setting is the default. When “local” is
specified, the precedence order is bottom-up, with the lowest level definition having precedence.

A parameter defined in a subcircuit instantiation line will override a definition given in a .param line
in the subcircuit body, which in turn will override a parameter definition provided in the .subckt line.
This sub-precedence is not affected by the parhier setting.

The scoping for function definitions follows that of normal parameters, taking into account the
parhier setting.

In general, these function definitions disappear from memory after parameter expansion has been
performed, however is some cases “promoted macros” will be created and saved with the current circuit.
This occurs when a single-quoted expression references a circuit variable, and also calls a function
defined with the parameters. The function cannot be evaluated and is retained for later evaluation
(during analysis). For this to succeed, the referenced macros must be available as well, so these are
“promoted” to a persistent database within the circuit data structure. It is not possible to undefine
these functions, excapt by destroying or changing the current circuit. In the listing of functions provided
by the define command without arguments, functions from the current circuit are listed with an asterisk
in the first column.

References to parameters outside of any .subckt definition are evaluated after variable expansion.
References within .subckt definitions are evaluated after variable substitution, during subcircuit expan-
sion.

The value must be a single token, or be enclosed by single or double quotes. If double quotes are used,
they are stripped when the substitution is applied. Single quotes are retained in the substitution, as
single quotes have significance in delimiting an expression. Parameter substitution is performed whether
or not the substitution variable in part of a single or double quoted string.

Parameter expansion is applied to all lines of input, with an attempt made to be smart about what
tokens are expanded and which are not. For example:

.subckt tline 1 2 3 4

T1 1 2 3 4 l=l c=c len=len

.ends tline

This can be called as
xt1 1 0 2 0 l=1.5nh c=12ff len=1e-6

Which expands to
T1.xt1 1 0 2 0 l=1.5nh c=12ff len=1e-6

This illustrates that in param=value constructs, the value is parameter expanded, not the param.
Thus, a device parameter name keyword will not be expanded by a user-given parameter of the same
name.

2.5. PARAMETERS AND EXPRESSIONS 39

Parameters can be accessed as vectors through the syntax “@paramname”. The value of the vector is
the numerical value of the parameter-expanded value string. These vectors are read-only, i.e., parameters
can not be set through vectors.

2.5.2.2 Pre-Defined Parameters

The following parameter definitions are always automatically defined, as if specified on a .param line.
However, they are read-only, and attempts to redefine them will silently fail.

WRSPICE BATCH

This parameter is set to 1 if WRspice is running in batch mode, 0 otherwise.

WRSPICE PROGRAM

The value of this parameter is set to 1. This enables users to include WRspice-specific input in
SPICE files, which will be ignored by other simulators (and vice-versa). The following lines will
accomplish this:

.param WRSPICE PROGRAM=0

.if WRSPICE PROGRAM=1

(input lines specific for WRspice)
.else

(input lines specific to another simulator)
.endif

The first (.param) line would be silently ignored in WRspice, so that the “(input lines specific for
WRspice)” will be read. In another simulator, the parameter definition will set WRSPICE PROGRAM

to zero, so that the “(input lines specific to another simulator)” would be read instead.

WRSPICE RELEASE

The parameter WRSPICE RELEASE is predefined with the release code number. The release code
number is a five digit integer xyzz0, corresponding to release x.y.z. The x and y fields are one digit,
z is two digits, 0 padded. The trailing 0 is a historical anachronism. For example, release 3.1.15
has release code number 32150. This parameter is read-only, and attempts to change its value in
a .param line or otherwise are silently ignored.

2.5.3 .if, .elif, .else, and .endif Lines

General Form:
.if expression [= expression]

General Form:
.elif expression [= expression]

General Form:
.else

General Form:
.endif

40 CHAPTER 2. WRSPICE INPUT FORMAT

Example:
SPICE deck title line

...

.param use new mod = 8

...

.if use new mod = 8

.model m1 nmos(level=8 ...

.elif use new mod = 9

.model m1 nmos(level=9 ...

.elif use new mod

.model m1 nmos(level=10 ...

.else

.model m1 nmos(level = 3 ...

.endif

For compatibility with other simulators, the keyword “.elseif” is accepted as an alias for “.elif”.

The WRspice input file syntax supports conditional blocks, through use of these directives. The
expression can involve constants, parameter names from a .param line included in the file, or vectors
and shell variables defined before the file is read. It does not understand variables implicitly set by
inclusion in the .options line, or parameters set in .subckt lines or references. The scope for these
constructs is always global, meaning that they apply to lines of text in the file without regard to .subckt
block boundaries.

The construct def(paramname) can be used in the expression, where it is replaced by 1 or 0 if
paramname is defined or not. Thus, one can define parameters that have not been previously defined
with

.if !def(myparam)

.param myparam=2

.endif

If the single expression is nonzero, or the two expressions yield the same result, the lines following
.if up to the matching .elif, .else or .endif are read, and if an .else block follows, those lines
to the matching .endif are discarded. If the single expression if zero or the two expressions do not
match, the lines following .if to the matching .elif, .else or .endif are discarded, and if a .else

line follows, the lines following .else to .endif are retained. These blocks can be nested. The action
is similar to the C preprocessor.

This filtering is performed early in the parsing of the file, so that the .if, etc. lines can enclose
script lines, Verilog blocks, etc., and not simply circuit lines. The lines not in scope are never saved in
memory.

The predefined read-only WRSPICE RELEASE parameter can be used in conjunction with the .if

conditionals to select WRspice-specific lines in input files.

For example:

.param WRSPICE RELEASE=0 $ This is ignored by WRspice

.if WRSPICE RELEASE

(WRspice-specific lines)
.else

(lines for HSPICE or whatever)

.endif

2.6. SUBCIRCUITS 41

2.6 Subcircuits

A subcircuit that consists of WRspice elements can be defined and referenced in a fashion similar to
device models. The subcircuit is defined in the input file by a grouping of element lines; the program
then automatically inserts the group of elements wherever the subcircuit is referenced. There is no limit
on the size or complexity of subcircuits, and subcircuits may contain other subcircuits. An example of
subcircuit usage is given in A.3.

2.6.1 .subckt Line

General Form:
.subckt subnam n1 [n2 ...] [param1=val1 param2=val2 ...]

Examples:
.subckt opamp 1 2 3 4

.subckt stage1 3 10 2 resis=2k cap=1nf

The keyword “.macro” is equivalent to “.subckt”. The “.subckt” keyword is actually a default,
and this keyword can be reset through setting the substart variable. The .macro variable applies in any
case.

A subcircuit definition begins with a .subckt line. The subnam is the subcircuit name, and n1 , n2 ,
... are the external nodes, which cannot be zero. The group of element lines which immediately follow
the .subckt line define the subcircuit. The last line in a subcircuit definition is the .ends line (see
below). Control lines should not appear within a subcircuit definition, however subcircuit definitions
may contain anything else, including other subcircuit definitions, device models, and subcircuit calls (see
below). Note that any device models or subcircuit definitions included as part of a subcircuit definition
are strictly local (i.e., such models and definitions are not known outside the subcircuit definition).
Also, any element nodes not included on the .subckt line or in .global lines are strictly local, with the
exception of 0 (ground) which is always global.

The subcircuit declaration line can contain an optional list of param=value pairs. The params are
tokens which must start with a letter or underscore, which can appear in the subcircuit lines. These
are not shell variables, so there is no ‘$’ or other punctuation, but the ‘%’ concatenation character is
recognized. The concatenation character is used to separate the token from the other text: for example
RES%K allows RES to be identified as a token, and if RES is ‘1’ the substitution would yield ‘1K’. The
param token must be surrounded by non-alphanumeric characters.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

WRspice can handle duplicate formal node args in .subckt lines. It does so by assigning a new node
to one of the duplicates, then inserting a voltage source between the two nodes, which is added to the
subcircuit text. This mainly solves a problem related to files generated by Xic. If two or more subcircuit
terminals are attached to the same wire net, the resulting .subckt line will have duplicate nodes. In the
limiting case where a subcircuit consists only of a wire with two connections, the subcircuit would in
addition be empty.

For example, the definition

42 CHAPTER 2. WRSPICE INPUT FORMAT

.subckt xxx 1 1

.ends

is converted to

.subckt xxx 1 #0

v xxx 0 1 #0

.ends

during subcircuit expansion, which avoids an empty subcircuit and has the intended effect of instances
shorting the two terminals together.

2.6.1.1 Subcircuit Expansion

When processing circuit input that contains subcircuits, WRspice will perform “subcircuit expansion”
whereby subcircuit calls are replaced recursively with the subcircuit body text, with the device and node
names translated so as to make them unique in the overall circuit. This “flat” representation, which can
be seen with the listing e command, is the form that is actually parsed to generate the internal circuit
structure used in simulation.

Although this occurs “behind the scenes”, if a user needs to reference nodes or devices within subcir-
cuits, for example in a print or plot command after analysis, the user will need to know the details of
the name mapping employed. The same applies when the user is preparing SPICE input, if, for example,
the user wishes to use the .save keyword with a subcircuit node. In this case, the SPICE deck will
fail to work as intended unless the mapping algorithm assumed by the user is actually employed by the
simulator.

WRspice releases prior to 3.2.15 used the SPICE3 algorithm for generating the new node and device
names. Subsequent releases have a new, simpler algorithm as the default, but support for the old
algorithm is retained. The field separation character, used when creating new names, has changed twice
in WRspice evolution. Thus, there is a potential compatibility issue with legacy WRspice input files that
explicitly reference subcircuit nodes, and newer WRspice releases.

There are two variables which set the subcircuit mapping mode and concatenation character.

subc catchar
This can be set to a string consisting of a single punctuation character, which will be used as the
field separation character in names generated in subcircuit expansion. It should be a character that
is not likely to confuse the expression parser. This requirement is rather ambiguous, but basically
means that math operators, comma, semicolon, and probably others should be avoided.

In release 3.2.15 and later the default is ‘.’ (period), which is also used in HSPICE, and provides
nice-looking listings.

In releases 3.2.5 – 3.2.14, the default was ‘ ’ (underscore).

In release 3.2.4 and earlier, and in SPICE3, the concatenation character was ‘:’ (colon).

subc catmode
This string variable can be set to one of the keywords “wrspice” or “spice3”. It sets the encoding
mode for subcircuit node and device names. In 3.2.15 and later, the “wrspice” mode is the default.
In earlier releases, only the “spice3” mode was available.

2.6. SUBCIRCUITS 43

The format of the subcircuit node names depends on the algorithm, so SPICE input that explicitly
references subcircuit node names implicitly assuming a certain mapping algorithm will require either
changes to the node names, or specification of the matching algorithm and concatenation character.

These variables can be set from a .options line in SPICE input, so that the easiest way to “fix” an
old file is to add a .options line.

For example, suppose that you run an old deck, and get warnings like “no such vector 0:67”.
From the descriptions below, one can recognize that 1) the SPICE3 mode is being used, which will
always be true for old decks, and 2) the concatenation character is ‘:’. Thus, adding the following line
to the file will fix the problem.

.options subc catchar=: subc catmode=spice3

When running from Xic, there should not be compatibility issues, as Xic will automatically recognize
the capabilities of the connected WRspice and compensate accordingly – as long as the hypertext facility
is used to define node names. This is true when point-and-click is used to generate node names. However,
subcircuit node names that for some reason were entered by hand will need to be updated, or a .options
line added as a spice-text label.

2.6.1.2 wrspice Mode

As an example, suppose we have a device line

C126 2 4 50fF

in a subcircuit which is instantiated as a subcircuit instance Xgate, which itself is instantiated at the
top level in a subcircuit instance Xadder. After applying the wrspice algorithm, this line becomes

C126.Xgate.Xadder 2.Xgate.Xadder 4.Xgate.Xadder 50fF

assuming the use of ‘.’ as the concatenation character. Note the straightforwardness of this approach:
one merely starts with the given name (device or node) and appends a concatenation character and
subcircuit instance name, walking up the hierarchy. The ‘x’ or ‘X’ characters of the instance names are
retained.

In addition, if a device model is defined in a subcircuit, the model name is mapped as follows.
Suppose that the subcircuit instantiated as Xgate contained a .model line like

.model foo nmos(...)

The model is only accessible in instances of this subcircuit (and any sub-subcircuits), with the name
mapped to (for example)

.model foo.Xgate.Xadder nmos(...)

Thus models use exactly the same naming convention. Note that models are generated per-instance
rather than per-subcircuit. The reason is that if the subcircuit is parameterized, the model in each
instance may be different, if different parameters are provided to the instances, and model text uses the
parameters.

44 CHAPTER 2. WRSPICE INPUT FORMAT

2.6.1.3 spice3 Mode

The SPICE3 encoding is a bit more obscure. Suppose that we have the same example hierarchy as
above. The line maps to

C.adder.gate.126 adder.gate.2 adder.gate.4 50fF

Again, this assumes ‘.’ as the concatenation character, which is a bad choice for this mapping mode
as we shall see. The spice3 mode was historically used with ‘:’ or ‘ ’ as the concatenation character.

For device names, we start with the first character, add a concatenation character, then the top
instance name with the ‘X’ stripped and continue down the hierarchy. Finally, we add a concatenation
character and the remainder of the original device name.

For nodes, we start with the top-level instance name with the ‘X’ stripped, walk down the hierarchy
adding contenation characters and sub-instance names (also with the ‘X’ stripped), and finally append
a concatenation character and the original node name.

For models defined in subcircuits, in the example above, the mapping is

.model adder.gate.foo nmos(...)

What if instead of Xgate and Xadder, the instance names were X0 and X1? The expansion becomes

C.1.0.126 1.0.2 1.0.4 50fF

This is very cumbersome to keep straight. Worse, if the hierarchy is only one-deep, we could get
node names like “0.1”, “1.2”, etc. which are in some cases impossible for the parser to distinguish from
a floating point value. Using a different concatenation character solves this problem, but the names are
still rather opaque.

2.6.2 .ends Line

General Form:
.ends [subnam]

Example:
.ends opamp

The keyword “.eom” is equivalent to “.ends”. The “.ends” is actually a default and the keyword
can be changed by setting the subend variable. The .eom keyword applies in any case.

This line must be the last one for any subcircuit definition. The subcircuit name, if included, indicates
which subcircuit definition is being terminated; if omitted, all subcircuits being defined are terminated.
The name is needed only when nested subcircuit definitions are being made.

2.6.3 Subcircuit Calls

General Form:
xname n1 [n2 n3 ...] subnam [param1=val1 param2=val2 ...]

2.6. SUBCIRCUITS 45

Example:
x1 2 4 17 3 1 multi

Subcircuits are used in WRspice by specifying pseudo-elements beginning with the letter ‘x’ or ‘X’,
followed by the circuit nodes to be used in expanding the subcircuit.

When a circuit is parsed, all devices and local nodes in subcircuits are renamed as

devicetype[sep]subcktname[sep]devicename,

where [sep] is a separation character. In SPICE3 and WRspice prior to release 3.2.4, this was the colon
(‘:’) character. However, this choice can lead to conflicts and parser trouble due to the use of the colon
in the ternary conditional operator a?b:c. In release 3.2.4, the separation character was changed to the
underscore (‘ ’).

The character employed can be set from the shell with the shell variable subc catchar. If this variable
is set to a string consisting of a single punctuation character, then this character becomes the [sep]
character.

Nested subcircuit instances will have multiple [sep]-separated qualifiers.

The names and default values of the params are specified in the .subckt line. During subcircuit
expansion, the param tokens are replaced by their corresponding value tokens in the text. If a list
of params is given in the subcircuit instantiation line, those values will supersede the defaults in that
subcircuit instance, and parameters set in .param lines.

Example:
.subckt resistor 1 2 resis=1k

r1 1 2 resis

.ends

x1 3 4 resistor resis = 500

x2 5 6 resistor

x3 7 8 resistor resis=2k

2.6.4 Subcircuit/Model Cache

General Form:
.cache name
Lines of SPICE input...
.endcache

Example:
.cache block1

.include /users/models/some big library

.endcache

The “models” provided with foundry design kits (for example) have become quite complex, to the
point where loading these files into WRspice can take appreciable time. These files often encapsulate
device calls into subcuits, and use large numbers of parameter definitions that must be processed into
internal tables.

46 CHAPTER 2. WRSPICE INPUT FORMAT

This overhead is annoying when simulating circuits, but can become a real problem when doing
repetitive simulations such as for Monte Carlo analysis or when under control of a looping script. The
caching feature enables one to load these definitions once only, on the first pass. Subsequent runs will
reuse the internal representations, which can avoid most of the overhead.

The “.cache” and “.endcache” SPICE file keywords are used to identify lines of an input deck
which will be cached. This syntax is non-standard and available only in WRspice.

The name is any short alpha-numeric name token, used to identify the cache block created. The
cached representation of the enclosed lines is saved in WRspice memory under this name.

Presently, there can be only one .cache block per circuit deck. The first time the name is seen, the
enclosed lines are processed normally but internal representations are saved. Subsequently, the enclosed
lines are skipped. The skipping occurs very early in the sourcing operation, before .include and similar
lines are read. So, for the example, the access to some big library is skipped entirely in subsequent
runs.

If a different SPICE input file is sourced, and this has a .cache block with the same name as the
first, the cached parameters from the first file will be used in the second file. The internal representation
of the cache block has no attachment to any particular input file.

The Lines of SPICE input... which can appear between .cache and .endcache can be, after
.include/.lib expansion:

1. Subcircuit definitions, which must include all lines of the definition including the .subckt or
.macro line and corresponding .ends or .eom line.

2. Model definitions, starting with .model.

3. Parameter definitions, starting with .param.

4. Comment lines.

The block can contain any of the .include/.lib family of lines, but after these lines are expanded,
the resulting text should contain only the forms listed above. Anything else that appears in the cache
block will likely cause an error, as it will be “missing”.

The parameters from .param lines saved in the cache will override parameters of the same name
defined elsewhere in the circuit file.

The subcircuit/model cache can be manipulated with the WRspice cache command.

2.7 Analysis Specification

WRspice provides the analysis capabilities tabulated below. Monte Carlo and operating range analysis
(described in Chpt. 5.1) require a special input file format, while other types of analysis can be specified
in a standard input deck.

Analyses will pause if WRspice receives an interrupt signal, i.e., the user types Ctrl-C while WRspice

has the keyboard focus. The resume command can be used to resume the analysis.

By default, the maximum size of the data produced by an analysis run is limited to 256Mb. This can
be changed by setting the variable maxdata to the desired value in Kb, using the set command or the
Simulation Options tool from the Tools menu of the Tool Control window. In transient analysis, if

2.7. ANALYSIS SPECIFICATION 47

the steptype is not set to “nousertp”, the run will abort at the beginning if the memory would exceed
the limit. Otherwise, the run will end when the limit is reached.

The table below lists the basic analysis types and input file keyword.

.ac AC Small-Signal Analysis

.dc DC Analysis

.disto Small-Signal Distortion Analysis

.noise Small-Signal Noise Analysis

.op Operating Point

.pz Pole-Zero Analysis

.sens DC or Small-Signal AC Sensitivity Analysis

.tf DC or Small-Signal AC Transfer Function Analysis

.tran Transient Analysis

An operating point analysis is performed implicitly before other types of analysis, with the exception
of transient analysis when the uic keyword is given. This solves for the initial dc operating point of the
circuit. The circuit is linearized at this point for AC/small signal analysis (including pole-zero, transfer
function, and noise analysis). It is the starting point for dc and transient analysis.

2.7.1 Chained Sweep Analysis

WRspice has a swept analysis feature. This allows ac, noise, transfer function, sensitivity, and transient
analyses to have an additional one or two dimensional sweep specification, resulting in the analysis being
performed at each parameter value, producing a multidimensional output plot.

The syntax is

analysis dc|sweep pstr1 start1 [stop1 [incr1]] [pstr2 start2 [stop2 [incr2]]]

The initiating keyword can be “dc” or “sweep”, and is followed by one or two parameter specifiers
and ranges. This is the same syntax as accepted in the WRspice .dc line, which is an extension of the
traditional DC source sweep. In WRspice, any circuit parameter can be swept. This is far more powerful
than the original SPICE dc sweep, which only allowed sweeping of source outputs.

For example, a regular SPICE dc sweep would have a form like:

Example:
.ac dec 10 1Hz 1Khz dc v1 0 2 .1 v2 4.5 5.5 .25

This will perform an ac analysis with the dc sources v1 and v2 stepped through the respective
ranges. The resulting output vectors will have dimensions [5,21,61], as can be seen with the display
command interactively. This represents 61 points of frequency data at 21 v1 values at 5 v2 values.
Typing “plot v(1)” (for example) would plot all 21*5 analyses on the same scale (you probably don’t
want to do this). One can also type (as examples) “plot v(1)[1]” to plot the results for v2 = 4.75,
or “plot v(1)[0][1]” for v2 = 4.5, v1 = .1, etc. Range specifications also work, for example “plot
v(1)[2][0,2]” plots the values for v2 = 5.0, v1 = 0.0, 0.1, 0.2.

WRspice also allows forms like

Example:
.ac dec 10 1Hz 1Khz dc R1[res] 800 1200 100 R5[res] 10 20 1

48 CHAPTER 2. WRSPICE INPUT FORMAT

This will perform the ac analysis as the values of two resistors are swept.

Warning: The memory space required to hold the plot data can grow quite large, so be reasonable.

Multi-threading (see 1.4) will be used for chained analysis if the loopthrds variable is set to a positive
value. This can parallelize the runs on computers with multiple cores or CPUs, speeding evaluation.

2.7.2 .ac Line

The ac small-signal portion of WRspice computes the ac output variables as a function of frequency.
The program first computes the dc operating point of the circuit and determines linearized, small-signal
models for all of the nonlinear devices in the circuit. The resultant linear circuit is then analyzed over a
user-specified range of frequencies. The desired output of an ac small-signal analysis is usually a transfer
function (voltage gain, transimpedance, etc). If the circuit has only one ac input, it is convenient to set
that input to unity and zero phase, so that output variables have the same value as the transfer function
of the output variable with respect to the input.

General Form:
.ac dec|oct|lin np fstart fstop [dc|sweep args]

Examples:
.ac dec 10 1 10k

.ac dec 10 1k 100meg

.ac lin 100 1 100hz dc vcc 10 15 5

.ac dec 10 1meg 1g dc vdd 5 7.7 .25

The keyword dec specifies decade variation, with np the number of points per decade. The keyword
oct specifies octave variation, with np the number of points per octave, and lin specifies linear variation,
with np the number of points. The two parameters fstart (the starting frequency), and fstop (the final
frequency) complete the basic analysis specification. If this line is included in the circuit file, WRspice

will perform an ac analysis of the circuit over the specified frequency range. Note that in order for this
analysis to be meaningful, at least one voltage or current source must have been specified with an ac

value.

There is a subtlety when using dec with fstop/fstart less than 10. WRspice will adjust the frequency
delta to hit the final value, if the frequency ratio is integral. This is very appropriate when fstop/fstart
is a power of two and np is 10. The table shows the frequency multiplication factors without and with
correction. Without correction, the frequency multiplier is the tenth root of 10. The corrected multiplier
is the ninth root of 8. With correction, the binary powers are hit exactly.

Uncorrected Binary Correction
1.000000 1.000000
1.258925 1.259921
1.584893 1.587401
1.995262 2.000000
2.511886 2.519842
3.162278 3.174802
3.981072 4.000000
5.011872 5.039684
6.309573 6.349604
7.943282 8.000000
10.000000 10.079368

2.7. ANALYSIS SPECIFICATION 49

The optional dc sweep is a dc analysis specification which will cause the ac analysis to be performed
at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep point, and
the output vectors will be multidimensional.

In interactive mode, the ac command, which takes the same arguments as the .ac line, can be used
to initiate ac analysis.

2.7.3 .dc Line

The dc analysis portion of WRspice determines the dc operating point of the circuit with inductors
shorted and capacitors opened. The dc analysis is used to generate dc transfer curves: a specified device
parameter (commonly a voltage or current source output) is stepped over a user-specified range and the
dc output variables are stored for each sequential parameter value.

General Form:
.dc pstr1 start1 [stop1 [incr1]] [pstr2 start2 [stop2 [incr2]]]

Examples:
.dc vin 0.25 5.0 0.25

.dc vds 0 10 .5 vgs 0 5 1

.dc vce 0 10 .25 ib 0 10u 1u

.dc vdd 5 6

.dc r1 1k 2k 100

.dc d1[temp] 0 50 5

The .dc line defines the dc sweep source and sweep limits. The variation may be in one or two
dimensions, depending upon whether the second block is provided.

In traditional Berkeley SPICE, the pstr1 and pstr2 are the names of voltage or current sources in the
circuit, and the specified range applies to the output from that source. In WRspice the pstr1 and pstr2
can specify arbitrary device parameters which will be varied through the given range. The complete
syntax is

devname[param]

The devname is the name of a device in the circuit. The square brackets are literal, and enclose the
name of a parameter of the device. Device parameter names are defined in the device model, and can
be listed with the show command.

If the devname is that of a source device, or a resistor, capacitor, or inductor, the square brackets
and parameter name can be omitted. In this case, the parameter will default to the source output, or
resistance, capacitance, or inductance of the respective device. Other device types require specification
of a parameter in square brackets.

The start , stop, and incr parameters are the starting, final, and incrementing values respectively.
If the incr parameter is not supplied, analysis is performed at start and stop. If in addition the stop
parameter is not given, analysis is performed at start , i.e., the level is fixed. A parameter can be omitted
only if all parameters to the right are also omitted.

A second parameter (pstr2) may optionally be specified with associated sweep specification. In this
case, the first parameter will be swept over its range for each value of the second parameter. This option
can be useful for obtaining semiconductor device output characteristics.

50 CHAPTER 2. WRSPICE INPUT FORMAT

The first example will cause the value of the voltage source vin to be swept from 0.25 volts to 5.0
volts in increments of 0.25 volts.

In stand-alone dc sweep analysis, the circuit operating point is computed for each parameter value. In
WRspice, other types of analysis (ac, noise, transfer function, sensitivity, and transient) can be chained to
a dc analysis specification. In this case, the requested analysis is performed at each successive operating
point, as specified by the dc part of the analysis specification. The resulting circuit variables are saved
as multidimensional vectors, which can subsequently be saved in a rawfile or plotted (together or as
individual traces).

In intetactive mode, the dc command, which takes the same arguments as the .dc line, can be used
to initiate dc analysis.

If the loopthrds variable is set to a value larger than zero, the calculations will use multi-threading
so that if multiple CPUs are available, work can be done in parallel, saving time.

2.7.3.1 Phase-Mode DC Analysis

The Josephson junction device has unique behavior which complicates simulation with a SPICE-type
simulator (see 2.17.1.1). Central is the idea of phase, which is a quantum-mechanical concept and is
generally invisible in the non-quantum world. However with superconductivity, and with Josephson
junctions in particular, phase becomes not only observable, but a critical parameter describing these
devices and the circuits that contain them.

A general superconducting circuit contains loops of inductors and Josephson junctions. When quies-
cent, the voltage at all nodes of such a circuit is identically zero, and thus it would seem to be impossible
to use a SPICE-type simulator to perform DC analysis on this type of circuit. However, by using phase,
which is nonzero at each node, instead of voltage, one can perform DC analysis, using “phase-mode
DC”.

WRspice after release 4.3.3 offers a DC analysis capability which uses phase-mode for circuits con-
taining Josephson junctions. Unlike strictly phase-mode simulators, WRspice allows a mixture of phase
(inductors and Josephson junctions) and voltage mode components.

Within WRspice, every node connected to a Josephson junction, inductor, or lossless transmission line
(treated as an inductor in DC analysis) has a “Phase” flag set. This indicates that the computed value is
phase, not voltage, for these nodes. We have to special-case the matrix loading functions for inductors,
mutual inductors, lossless transmission lines, and resistors. Other devices are treated normally.

A Josephson junction can be modeled by the basic formula

I = Icsin(V (i, j))

where V (i, j) is the “voltage” difference between nodes i and j (across the junction) which is actually
the phase. Inductors look like resistors:

I = Φ0V (i, j)/2πL

Where V (i, j) is the phase difference across the inductor. Mutual inductance adds similar cross
terms.

Capacitors are completely ignored as in normal DC analysis. The treatment of resistors is slightly
complicated. The connected nodes can be “Ground”, “Phase”, or “Voltage” type. If both nodes are

2.7. ANALYSIS SPECIFICATION 51

Voltage or Ground, the resistor is loaded normally. If both nodes are Phase or Ground, the resistor is not
loaded at all. The interresting case is when one node is Phase, the other Voltage. In this case, we load the
resistor as if the phase node is actually ground (node number 0). In addition we load a voltage-controlled
current source template that injects current into the phase node of value V (voltage node)/Resistance.

Resistors are the bridge between normal voltage-mode devices and phase nodes. Some circuits may
require introduction of resistors to get correct results. For example, assume a Josephson junction logic
gate driving a CMOS comparator circuit. If the input MOS gate is connected directly to the junction,
the DC operating point will be incorrect, as the comparator will see phase as input. However, if a resistor
separates the MOS gate from the junction, the comparator input will be zero, as it should be.

There is (at present) a topological requirement that all phase nodes must be at ground potential.
This means that for a network of Josephson junctions and inductors, there must be a ground connection
to one of these devices. A nonzero voltage source connected to an inductor, which is connected to a
resistor to ground, although a perfectly valid circuit, will fail. One must use the equivalent consisting of
the voltage source connected to a resistor, connected to the inductor which is grounded. This satisfies
the two topological requirements:

Rule 1
There must be a resistor between a voltage-mode device and a phase-mode device, no direct
connections allowed.

Rule 2
Every phase-node subnet must have a connection to ground, so all phase nodes are at ground
potential.

With this bit of information, and the warning that controlled sources can cause unexpected behavior,
the DC analysis using thes technique can apply to general circuits containing Josephson junctions.

Of course, for this to work, no Josephson junction can be biased above its critical current or noncon-
vergence results. Both DC operating point and DC sweep are available, as is AC analysis. Noise analysis
is available with the internal Josephson junction model. This new hybrid technique appears to be an
important advance, which should avoid the long-standing need to use “uic” and ramp sources up from
zero, and makes available DC sweep analysis, and for the first time in any simulator AC small-signal
analysis.

2.7.4 .disto Line

The distortion analysis portion of WRspice computes steady-state harmonic and intermodulation prod-
ucts for small input signal magnitudes. If signals of a single frequency are specified as the input to
the circuit, the complex values of the second and third harmonics are determined at every point in the
circuit. If there are signals of two frequencies input to the circuit, the analysis finds the complex values
of the circuit variables at the sum and difference of the input frequencies, and at the difference of the
smaller frequency from the second harmonic of the larger frequency.

Distortion analysis is supported in WRspice only through residual incorporation from code imported
from Berkeley SPICE3. This code is particularly complex, poorly documented, and ugly. Distortion
analysis has not been tested, and may not work.

Distortion analysis is included for the following nonlinear devices: diodes, bipolar transistors, JFETs,
MOSFETs (levels 1, 2, 3 and BSIM1) and MESFETS. All linear devices are automatically supported by
distortion analysis. If there are switches present in the circuit, the analysis will continue to be accurate
provided the switches do not change state under the small excitations used for distortion calculations.

52 CHAPTER 2. WRSPICE INPUT FORMAT

General Form:
.disto dec|oct|lin np fstart fstop [f2overf1] [dc dc args]

Examples:
.disto dec 10 1khz 100mhz

.disto dec 10 1khz 100mhz 0.9

A multi-dimensional Volterra series analysis is performed using a multi-dimensional Taylor series to
represent the nonlinearities at the operating point. Terms of up to third order are used in the series
expansions.

If the optional parameter f2overf1 is not specified, a harmonic analysis is performed — i.e., distortion
is analyzed in the circuit using only a single input frequency f1, which is swept as specified by arguments
of the .disto line exactly as in an .ac line. Inputs at this frequency may be present at more than one
input source, and their magnitudes and phases are specified by the arguments of the distof1 keyword
in the input file lines for the input sources. The arguments of the distof2 keyword are not relevant
in this case. The analysis produces information about the ac values of all node voltages and branch
currents at the harmonic frequencies 2f1 and 3f1, vs. the input frequency f1 as it is swept. A value of
1 (as a complex distortion output) signifies cos(2π(2f1)t) at 2f1 and cos(2π(3f1)t) at 3f1, using the
convention that 1 at the input fundamental frequency is equivalent to cos(2πf1t).

The distortion component desired (2f1 or 3f1) can be selected using commands in WRspice, and then
printed or plotted. Normally, one is interested primarily in the magnitude of the harmonic components,
so the magnitude of the ac distortion value is considered. It should be noted that these are the ac values
of the actual harmonic components, and are not equal to HD2 and HD3. To obtain HD2 and HD3, one
must divide by the corresponding ac values at f1, obtained from an .ac line. This division can be done
using WRspice commands.

If the optional f2overf1 parameter is specified, it should be a real number between (and not equal
to) 0.0 and 1.0; in this case, a spectral analysis is performed. The circuit is considered with sinusoidal
inputs at two different frequencies f1 and f2. Frequency f1 is swept according to the .disto line options
exactly as for the .ac card. Frequency f2 is kept fixed at a single frequency as f1 sweeps — the value
at which it is kept fixed is equal to f2overf1*fstart . Each voltage and current source in the circuit may
potentially have two (superimposed) sinusoidal inputs for distortion, at the frequencies f1 and f2. The
magnitude and phase of the f1 component are specified by the arguments of the distof1 keyword in the
source’s input line, as described in 2.15; the magnitude and phase of the f2 component are specified by
the arguments of the distof2 keyword. The analysis produces plots of all node voltages/branch currents
at the intermodulation product frequencies f1 + f2, f1 − f2, and (2f1) − f2, vs the swept frequency
f1. The IM product of interest may be selected using the setplot command, and displayed with the
print and plot commands. As in the harmonic analysis case, the results are the actual ac voltages and
currents at the intermodulation frequencies, and need to be normalized with respect to .ac values to
obtain the IM parameters.

If the distof1 or distof2 keywords are missing from the description of a voltage or current source,
then that source is assumed to have no input at the corresponding frequency. The default values of the
magnitude and phase are 1.0 and 0.0 respectively. The phase should be specified in degrees.

It should be noted that the number f2overf1 should ideally be an irrational number, and that since this
is not possible in practice, efforts should be made to keep the denominator in its fractional representation
as large as possible, certainly above 3, for accurate results. If f2overf1 is represented as a fraction A/B,
where A and B are integers with no common factors, B should be as large as possible. Note that A < B
because f2overf1 is constrained to be < 1). To illustrate why, consider the cases where f2overf1 is 49/100
and 1/2. In a spectral analysis, the outputs produced are at f1 + f2, f1 − f2 and 2f1 − f2. In the

2.7. ANALYSIS SPECIFICATION 53

latter case, f1−f2 = f2, so the result at the f1−f2 component is erroneous because there is the strong
fundamental f2 component at the same frequency. Also, f1+f2 = 2f1−f2 in the latter case, and each
result is erroneous individually. This problem is not seen in the case where f2overf1 = 49/100, because
f1 − f2 = 51/100f1 which is not equal to 49/100f1 = f2. In this case, there will be two very closely
spaced frequency components at f2 and f1− f2. One of the advantages of the Volterra series technique
is that it computes distortions at mix frequencies expressed symbolically (i.e. n·f1 ± m·f2), therefore one
is able to obtain the strengths of distortion components accurately even if the separation between them
is very small, as opposed to transient analysis for example. The disadvantage is of course that if two
of the mix frequencies coincide, the results are not merged together and presented, though this could
presumably be done as a postprocessing step. Currently, the interested user should keep track of the
mix frequencies and add the distortions at coinciding mix frequencies together should it be necessary.

The optional dc sweep is a dc analysis specification which will cause the distortion analysis to be
performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

In interactive mode, the disto command, which takes the same arguments as the .disto line, can
be used to initiate distortion analysis.

Distortion analysis is not available if Josephson junctions are included in the circuit.

2.7.5 .noise Line

The noise analysis portion of WRspice performs analysis of device-generated noise for the given circuit.
When provided with an input source and an output node or current, the analysis calculates the noise
contributions of each device (and each noise generator within the device) to the output node voltage
or current. It also calculates the level of input noise from the specified input source to generate the
equivalent output noise. This is done for every frequency point in a specified range — the calculated
value of the noise corresponds to the spectral density of the circuit variable viewed as a stationary
Gaussian stochastic process.

This is the classic frequency-domain SPICE noise analysis. WRspice also provides the capability
of simulating thermal noise in the time domain. See the description of the tgauss “tran” function in
2.15.3.2 for discussion and an example.

After calculating the spectral densities, noise analysis integrates these values over the specified fre-
quency range to arrive at the total noise voltage/current (over this frequency range). This calculated
value corresponds to the variance of the circuit variable viewed as a stationary Gaussian process.

General Form:
.noise out src dec|oct|lin pts fstart fstop [summary pts] [dc|sweep args]

Examples:
.noise v(5) vin dec 10 1khz 100mhz

.noise v(5,3) v1 oct 8 1.0 1.0e6 1 dc vee -5 -3 1

Above, out represents the output, which can be a node voltage in the standard form

v(out [,ref])

or the current through a voltage source (or inductor) in one of the standard and equivalent forms

54 CHAPTER 2. WRSPICE INPUT FORMAT

Vsource
Vsource#branch
i(Vsource)

This directive initiates a noise analysis of the circuit. The parameter out is the point at which the
total output noise is desired, and if this is a voltage and ref is specified, then the noise voltage v(out) -
v(ref) is calculated. By default, ref is assumed to be ground. The parameter src is the name of a voltage
or current source to which input noise is referred, with pts , fstart and fstop being the .ac parameters
that specify the frequency range over which analysis is desired. The optional summary pts is an integer;
if specified, the noise contributions of each noise generator is produced every summary pts frequency
points.

The .noise analysis produces two plots — one for the Noise Spectral Density curves and one for
the total Integrated Noise over the specified frequency range. All noise voltages/currents are in squared
units (V2/Hz and A2/Hz for spectral density, V2 and A2 for integrated noise).

The optional dc sweep is a dc analysis specification which will cause the noise analysis to be performed
at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep point, and
the output vectors will be multidimensional.

In interactive mode, the noise command, which takes the same arguments as the .noise line, can
be used to initiate noise analysis.

Noise analysis is not available if Josephson junctions are included in the circuit.

2.7.6 .op Line

General Form:
.op

The inclusion of this line in an input file will force WRspice to determine the dc operating point of the
circuit with inductors shorted and capacitors opened. This is done automatically prior to most other
analyses, to determine the operating point of the circuit, yielding transient initial conditions or the
linearized models for nonlinear devices for small-signal analysis. It will not be done in transient analysis
if the uic keyword is given in the transient analysis specification.

WRspice performs a dc operating point analysis if no other analyses are requested.

In interactive mode, the op command can be used to compute the operating point.

Operating point analysis will fail due to a singular circuit matrix if the circuit topology contains
inductor and/or voltage source loops. Circuits containing such loops can only be simulated in transient
analysis using the uic keyword in the analysis command, which will cause the operating point analysis
to be skipped. On convergence failure, WRspice will check for and print a list of inductor and voltage
source names found to be connected in loops. The dual situation of current source/capacitor cut sets
will often converge in operating point analysis, as there is an added minimum conductance which will
keep the solution finite (but huge).

If Josephson junctions are present in the circuit, phase-mode DC analysis)see (2.7.3.1) is used to
compute the DC operating point. Historically, transient analysis with Josephson junctions was performed
using the uic option since it was not previously possible to perform a true DC analysis with Josephson
junctions present. The phase-mode DC feature in WRspice avoids the need to use uic in most circuits,
however some circuits may still require it, for example if the circuit is not quiescent with its initial DC
bias.

2.7. ANALYSIS SPECIFICATION 55

In operating point analysis, any .save or save directives will be ignored. All node voltages and
branch currents will be saved in an ”op” plot in interactive mode.

Given that operating point analysis is the starting point of most types of analysis, it is critical
that this step succeeds. Unfortunately, many circuits are prone to convergence failure at this step, and
achieving dc convergence has been one of the traditional battles when using SPICE simulators.

The original operating point calculation algorithm, which was very similar to the SPICE3 algorithm,
was really pretty poor. For example, when attempting to simulate a large CMOS mixed-signal circuit,
the old convergence algorithm would iterate for several minutes before ultimately failing. On the other
hand, HSPICE could find the operating point within seconds (if that).

Lots of work was done to improve this, and a new algorithm is now the default in release 3.2.15 and
later. The new algorithm seems to work pretty well, and the Berkeley algorithms have been retained
as alternatives. There is flexibility in algorithm choice, giving the user some tools needed to obtain
convergence of their circuits with the fewest iterations (quickest convergence).

There are two basic ways to solve for the circuit operating point. In “gmin stepping”, a conductance
is applied between every circuit node and ground. When this conductance is large enough, convergence
can always be achieved. The conductance is then progressively reduced, while continuing to solve the
circuit equations with the previous solution as a starting point. If all goes well, convergence is maintained
when the conductance approaches zero, and the method succeeds.

The second method is “source stepping”. In this method, all voltage and current sources are set to
zero initially, where the circuit is guaranteed to have a trivial solution with every node at zero voltage.
The sources are progressively ramped up, while solving the circuit equations using the previous solution
as the starting point. Ultimately, if convergence is maintained when the sources reach their true values,
the method succeeds.

The original Berkeley algorithm is as follows. First, unless the option variable noopiter is set, an
attempt is made to solve the equation set directly, without using stepping. If convergence is acheived
within the number of iterations specified by the itl1 variable (default 400), the operating point analysis
succeeds.

If, as is likely, the initial attempt fails, gmin stepping is attempted. In the Berkeley algorithm, the
conductance is reduced by a factor of 10 for each gmin step. If convergence is maintained through all
steps, a final solution is attempted with no added conductance, and if this too succeeds, operating point
analysis succeeds. However, it is possible that at some step, convergence will fail, and thus gmin stepping
will fail.

If gmin stepping fails, or is not attempted, source stepping is tried. In the Berkeley algorithm, each
source step is a fixed percentage of the final value. If convergence is maintained through all steps, then
operating point analysis succeeds. Otherwise, the user will have to alter the circuit or change parameters
to coerce convergence in a subsequent run.

The number of gmin and source steps is set by the option variables gminsteps and srcsteps, both
default to 10 in SPICE3, and in earlier versions of WRspice.

The new algoritm uses “dynamic” stepping, for both gmin and source. In dynamic stepping, if a step
fails, the step size is cut, and the calculation is repeated. If the step size is cut below a threshold after
repeated failures, the method is exited with failure. On the other hand, if convergence is achieved with
just a few iterations, then the step size is increased. This method is far more effective than the original
approach. This concept was borrowed from the open-source NGSPICE project.

The new algorithm is invoked when both the gminsteps and srcsteps values are 0, which are the
current defaults (these can be set from the Convergence page of the Simulation Options tool). If

56 CHAPTER 2. WRSPICE INPUT FORMAT

either is positive, a modified SPICE3 algorithm is used. If negative (-1 is now an allowed value) that
convergence method will not be attempted. If both are negative, a direct solution will be attempted,
whatever the state of the noopiter option variable.

The new algorithm is the following. If either gminsteps or srcsteps is positive, we are in a quasi-
SPICE3 compatibility mode. In this case, if the noopiter variable is not set, the first task is to Newton
iterate the matrix to attempt direct convergence. If convergence is not achieved in an iteration count
given by the value of the itl1 variable, this is aborted, and the stepping options are attempted.

This initial direct convergence attempt can be very time-consuming and is rarely successful for large
circuits, thus it is not done unless

1. as above, either of gminsteps or srcsteps is positive, and noopiter is not set.

2. if gminsteps and srcsteps are both -1. Direct convergence will be attempted whether or not noopiter
is set in this case.

For very simple sircuits, when the direct method succeeds, this will probably yield the fastest oper-
ating point calculation. However, in these simple cases the difference is too small to be noticeable by
the user, although in some automated tasks the accumulated time difference might be important.

By default, the next attempt will use source stepping. This is different from SPICE3, which would
attempt gmin stepping before source stepping. However, it appears that source stepping is more effective
on large CMOS circuits, so we try it first. However, if the option variable gminfirst is set, gmin stepping
will be attempted before source stepping.

The default value of srcsteps is 0, which indicates use of the new dynamic source stepping algorithm.
This algorithm takes variable-sized steps when raising the source values to their specified initial values,
and backs up and tries again with a smaller step on failure. The SPICE3 source stepping takes fixed-size
steps, and aborts on failure. The dynamic approach is far more effective. If srcsteps is positive, the
SPICE3 approach will be used, with the given number of steps. If srcsteps is -1, source stepping will be
skipped.

The gmin stepping, which is attempted if convergence has not been achieved, is similar. The default
value of the gminsteps option variable is 0, indicating use of the dynamic gmin stepping algorithm. This
reduces the “gmin” conductivity that is added to the circuit to achieve convergence in variable sized
increments. If convergence fails, a smaller step is tried. The SPICE3 gmin stepping algorithm uses fixed-
size steps (actually, orders of magnitude) when reducing gmin, and if convergence fails, the operation
is aborted. This is done if gminsteps is given a positive value. The dynamic algorithm is much more
effective. If gminsteps is given a value -1, gmin stepping is not done.

Another difference between WRspice and Berkeley SPICE is that in WRspice, the minimum value
of conductance allowed on the matrix diagonal, in any analysis mode, is the value of the gmin option
variable. This defaults to 10−12Si. This avoids a singular matrix in various cases, such as series capacitors
in dc analysis, or elements that have a floating node.

There are option variables which set the number of iterations to allow between steps when using
the dynamic stepping algorithms. These are itl2gmin and et itl2src, both of which default to 20. The
“itl2” prefix derives from the fact that in earlier versions of WRspice, the dc sweep iteration limit was
used, which is set with the ¡a href=”itl2”¿¡tt¿itl2¡/tt¿¡/a¿ variable and defaults to 100. It is probably
counter-intuitive that reducing this number is a good thing, however this proved to be effective in solving
some difficult convergence problems, in particular with some of the Verilog-A bipolar transistor models
(hicum2, mextram). What happens is that when iterating and not converging, the computed matrix
element entries can blow up to a point where the matrix becomes singular, and the run aborts. With

2.7. ANALYSIS SPECIFICATION 57

the smaller iteration limit, the limit is reached before the matrix becomes singular, so the step gracefully
fails, and a smaller step is then attempted, which converges.

Operating point analysis can be halted by the user by pressing Ctrl-C. However, unlike other analysis
types, it can not be resumed.

If the trantrace debugging variable is set to a nonzero value, during operating point analysis, messages
will be printed giving information about the analysis, including iteration counts and stepsize. This applies
for any operating point calculation, not just in transient analysis.

The dcmu option variable can be used to improve convergence during operating point analysis. This
variable takes a value of 0.0–0.5, with the default being 0.5. When set to a value less than 0.5, the
Newton iteration algorithm mixes in some of the previous solution, which can improve convergence. The
smaller the value, the larger the mixing. This gives the user another parameter to twiddle when trying
to achieve dc convergence. This can be set from the Convergence page of the Simulation Options
tool.

2.7.7 .pz Line

The pole-zero analysis portion of WRspice computes the poles and/or zeros in the small-signal ac transfer
function. The program first computes the dc operating point and then determines the linearized, small-
signal models for all the nonlinear devices in the circuit. This circuit is then used to find the poles and
zeros.

Two types of transfer functions are allowed: one of the form (output voltage)/(input voltage) and
the other of the form (output voltage)/(input current). These two types of transfer functions cover all
the cases and one can find the poles/zeros of functions like input/output impedance and voltage gain.
The input and output ports are specified as two pairs of nodes.

The pole-zero analysis works with resistors, capacitors, inductors, linear controlled sources, indepen-
dent sources, BJTs, MOSFETs, JFETs and diodes. Transmission lines and Josephson junctions are not
supported.

General Form:
.pz node1 node2 node3 node4 cur|vol pol|zer|pz

Examples:
.pz 1 0 3 0 cur pol

.pz 2 3 5 0 vol zer

.pz 4 1 4 1 cur pz

The keyword cur stands for a transfer function of the type (output voltage)/(input current) while
vol stands for a transfer function of the type (output voltage)/(input voltage). The keyword pol stands
for pole analysis only, zer for zero analysis only and pz for both. This feature is provided mainly because
if there is a nonconvergence in finding poles or zeros, then, at least the other can be found. Finally,
node1 and node2 are the two input nodes and node3 and node4 are the two output nodes. Thus, there
is complete freedom regarding the output and input ports and the type of transfer function.

In interactive mode, the pz command, which takes the same arguments as the .pz line, can be used
to initiate pole-zero analysis.

Pole-zero analysis is not available if Josephson junctions are included in the circuit.

58 CHAPTER 2. WRSPICE INPUT FORMAT

2.7.8 .sens Line

General Form:
.sens outvar [ac dec|oct|lin np fstart fstop] [dc|sweep args]

Examples:
.sens v(1,out)

.sens v(out) ac dec 10 100 100k

.sens i(vtest)

The sensitivity of outvar to all non-zero device parameters is calculated when the sensitivity analysis
is specified. The parameter outvar is a circuit variable (node voltage or branch current). Without the ac
specification, the analysis calculates sensitivity of the dc operating point value of outvar . If an ac sweep
specification is included, the analysis calculates sensitivity of the ac values of outvar . The parameters
listed for ac sensitivity are the same as in an ac analysis. The output values are in dimensions of change
in output per unit change of input (as opposed to percent in output or per percent of input).

The optional dc sweep is a dc analysis specification which will cause the sensitivity analysis to be
performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

In interactive mode, the sens command, which takes the same arguments as the .sens line, can be
used to initiate sensitivity analysis.

2.7.9 .tf Line

General Form:
.tf outsrc | v(n1[,n2]) insrc [ac dec|oct|lin np fstart fstop] [dc|sweep args]

Examples:
.tf v(5,3) vin

.tf I(vload) vin ac dec 10 1 1e12

.tf v(2) vin ac dec 10 1 1meg

.tf v(4) vx dc vcc 5 10 1

.tf v(5) vy ac dec 10 1 1meg dc 5 10 1

The .tf line defines the small-signal output and input for the dc or ac small-signal analysis. The
first parameter is the small-signal output variable (node voltage or name of inductor or voltage source
for branch current) and insrc is the small signal input source. If this line is included, WRspice computes
the dc or ac small-signal value of the transfer function (output/input), input resistance or impedance,
and output resistance or impedance. For the first example, WRspice would compute the ratio of v(5,3)
to vin, the small signal input resistance at vin, and the small-signal output resistance measured across
nodes 5 and 3. If the ac parameters are given, the .tf line produces output vectors representing the
impedance and other parameters at each frequency point.

The optional dc sweep is a dc analysis specification which will cause the transfer function analysis to
be performed at each point of the dc sweep. The small-signal parameters are reevaluated at every sweep
point, and the output vectors will be multidimensional.

In interactive mode, the tf command, which takes the same arguments as the .tf line, can be used
to initiate transfer function analysis.

2.7. ANALYSIS SPECIFICATION 59

2.7.10 .tran Line

The transient analysis portion of WRspice computes the transient output variables as a function of time
over a user-specified time interval. The initial conditions are automatically determined by a dc analysis.
All sources which are not time dependent (for example, power supplies) are set to their dc value. The
transient time interval is specified on a .tran control line.

General Form:
.tran tstep1 tstop1 [[start=]tstart1 [tmax]] [tstep2 tstop2 ... tstepN tstopN] [uic]

[scroll | segment base delta] [dc|sweep args]

Examples:
.tran 1ns 100ns

.tran 1ns 1000ns 500ns

.tran 10ns 1us uic

The tstep values are the printing or plotting increments for output, in the ranges

tstep1 : tstart <= time < tstop1
tstep2 : tstop1 <= time < tstop2

...
tstepN : tstopN-1 <= time < tstopN

The tstart is the initial time, assumed 0 if not given. This can be preceded by a “start=” keyword,
for HSPICE compatibility. The transient analysis always begins at time zero internally. In the interval
[0, tstart), the circuit is analyzed (to reach a steady state), but no outputs are stored. Subsequently, the
circuit is analyzed and outputs are stored.

The parameter tmax is the maximum internal timestep size that WRspice will use. The internal
timestep is computed dynamically from the circuit. The output generated at the specified tstep points
is interpolated from the “real” internal time points. The tmax parameter can be used when one wishes
to guarantee a computing interval which is smaller than the output increment, tstep.

If not given, the effective tmax is taken as the smaller of tstep, and (tstop – tstart)/50. This is
different from Berkeley SPICE3, which chooses the larger value (which may be a bug), and earlier
releases of WRspice.

It is important to understand the consequences of this difference. This change was made to improve
results from circuits containing only devices that weakly limit the time step (e.g. MOSFETs, ring
oscillator results) which otherwise can be ugly and wrong. This allows users of such devices to get good
results without having to set an explicit maximum time step in the tran line.

However, if the printing time increment tstep is too small, the simulation time can dramatically
increase, since these points are actually being calculated and not just interpolated. The user in this
situation has several options:

1. Accept the longer analysis time as the cost of greater accuracy.

2. Use a larger printing time increment (tstep).

3. Use the tmax parameter to set a larger limit.

4. Use .options oldsteplim to use the old limit of (tstop – tstart)/50.

60 CHAPTER 2. WRSPICE INPUT FORMAT

The uic keyword (use initial conditions) is an optional keyword which indicates that the user does
not want WRspice to solve for the quiescent operating point before beginning the transient analysis. If
this keyword is specified, WRspice uses the values specified using ic=... on the various elements as the
initial transient condition and proceeds with the analysis. If the .ic line has been given, then the node
voltages on the .ic line are used to compute the initial conditions for the devices. See the description
of the .ic line (2.4.2) for its interpretation when uic is not specified.

If Josephson junctions are present in the circuit, if uic is not given, the operating point is computed
taking the Josephson junctions as shorted (actually, a resistance of 1uV/Ic). After this, the Josephson
junctions will be given any specified initial voltage and phase (or these will be reset to exactly zero with
no initial conditions given). Thus, the Josephson junctions are always “uic”, but the circuit is not in
uic mode unless uic is actually given in the transient analysis command.

In addition, with Josephson junctions present the value of current flowing through all inductors in
the circuit is reset to zero before transient analysis and after the operating point is calculated. This is
required to enforce the flux and Josephson phase relationship around loops of Josephson junctions and
inductors. The algorithm requires that both phase and flux start at zero, and evolve acording to the
forces applied by the rest of the circuit.

In 3.2.11 and earlier releases, the presence of Josephson junctions would automatically cause simula-
tion in uic mode. as if “uic” was included in the tran command. In releases after 3.2.11, the presence
of Josephson junctions does not automatically specify uic mode. Instead, as with simulations without
Josephson junctions, a dc operating point calculation is performed to obtain the initial node voltages,
which are used as the starting point for transient analysis. If Josephson junctions are present, the calcu-
lated inductor currents are zeroed before transient analysis starts, which is a technical requirement for
maintaining the flux/phase relationship in JJ/inductor loops.

If a circuit containing Josephson junctions has all sources with a time=0 value of zero, then it is
possible to give uic explicitly in the tran command line. This will avoid the dc operating point analysis,
and therefor perhaps simulate slightly faster.

If a circuit has sources that have nonzero time=0 values, it is not recommended to give uic, though
it will typically work. Effectively, there is a large initial transient, which may initialize multi-valued
Josephson circuits into an unexpected mode, or produce other undesirable effects.

The advantage of the present non-uic approach when simulating with Josephson junctions is that it
facilitates simulating hybrid semiconductor/superconductor circuits. In this case, a dc operating point
calculation is generally needed to initialize the semiconductor circuitry.

The scroll keyword is useful in the tran command in interactive mode. If the scroll keyword
is given, the simulation will continue indefinitely, until stopped by a stop command or interrupt. The
time range of data tstop - tstart behind the current time is retained in the plot.

If the segment keyword is given, along with a character string token base and real value delta,
individual rawfiles are output for each range of delta as the simulation advances. The internal plot data
are cleared after each segment is output. The files are named with the base given, as base.s00, base.s01,
etc. This will not happen if a rawfile is being produced. If scroll is also given, it is ignored. If a
dc analysis is chained, it is legitimate to pass a delta of zero, in which case a file is produced for each
cycle. Otherwise, the delta should be a multiple or submultiple of tstop, or the files will be difficult to
interpret. It is an error if delta is nonpositive if there is no chained dc analysis. The purpose of this
feature is to facilitate extremely lengthly transient analysis runs.

The optional dc sweep is a dc analysis specification which will cause the transient analysis to be
performed at each point of the dc sweep. The dc operating point is reevaluated at every sweep point,
and output vectors will be multidimensional. The optional parameters before dc can be omitted in this

2.8. OUTPUT GENERATION 61

case, as the parser recognizes the “dc” keyword as the start of a dc sweep specification. If the scroll

keyword is given, the dc sweep is not available.

In interactive mode, the tran command, which takes the same arguments as the .tran line, can be
used to initiate transient analysis.

During transient analysis, a special vector @delta maps to the (most recent) internal time step. To
use in a plot, it must be saved first (using a .save line or the save command). It is sometimes useful
or interesting to see how the internal timestep varies in a simulation.

2.8 Output Generation

In these lines, outputs can be specified using the SPICE2 notation. The form is vxx(node1[,node2]),
or ixx(branch device). The xx can be left out, indicating the basic voltage or current, or be one of the
following.

m Magnitude
p Phase
r Real part
i Imaginary part
db Decibel value (20log10)

These forms are not usually needed for other than ac analysis. The (node1, node2) notation indicates
a voltage difference between nodes node1 and node2. If node2 and the associated comma are left out, the
ground node is assumed. Output variables for noise, distortion, and some other analyses have a different
general form. See the description of the analysis for the output variable names.

2.8.1 .save Line

General Form:
.save [output] vector vector ...

Examples:
.save i(vin) v(3)

.save @m1[id] vm(3,2)

When a rawfile is produced, the vectors listed in the .save line are recorded in the rawfile. The
standard vector names are accepted; for the form v(a, b), the vectors v(a) and v(b) are saved (not
the difference vector). The voltage vector(s) are saved for each of the forms vm, vp, vr, vi, and vdb.
Similarly, the branch current is saved on mention of any of the corresponding i forms. A token without
parenthesis is interpreted as a node name, e.g. , “1” implies v(1) is saved.

If no .save line is given or no entries are found, then all vectors produced by the analysis are saved.
If .save lines are given, only those vectors specified are saved. The keyword “output” specifies that the
vector names found in all .print, .plot, and .four lines are to be saved, in addition to any vectors
listed on the .save lines.

In WRspice release 3.2.11 and later, the keyword .probe is a synonym for .save. This is for rough
compatibility with other simulators.

There is an analogous save command available within WRspice.

62 CHAPTER 2. WRSPICE INPUT FORMAT

2.8.2 .print Line

General Form:
.print prtype ov1 [ov2 ... ov8]

Examples:
.print tran v(4) i(vin)

.print dc v(2) i(vsrc) v(23,17)

.print ac vm(4,2) vr(7) vp(8,3)

The .print line defines the contents of a tabular listing of one to eight output variables. The
parameter prtype is the type of the analysis (dc, ac, tran, noise, etc.) for which the specified outputs
are desired. Variables can take the forms tabulated above. The actual format recognized is that of the
print command, which is far more general. There is no limit on the number of .print lines for each
type of analysis.

2.8.3 .plot Line

General Form:
.plot pltype ov1 [ov2 ...] [(min,max)]

Examples:
.plot dc v(4) v(5) v(1)

.plot tran v(17,5) (2,5) i(vin) v(17) (1,9)

.plot ac vm(5) vm(31,24) vdb(5) vp(5)

.plot disto hd2 hd3(R) sim2

.plot tran v(5,3) v(4) (0,5) v(7) (0,10)

The .plot line defines the contents of one plot from one or more output variables. In SPICE2, the
number of variables was limited to eight, butWRspice has no preset limit. In SPICE2, each variable could
be followed by a comma-separated pair of numbers in parentheses which indicated the plotting range.
WRspice supports this construct only as the last argument, and it applies to all variables. The parameter
pltype is the type of analysis (ac, dc, tran, etc.) for which the specified outputs are desired. The syntax
for the ovN is identical to that for the .print line and for the plot command in the interactive mode.

This line generates ASCII plots in batch mode, for compatibility with SPICE2. The overlap of two
or more traces on any plot is indicated by the letter X.

When more than one output variable appears on the same plot, the first variable specified is printed
as well as plotted. If a printout of all variables is desired, then a companion .print line should be
included.

There is no limit on the number of .plot lines specified for each type of analysis.

2.8.4 .four Line

General Form:
.four freq ov1 [ov2 ov3 ...]

2.9. PARAMETER MEASUREMENT AND TESTING 63

Example:
.four 100k v(5)

The .four line controls whether WRspice performs a Fourier analysis as a part of the transient
analysis. The parameter freq is the fundamental frequency, and ov1,..., are the output variables for
which the analysis is desired. The Fourier analysis is performed over the interval [tstop-period, tstop],
where tstop is the final time specified in transient analysis, and period is one period of the fundamental
frequency. The dc component and the first nine harmonics are determined. For maximum accuracy,
tmax (see the .tran line, in 2.7.10) should be set to period/100 (or less for very high Q circuits).

2.8.5 .width Line

General Form:
.width out=wid

This line is ignored, except in batch mode. The wid is the number of columns to be used for printing
output. Internally, this effectively sets the width variable.

2.9 Parameter Measurement and Testing

WRspice has provision for parameter measurement during a simulation, and for stopping the run on a
particular event or condition. Internally, these are implemented from the same components and have
similar syntax and features.

2.9.1 .measure Line

General Form:
measure analysis resultname point | interval [measurements] [postcmds]
measure analysis resultname param=expression [postcmds]

The .measure line allows one to identify a measurement point or interval, and to evaluate an expres-
sion at that point, or call a number of measurement primitives that apply during the interval, such as
rise time or pulse width. There is also a measure command that uses the same syntax, but will apply to
all circuits when active. See the description of that command for information about syntax and usage.

2.9.2 .stop Line

General Form:
.stop analysis point | interval [postcmds]

The .stop line allows the simulation to pause on a specified condition. These lines may be useful
as sanity checks that will terminate a simulation and alert the user if the simulation is diverging from
expected behavior. There is also a stop runop command that uses the same syntax. See the description
of that command for information about syntax and usage.

64 CHAPTER 2. WRSPICE INPUT FORMAT

2.10 Control Script Execution

WRspice includes a script parsing and execution facility, which uses a syntax similar to that of the UNIX
C-shell and will be described in 3.15. Statements which are interpreted and executed by this facility can
be included in circuit files through use of the .exec, .control, and .postrun tokens. These statements
are enclosed in a block beginning with .exec, .control, or .postrun and ending with .endc. The
.exec, .control, and .postrun keywords are followed by an optional block name, and .endc lines
contain only the keyword.

2.10.1 .exec, .control, .postrun, and .endc Lines

General Form:
.exec [blockname]
shell commands ...
.endc

.control [blockname]
shell commands ...
.endc

.postrun [blockname]
shell commands ...
.endc

Example:
.exec

set vmin = 2.5

.endc

.control

let maxv = v(2)*v(19)

.endc

The shell commands are any commands which can be interpreted by the WRspice shell.

If a blockname is given, the script lines are parsed, and the executable object saved as a codeblock
under blockname. The block can be executed by invoking the blockname from the command line or in a
script or codeblock.

In this usage, there is no difference between the .exec, .control, and .postrun keywords, and there
is no connection of the block to any other content in tne same file. One file can be used to load any
number of named codeblocks. Blocks with an existing name will replace the existing content.

If the block is unnamed, the difference between .exec and .control is that for .exec, the commands
are executed before the circuit is parsed, and for .control, the commands are executed after the circuit is
parsed, assuming that the file also contains a circuit description. If not, there is again no real distinction,
but unlike for named blocks, unnamed blocks will be executed when read.

Commands in a .postrun block are executed after every simulation that completes normally (i.e.,
without errors or interrupts). This can be used to dump circuit data to a file, for example, without
having to explicitly give commands or write a script.

2.10. CONTROL SCRIPT EXECUTION 65

When the circuit is parsed, shell variable substitution (see 3.15.9) is performed. Shell variable
references begin with ‘$’, and are replaced with the text to which the shell variable has been set, unless
the character before the ‘$’ is a backslash (‘\’), which prevents substitution and is usually taken as a
comment start. The variable can be set from the shell with the set command, and a variable is also set
if it is given in a .options line. Any text in a circuit description can reference a shell variable, and this
offers a powerful capability for manipulating the circuit under the control of the shell. As the variables
must be set before the circuit is parsed, the set commands which perform this action can be included in
the .exec block of the circuit file itself, or in the .options line. For example, suppose one has a circuit
with a large number of resistors, each the same value, but it is desired to run the circuit for several
different values. The resistor lines could be specified as

r31 11 36 $rvalue

r32 12 35 $rvalue

etc.

and elsewhere in the file one would have

.exec

set rvalue = 50

.endc

The 50 can be changed to any value, avoiding the need to change the many resistor lines between
simulation runs. Note that the .exec block must be used, if .control was used instead, the variables
would not be set until after the circuit is read, which means that they will not be properly defined when
the expansion is performed. The .control block is useful for initiating analysis and post-processing.

Note that there is an alternative method of parameterization using the .param line.

The same effect could have been obtained from the use of the .options line as

.options rvalue=50

and, as the .options lines are expanded after the .exec lines are executed, one could have the following
contrived example:

.exec

set rtmp=50

.endc

.options rvalue = $rtmp

The shell variables set in .exec and control blocks remain set until explicitly unset, however variables
set in .options lines are active only when the circuit is the current circuit, and cannot be unset (with
the unset command) from the shell. A variable set in the .options line will be superseded by the same
variable set from the shell, .exec or .control lines.

Commands can also be included using a different mechanism, which might be useful if the circuit file
is to be used with other simulators. This mechanism uses comment lines to include shell commands. If
a comment begins with the characters “*@”, the remainder of the line is taken as a shell command just
as if it had been enclosed in .exec and .endc. If a comment line begins with the characters “*#”, the
remainder of the line is treated as if it had been enclosed in .control and .endc. Thus, in the example
above, the .exec block could be replaced with the line

66 CHAPTER 2. WRSPICE INPUT FORMAT

*@ set rvalue = 50

Obviously, this facility allows the possibility that a real comment can be misconstrued as a shell com-
mand. The user is suggested to leave space after the “*” in intended comments, as a general rule.

If a circuit contains an .exec block, a plot structure is created to hold any vectors defined in the
.exec block while the circuit is parsed. Thus, if the circuit references vectors defined in the .exec block,
the reference will be satisfied, and the variables will have initial values as defined in the .exec block.
Similar to variables, vectors can be used to pass values to the curcuit, through use of the substitution
form “$&vecname”.

In releases 4.2.4 and earlier, this plot was temporary, and was destroyed once the circuit lines were
processed. In present releases, this plot is retained, if it contains any vectors.

2.10.2 .check, .checkall, .monte, and .noexec Lines

General Form:
.check

.checkall

.monte

.noexec

WRspice provides a built-in two-dimensional operating range analysis as well as Monte Carlo analysis. A
complete description of the file formats used in these analyses is provided in Chapter 5.1. The analysis
is initiated with the check command described in 4.6.6, or is performed immediately if in batch mode.
Files intended for operating range or Monte Carlo analysis may contain the keywords .check, checkall,
or .monte. In each case, the execution of the .control block is suppressed when the circuit is read,
however the .exec block is executed normally. The .noexec keyword also suppresses execution of the
.control block, but does not predispose the circuit to any particular type of analysis.

The .check line specifies operating range analysis, where the contour of operation is to be determined.
In the two-dimensional space of the variables being varied, the rows are evaluated from the left until a
“pass” condition is found. The analysis then resumes at the far right, working left until a “pass” point
is found. The area between the pass points is never evaluated. If there are islands of fail points within
the pass region, they will not be found with this algorithm. The .checkall line, if used instead, will
evaluate all of the points. This slows evaluation, but is more thorough.

The .monte line specifies Monte Carlo analysis. The .noexec line simply bypasses the execution of
the .control lines when the file is read. It is not an error to have more than one of these lines present
in the file (but this is poor practice). The .monte line has precedence, and .checkall has precedence
over .check. The .noexec is assumed if any of the other lines are given.

2.11 Verilog Interface

WRspice contains a built-in Verilog parser/simulator. Verilog is a popular hardware description language
for digital logic circuits. The integration of Verilog with SPICE provides a wealth of new capability:

• Direct support for analog/digital mixed-mode simulations.

• The ability to co-simulate in digital and anallog domains, possibly using the digital result to
validate the SPICE simulation.

2.11. VERILOG INTERFACE 67

• The ability to create simulation control automation in a Verilog block.

• The ability to create measurement automation in a Verilog block.

• The ability to create pulse sources that have complex output and are independent of the transient
time scale.

2.11.1 .verilog, .endv Lines

General Form:
.verilog

In WRspice, all Verilog code is placed into a block of statements starting with a line in the form

.verilog gatedly dbgflags

and ending with a .endv line. The gatedly is a word starting with ‘s’ or ‘f’ (case insensitive), any other
word is ignored. This specifies use of slow, fast, or typical gate delays. If no such word appears, the
default is typical. The dbgflags is a hex integer in C format (0xnnnn) where the nnnn is a hex number
using digits 0–f. The set bits in this number correspond to the debugging flags as would be supplied in
the -d option to the Whiteley Research VL Verilog simulator. See the VL documentation for information
about the available flags. This feature is unlikely to be useful for most users.

The lines within Verilog block define the modules of a hierarchy, including a top-level “stimulus”
module. This is ordinary Verilog syntax, using the subset of the complete language description that is
supported by the VL simulator.

The Verilog simulation is run in parallel with transient analysis. Precisely how this occurs is controlled
by the vastep option. This can be supplied on a .options line, or set as a variable before the simulation
is run. The value is an unsigned integer.

0
The Verilog simulation is advanced by calling the vastep command, likely through a callback
function called from a .stop line.

1 (the default)
The Verilog simulation is advanced at each transient analysis time step.

X (positive integer greater than 1)
The Verilog simulation is advanced after X transient time steps.

When vastep is not zero, the Verilog is actually advanced at the first time step where the simulation
time is equal to or larger than the specified time. If vastep is zero, the Verilog advancement occurs
when the vastep command is run, which if called from a callback will execute at the current time point.
In both cases Verilog is advanced after SPICE has converged at the point.

Signals are passed to the Verilog block with .adc statements, and signals from the Verilog block are
accessed through referencing voltage or current sources.

Output signals from the Verilog block are obtained through voltage or current sources in the circuit.
The voltage/current source must refer by name to a Verilog variable in the scope of the top module,
or use the Verilog “dot” path notation. The voltage/current source is set to the binary value of the

68 CHAPTER 2. WRSPICE INPUT FORMAT

variable, and has a built-in rise/fall time of one time increment. The variable reference can contain a
bit or part select field.

A good primer on Verilog is: Samir Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis,
SunSoft Press (Prentice Hall) ISBN 0-13-451675-3. The full story is in IEEE Standard 1364-1995.

An example input file that uses a .verilog block (ex8) is given in A.3. Other examples including
prbs.cir and nor vamc.cir are provided with WRspice.

2.11.2 .adc Line

General Form:
.adc

This line of WRspice input converts a SPICE signal into a digital signal for the Verilog block. Such lines
are used only as an adjunct to Verilog.

General Form:
.adc digital var node name [offset] [delta]

The parameters have the following interpretation:

digital var
A qualified name of a variable in the Verilog block, which can include a range specification.

node name
The node of the circuit to convert, not including any “v()"”. Current branches can be accessed
as “name#branch”.

offset (optional, default 0)
An optional real number subtracted from value before conversion (default 0).

delta (optional, default 1)
The size of an lsb for conversion. This is optional, defaulting to 1.

The transfer function is:

value = value - offset
if (value > 0)

value = value + 0.5*delta

else

value = value - 0.5*delta

conversion = (integer) (value/delta)

The offset and delta arguments to the .adc line can be expressions. These will be evaluated once
only, as the circuit is read in.

2.12. CIRCUIT ELEMENTS 69

2.12 Circuit Elements

Each element in the circuit is specified by an element line that contains the element name, the circuit
nodes to which the element is connected, and the values of the parameters that determine the electrical
characteristics of the element. The first letter of the element name specifies the element type (case
insensitive). For example, a resistor name must begin with the letter ‘R’ or ‘r’ and can contain one or
more characters. Hence, R, r1, Rse, ROUT, and r3ac2zY are valid resistor names.

In the descriptions that follow, data fields that are enclosed in square brackets ‘[’, ‘]’ are optional.
All indicated punctuation (parentheses, equal signs, etc.) is optional and merely indicates the presence
of any delimiter. A consistent style such as that shown here will make the input easier to understand.
With respect to branch voltages and currents, WRspice uniformly uses the associated reference convention
(current flows in the direction of voltage drop).

The circuit cannot contain a loop of voltage sources. If a dc operating point analysis is performed,
which is true for all analysis except for transient analysis with the uic (use initial conditions) flag set, the
circuit can not contain a loop of voltage sources and/or inductors and cannot contain a cutset of current
sources and/or capacitors. In transient analysis with the uic flag set (which is always the case when
Josephson junctions are present), inductor/voltage source loops are allowed, as are capacitor/current
source cut sets. However, parallel voltage sources and series current sources are not accepted. It is not
strictly necessary that each node in the circuit have a dc path to ground with the uic flag given, however
convergence problems may result. It is sometimes necessary to add a large-valued resistor to ground in
these cases. In general, nodes should have at least two connections.

This and the following sections describe the devices available in the standard device library linked
into WRspice. The device library contains the element and model code for each device, as well as the
parser for the element specification lines.

Most of the code for the device library (with the exception of restricted third-party semiconductor
models) is available upon request from Whiteley Research Inc. In theory, users can build their own,
customized device library for use with WRspice. In this case, devices can be added to or deleted from
the library, or modified. Contace Whiteley Research for more information.

This format for most device lines, including the key letters, number of nodes, etc., is standard for the
SPICE input language, but is set entirely by the code in the device library, and hence can be abridged
in a custom device library. The descriptions below pertain to the standard library.

The following is a complete list of circuit elements available in the standard WRspice library, and the
key letter (the first letter of the device name).

70 CHAPTER 2. WRSPICE INPUT FORMAT

Passive Elements
Capacitor c

Inductor l

Mutual Inductor k

Resistor r

Current-Controlled Switch w

Voltage-Controlled Switch s

General Transmission Line t

Lossy Transmission Line o

Uniform RC Line u

Voltage and Current Sources
General Voltage Source v

General Current Source i

Arbitrary Source a

Voltage-Controlled Current Source g

Voltage-Controlled Voltage Source e

Current-Controlled Current Source f

Current-Controlled Voltage Source h

Semiconductor Devices
Junction Diode d

Bipolar Junction Transistor q

Junction Field-Effect Transistor j

MESFET z

MOSFET m

Superconductor Devices
Josephson Junction b

The models for the semiconductor and some other devices require many parameter values. Often,
many devices in a circuit are defined by the same set of device model parameters. For these reasons, a
set of device model parameters is defined on a separate .model line and assigned a unique model name.
The device element lines in WRspice then refer to the model name. This scheme alleviates the need to
specify all of the model parameters on each device element line.

The show command with the -D option is useful for printing a list of the parameters names that can
be used on a device instance line. Only the parameters not listed as “RO” (read-only) can be specified
on the line.

2.13 Device Models

Many devices reference models, which contain values for the numerous parameters describing the device,
which would be cumbersome to include in each device reference. Device models are specified on a .model
line. The model can be referenced by any number of devices of the corresponding type.

General Form:
.model modname type (pname1=pval1 pname2=pval2 ...)

Examples:
.model mod1 npn (bf=50 is=1e-13 vbf=50)

.model intercon ltra (r=0.2 l=9.13nh c=3.65pf len=5 rel=.002 compactrel=1.0E-4)

2.13. DEVICE MODELS 71

The .model line specifies a set of model parameters that will be used by one or more devices. The
modname is the model name, which is case insensitive in matching references, and type is one of the
following types:

c Capacitor model
l Inductor model
r Resistor model
sw Voltage-controlled switch model
csw Current-controlled switch model
tra General transmission line model
ltra Lossy transmission line model
urc Uniform RC line model
d Diode model
npn NPN BJT model
pnp PNP BJT model
njf N-channel JFET model
pjf P-channel JFET model
nmf N-channel MESFET model
pmf P-channel MESFET model
nmos N-channel MOSFET model
pmos P-channel MOSFET model
jj Josephson junction model

Parameter values are defined by appending the parameter name, as given for each model type,
followed by an equal sign and the parameter value. Model parameters that are not given a value are
generally assigned default values.

The show command with the -M option is useful for listing the parameters that can be specified to
a model. Only the parameters not listed as “RO” (read-only) can appear in a .model line.

In the tables that follow, the various model parameters are listed. The “units” field of the tables
provides the assumed units of measure for the parameter, which is expressed using symbols from the
following table.

M meters
cM centimeters
µM microns
S seconds
Hz hertz
F farads
H henries
Ω ohms
C degrees Celsius
✷ square
A amperes
V volts
eV electron-volts
deg degrees

72 CHAPTER 2. WRSPICE INPUT FORMAT

2.13.1 Default Models

.defmod

Some simple devices support a “default model” in WRspice, meaning that if no model name is given
in an instance line, an internally provided default model will be used. Internally, all devices have a model
structure, which is a container for the instances of that device type. It is possible to access the default
model used for various devices with .defmod lines. This will affect all devices of the corresponding type
that are not explicitly given a model in the instantiation line.

General Form:
.defmod type (pname1=pval1 pname2=pval2 ...)

Examples:
.defmod r (m=1.2)

.model v (temp=300 tc1=.001

The type is the name of the device model (the second name that would be provided on a .model line)
such as R (for resistors), C (for capacitors), and L (for inductors).

The type name is followed by a list of parameter assignments, optionally enclosed in parentheses.
These are precisely the same as would appear in a .model line for the device. These provide the values
for the parameters to be used in the default model.

Not all devices support default models, meaning that lack of a model name in an instance line is an
error. In particular devices that have a variable terminal count (optional nodes) require a model name
and therefor don’t support a default model.

It is probably also not possible to use a level parameter in a default model, and binning parameters
will be ignored at best. Anything too fancy should be done through a normal model, or there may be
trouble.

The capability is very powerful, but might cause headaches, too, so the user should beware. For
example, if the following line is added to an existing deck

.defmod R(M=1.2)

all “standard” resistors in the deck will have their values reduced by about twenty percent. This can be
useful for corner analysis, but don’t let the line get “lost” in a big file.

2.13.2 Analysis at Different Temperatures

All input data for WRspice is assumed to have been measured at a nominal temperature of 25C, which
can be changed by use of the tnom parameter on the .options control line. Note that this is the same
default temperature used in HSPICE, but is not the same as in Berkeley SPICE3 or in WRspice releases
prior to 3.2.15, which was 27C.

This value can further be overridden for any device which models temperature effects by specifying
the tnom parameter on the model itself. The circuit simulation is performed at a temperature of 25C
unless overridden by a temp parameter on the .options control line. Individual device instances may
further override the circuit temperature through the specification of a temp parameter on the instance.

2.13. DEVICE MODELS 73

Temperature dependent support is provided for resistors and semiconductor devices. The details of
the temperature adjustments can be found in the description of the models. For details of the BSIM
temperature adjustment, see [5] (BSIM1), [6] (BSIM2), and [8] (BSIM3).

Temperature appears explicitly in the exponential terms of the BJT and diode model equations. In
addition, saturation currents have a built-in temperature dependence. The temperature dependence of
the saturation current in the BJT models is determined by:

Is(T1) = Is(T0)

(

T1

T0

)XTI

exp

(

Egq(T1 − T0)

kT1T0

)

where k is Boltzmann’s constant, q is the electronic charge, Eg is the energy gap which is a model
parameter, and XTI is the saturation current temperature exponent (also a model parameter, and
usually equal to 3).

The temperature dependence of forward and reverse beta is according to the formula:

β(T1) = β(T0)

(

T1

T0

)XTB

where T1 and T0 are in Kelvin, and XTB is a user-supplied model parameter. Temperature effects on
beta are carried out by appropriate adjustment to the values of βF , ISE , βR, and ISC (WRspice model
parameters bf, ise, br, and isc, respectively.

Temperature dependence of the saturation current in the junction diode model is determined by:

IS(T1) = IS(T0)

(

T1

T0

)
XTI

N

exp

(

Egq(T1 − T0)

NkT1T0

)

where N is the emission coefficient, which is a model parameter, and the other symbols have the same
meaning as above. Note that for Schottky barrier diodes, the value of the saturation current temperature
exponent, XTI, is usually 2.

Temperature appears explicitly in the value of junction potential, φ (in WRspice, phi), for all device
models. The temperature dependence is determined by:

φ(T) =
kT

q
ln

(

NaNd

Ni(T)2

)

where k is Boltzmann’s constant, q is the electronic charge, Na is the acceptor impurity density, Nd is
the donor impurity density, and Ni is the intrinsic carrier concentration.

Temperature appears explicitly in the value of surface mobility, µ0 (or u0, for the MOSFET models.
This temperature dependence is determined by:

µ0(T) =
µ0(T0)
(

T
T0

)1.5

The effects of temperature on resistors is modeled by the formula:

R(T) = R(T0)[1 + TC1(T − T0) + TC2(T − T0)
2]

where T is the circuit temperature, T0 is the nominal temperature, and TC1 and TC2 are the first and
second-order temperature coefficients.

74 CHAPTER 2. WRSPICE INPUT FORMAT

2.14 Passive Element Lines

2.14.1 Capacitors

General Form:
cname n+ n- [value | modname] [options] [c=expr | poly c0 [c1 ...]]

Options: [m=mult] [ic=val] [temp=temp [tc1=tcoeff1] [tc2=tcoeff2] [l=length] [w=width]

Examples:
cload 2 10 10p

cmod 3 7 cmodel l=10u w=1u

The n+ and n- are the positive and negative element nodes, respectively, and value is the capacitance
for a constant valued capacitor. Alternatively, a capacitor model modname can be specified which
allows for the calculation of the actual capacitance value from strictly geometric information and the
specifications of the process. If value is specified, it defines the capacitance. If modname is specified,
then the capacitance is calculated from the process information in the model modname and the given
length and width. If value is not specified, then modname and length must be specified. If width is not
specified, then it will be taken from the default width given in the model. Either value or modname,
length, and width may be specified, but not both sets.

The parameters accepted by the capacitor are:

m=mult
This is the parallel multiplier which is the number of devices effectively in parallel. The given
capacitance is multiplied by this value. It overrides any ‘m’ multiplier found in the inductor model.

ic=val
The optional initial condition val is the initial (time zero) voltage across the capacitor. The initial
condition (if any) applies only when the uic option is specified in transient analysis.

temp=temp
The temp is the Celsius operating temperature of the capacitor, for use by the temperature coeffi-
cient parameters.

tc1=tcoeff1
The first-order temperature coefficient. This will override the first-order coefficient found in a
model, if given.

tc2=tcoeff2
The second-order temperature coefficient. This will override the second-order coefficient found in
a model, if given.

l=length
The length of the capacitor. This applies only when a model is given, which will compute the
capacitance from geometry.

w=width
The width of the capacitor. This applies only when a model is given, which will compute the
capacitance from geometry.

2.14. PASSIVE ELEMENT LINES 75

c=expr
This can also be given as “cap=expr”, or “capacitance=expr”, where expr is an expression yielding
the capacitance in farads. This is the partial derivative of charge with respect to voltage, possibly
as a function of other circuit variables. This form is applicable when the first token following
the node list is not a capacitance value or model name. It also applies when a model is given, it
overrides the geometric capacitance value.

This is the default keyword, so actually the parameter name and equals sign are optional, a bare
expression is acceptable.

poly c0 [c1 ...]
This form allows specification of a polynomial capacitance, which will take the form

Capacitance = c0 + c1·v + c2·v2...

where v is the voltage difference between the positive and negative element nodes. There is no
built-in limit to the number of terms.

2.14.2 Capacitor Model

Type Name: c

The capacitor model contains process information that may be used to compute the capacitance from
strictly geometric information.

Capacitor Model Parameters
name parameter units default example

m parallel multiplier - 1.0 1.2
cj junction bottom capacitance F/M2 - 5e-5
cjsw junction sidewall capacitance F/M - 2e-11
defw default device width M 1e-6 2e-6
narrow narrowing due to side etching M 0.0 1e-7
tnom parameter measurement temperature C 25 50
tc1 first order temperature coeff˙ Ω/C 0.0 -
tc2 second order temperature coeff˙ Ω/C2 0.0 -

The capacitor has a nominal capacitance computed as below, where l and w are parameters from the
device line.

C = cj·(l−narrow)(w−narrow) + 2cjsw·(l+w−2·narrow)

After the nominal capacitance is calculated, it is adjusted for temperature by the formula:

C(temp) = C(tnom)·(1 + tc1·(temp−tnom) + tc2·(temp−tnom)2)

Finally, the capacitance is multiplied by the parallel multiplication factor (m).

2.14.3 Inductors

General Form:
lname n+ n- [value | modname] [options] [ind=expr | poly c0 [c1 ...]]

76 CHAPTER 2. WRSPICE INPUT FORMAT

Options: [m=mult] [ic=val]

Examples:
llink 42 69 1uh

lshunt 23 51 10u ic=15.7ma

The n+ and n- are the positive and negative element nodes, respectively, and value is the inductance,
for a constant value inductor. An inductor model modname can optionally be specified. Presently the
inductor model holds only a parallel multiplier default, so an inductance must be specified in addition
to the model.

The parameters accepted for the inductor device are:

m=mult
This is the parallel multiplier which is the number of devices effectively in parallel. The given
inductance is divided by this value. It overrides any ‘m’ multiplier found in the inductor model.

ic=val
The initial condition is the initial (time-zero) value of inductor current (in Amps) that flows from
n+, through the inductor, to n-. The initial condition (if any) applies only when the uic option
is specified in transient analysis.

ind=expr
The expr is an expression yielding the inductance in henries. This is the partial derivative of flux
with respect to branch current, possibly as a function of other circuit variables. The keyword can
alse be given as “inductance” or “l”, or may be omitted since this is the default parameter. Note
that the expression can depend on the branch current, in which case the device is nonlinear.

poly c0 [c1 ...]
This form allows specification of a polynomial inductance, which will take the form

Inductance = c0 + c1·i+ c2·i2...

where i is the current flowing through the device from the positive to the negative element nodes.
There is no built-in limit to the number of terms.

2.14.4 Inductor Model

Type Name: l

The inductor model currently contains only one parameter. A geometric model may be added in
future.

Inductor Model Parameters
name parameter units default example

m parallel multiplier - 1.0 1.2

The parallel multiplier acts on each inductor instance of the model, dividing the inductance given by
this value.

2.14. PASSIVE ELEMENT LINES 77

2.14.5 Coupled (Mutual) Inductors

General Form:
kname inductor1 inductor2 value

Examples:
k43 laa lbb 0.999

kxfrmr l1 l2 0.87

The inductor1 and inductor2 are the names of the two coupled inductors found elsewhere in the
circuit, and value is the coefficient of coupling, K, which must be greater than 0 and less than or equal
to 1. Using the “dot” convention, one would have a dot on the first node of each inductor.

This formulation applies when the referenced inductors are linear. The model is probably not exactly
correct in the case of nonlinear inductors, but results may be close enough in some applications. In
general, use of mut with nonlinear inductors is not recommended but allowed.

2.14.6 Resistors

General Form:
rname n1 n2 [value | modname] [options] [r=expr | poly c0 [c1 ...]]

Options: [m=mult] [temp=temp] [tc1=tcoeff1] [tc2=tcoeff2] [l=length] [w=width]
[noise=mult]

Examples:
rload 2 10 10k

rmod 3 7 rmodel l=10u w=1u

The n1 and n2 are the two element nodes, and value is the resistance, for a constant value resistor. A
resistor model modname can alternatively be specified and allows the calculation of the actual resistance
value from strictly geometric information and the specifications of the process. If a resistance is specified
after modname, it overrides the geometric information (if any) and defines the nominal-temperature
resistance. If modname is specified, then the resistance may be calculated from the process information
in the model modname and the given length and width. In any case, the resulting value will be adjusted
for the operating temperature temp if that is specified, using correction factors given. If value is not
specified, then modname and length must be specified. If width is not specified, then it will be taken
from the default width given in the model.

If the resistance can not be determined from the provided parameters, a fatal error results. This
behavior is different from traditional Berkeley SPICE, which provides a default value of 1K.

The paramaters that are understood are:

m=mult
This is the parallel multiplication factor, that represents the number of devices effectivly connected
in parallel. The effect is to multiply the conductance by this factor, so that the given resistance is
divided by this value. This overrides the ‘m’ multiplier found in the resistor model, if any.

temp=temp
The temp is the Celsius operating temperature of the resistor, for use by the temperature coefficient
parameters.

78 CHAPTER 2. WRSPICE INPUT FORMAT

tc1=tcoeff1
The first-order temperature coefficient. This will override the first-order coefficient found in a
model, if given. The keyword “tc” is an alias for “tc1”.

tc2=tcoeff2
The second-order temperature coefficient. This will override the second-order coefficient found in
a model, if given.

l=length
The length of the resistor. This applies only when a model is given, which will compute the
resistance from geometry.

w=width
The width of the resistor. This applies only when a model is given, which will compute the
resistance from geometry.

noise=mult
The mult is a real number which will multiply the linear conductance used in the noise equations.
Probably the major use is to give noise=0.0 to temporarily remove a resistor from a circuit noise
analysis.

r=expr
This can also be given as “res=expr” or “resistance=expr”, where expr is an expression giving the
nominal-temperature device voltage divided by device current (“large signal” resistance) in ohms,
possibly as a function of other variables. This form is applicable when the first token following
the node list is not a resistance value or model name. It also applies when a model is given, it
overrides the geometric resistance value.

poly c0 [c1 ...]
This form allows specification of a polynomial resistance, which will take the form

Resistance = c0 + c1·v + c2·v2...

where v is the voltage difference between the positive and negative element nodes. There is no
built-in limit to the number of terms.

2.14.7 Resistor Model

Type Name: r

The resistor model consists of process-related device data that allow the resistance to be calculated
from geometric information and to be corrected for temperature. The parameters (multiple names are
aliases) available are:

2.14. PASSIVE ELEMENT LINES 79

Resistor Model Parameters
name parameter units default example

m parallel multiplier - 1.0 1.2
tc1, tc, tc1r first order temperature coeff˙ Ω/C 0.0 -
tc2, tc2r second order temperature coeff˙ Ω/C2 0.0 -
rsh sheet resistance Ω/✷ - 50
defl, l default length M 0 2e-6
defw, w default width M 0 2e-6
dl, dlr length reduction due to etching M 0 1e-7
narrow, dw narrowing due to side etching M 0 1e-7
tnom, tref parameter measurement temperature C 25 50
temp default instance temperature C 25 50
kf flicker noise coefficient 0
af flicker noise exponent of current 2
ef flicker noise exponent of frequency 1
wf flicker noise exponent of width 1
lf flicker noise exponent of length 1
noise noise conductance multiplier 1

The sheet resistance is used with the etch reduction parameters and l and w from the resistor element
line to determine the nominal resistance by the formula

R = rsh·(l - dl)/(w - narrow).

The parameters defw and defl are used to supply default values for element w and l if not specified
on the device line. A fatal error is produced if the resistance can’t be determined from given parameters.

After the nominal resistance is calculated, it is adjusted for temperature by the formula:

R(temp) = R(tnom)·(1 + tc1·(temp−tnom) + tc2·(temp−tnom)2)

Finally, the resistance is divided by the parallel multiplier (m) value.

The flicker noise capability can be used in noise analysis. This requires that kf, l, and w be specified.
To use, the instance line must reference a model, but also can have a resistance specified which will
override model calculation of resistance.

Flicker noise model:

Noise = (KF · IAF)/(LeffLF ·WeffWF · fEF)

80 CHAPTER 2. WRSPICE INPUT FORMAT

Param Description Units
Noise Noise spectrum density A2Hz
I Current A
Leff Eff length (L-DL) M
Weff Eff width (W-DW) M
f Frequency Hz
Param Description Default, Range
KF Flicker noise coefficient 0, >= 0
AF Exponent of current 2, > 0
LF Exp. of eff. length 1, > 0
WF Exp. of eff. width 1, > 0
EF Exp. of frequency 1, > 0

The noise parameter will multiply the conductance used in the noise equations. It provides a default
which is overridden by the instance parameter of the same name. This can be used to model empirical
excess noise, or to remove the devices from noise analysis by setting the parameter to zero.

2.14.8 Switches

General Form:
sname n+ n- nc+ nc- model [on | off]

wname n+ n- vnam model [on | off]

Examples:
s1 1 2 3 4 switch1 on

s2 5 6 3 0 sm2 off

switch1 1 2 10 0 smodel1

w1 1 2 vclock switchmod1

w2 3 0 vramp sm1 on

wreset 5 6 vclck lossyswitch off

Nodes n+ and n- are the nodes between which the switch terminals are connected. The model name
is mandatory while the initial conditions are optional. For the voltage controlled switch, nodes nc+
and nc- are the positive and negative controlling nodes respectively. For the current controlled switch,
the controlling current is that through the voltage source or inductor vnam. The direction of positive
controlling current flow is from the positive node, through the source or inductor, to the negative node.

2.14.9 Switch Model

Type Names: csw, sw

The switch model allows an almost ideal switch to be described in WRspice. The switch is not quite
ideal, in that the resistance can not change from 0 to infinity, but must always have a finite positive
resistance. By proper selection of the on and off resistances, they can be effectively zero and infinity in
comparison to other circuit elements. There are two different types of switch devices; current-controlled
(keyed by w), and voltage-controlled (keyed by s). Both reference the model described below. The
parameters available are:

2.14. PASSIVE ELEMENT LINES 81

Switch Model Parameters
name parameter units default switch

vt threshold voltage V 0.0 S
it threshold current A 0.0 W
vh hysteresis voltage V 0.0 S
ih hysteresis current A 0.0 W
ron on resistance Ω 1.0 both
roff off resistance Ω 1/gmin* both

* The gmin parameter, can be set on the .options line. Its default value results is an off resistance of
1.0e+12 ohms.

The use of an ideal element that is highly nonlinear such as a switch can cause large discontinuities to
occur in the circuit node voltages. A rapid change such as that associated with a switch changing state
can cause numerical roundoff or tolerance problems leading to erroneous results or timestep difficulties.
The user of switches can improve the situation by taking the following steps.

First of all it is wise to set ideal switch impedances only high and low enough to be negligible with
respect to other circuit elements. Using switch impedances that are close to “ideal” in all cases will
aggravate the problem of discontinuities mentioned above. Of course, when modeling real devices such
as MOSFETS, the on resistance should be adjusted to a realistic level depending on the size of the device
being modeled.

If a wide range of on to off resistance must be used in the switches (roff/ron > 1e12), then the
tolerance on errors allowed during transient analysis should be decreased by using the .options line
and specifying trtol to be less than the default value of 7.0 (options can also be set from the prompt
line from within WRspice). When switches are placed around capacitors, then the option chgtol should
also be reduced. Suggested values for these two options are 1.0 and 1e-16 respectively. These changes
inform WRspice to be more careful around the switch points so that no errors are made due to the rapid
change in the circuit.

2.14.10 Transmission Lines (General)

General Form:
tname n1 n2 n3 n4 [model] [param=value ...]

oname n1 n2 n3 n4 [model] [param=value ...]

Examples:
t1 1 0 2 0 z0=50 td=10ns

tw 1 0 2 0 z0=50 f=1ghz nl=.1

tx 1 0 4 0 l=9.13e-9 c=3.65e-12 len=24

oy 2 0 4 0 level=2 l=100pH c=5pf r=1.5 len=12

oz 2 0 4 0 level=2 tranmod len=12

In WRspice, the transmission line element represents a general lossless or lossy transmission line.
There are actually three historical models unified in theWRspicemodel: the SPICE3 lossless transmission
line, the SPICE3 lossy (LTRA) transmission line convolution approach of Roychowdhury and Pederson
[13], and the Pade approximation lossy line approach of Lin and Kuh [14].

The device line is keyed by the letters ‘t’ and ‘o’ equivalently, as above. In SPICE3, ‘o’ calls the
lossy convolution model, but this is not necessarily the case in WRspice. One can enforce use of the

82 CHAPTER 2. WRSPICE INPUT FORMAT

convolution model by using “level=2” in the device or model line, the default (“level=1”) is the Pade
approximation model. In the lossless case, the level parameter has no effect.

Above, n1 and n2 are the nodes at port 1, n3 and n4 are the nodes at port 2. Note that this element
models only one propagating mode. If all four nodes are distinct in the actual circuit, then two modes
may be excited. To simulate such a situation, two transmission line elements are required.

There is a fairly lengthly list of parameters which can be applied in the device line, or in a model. If
a model is referenced in the element line, the element defaults to the parameters specified in the model,
though any of these parameters can be overridden for the element if given new values in the element
line.

2.14.10.1 Model Level

level

This parameter can take values 1 (the default if not given) or 2. The level indicates the treatement
of a lossy element, and has no effect if the transmission line is lossless.

Level 1 handles arbitrary RLCG configurations using the Pade approximation approach. A Pade
approximation is used as a rational function approximation to the transfer function in the Laplace
domain, which has a trivial inverse transformation to the time domain. Further, separability avoids
the need to perform a complex convolution at each time point. The model is very fast and accurate
enough for most purposes.

Level 2 handles RLC configurations using a full numerical convolution, equivalent to the LTRA
model. It does not allow a G element, and is much slower than the Pade approximation approach,
however it may be more accurate. Level 2 supports the following types of lines: RLC (uniform
transmission line with series loss only), RC (uniform RC line), LC (lossless transmission line), and
RG (distributed series resistance and parallel conductance only).

2.14.10.2 Electrical Characteristics

len

This provides the physical length of the transmission line in arbitrary units, though the units must
match the per-length unit in the element values discussed below. If not given, the value is taken
as unity, unless it is implicitly defined by other parameters.

l

This parameter provides the series inductance per unit length of the line. The default is 0.

c

This parameter provides the shunt capacitance per unit length of the line. The default is 0.

r

This parameter provides the series resistance per unit length of the line. The default is 0.

g

This parameter provides the shunt conductance per unit length of the line. The default is 0. With
level 2, this cannot be nonzero if l or c is given, i.e., only r can be nonzero if g is nonzero for level
= 2, as in the SPICE3 LTRA model.

z0 or zo
This is the line (lossless) characteristic impedance in ohms, given by

Z0 =
√

L/C

2.14. PASSIVE ELEMENT LINES 83

td or delay
This is the (lossless) phase delay of the line in seconds, given by

Td = Length
√
LC

nl

This is the normalized line length at a particular frequency f, which must also be specified (see
below). This is an alternative means for setting the line delay, where

Td = nl/f

It is an error to give both td and nl.

f

This is the frequency at which the normalized line length (above) is representative.

To model a line with nonzero series inductance and shunt capacitance, a complete but non-conflicting
subset of the parameters l, c, z0, td, len, f, and nl must be provided. The td parameter is the line
delay in seconds, and the z0 parameter is the impedance in ohms, for the lossless case. Specifying
these two parameters is sufficient to completely specify a lossless line, or the reactive elements of a lossy
line. Alternatively, one could specify l (inductance per length), c (capacitance per length) and len (line
length). If len is not specified in either case, the length defaults to unity. The delay can also be specified
through the f (frequency) and nl (normalized length) parameters, where the delay would be set to nl/f.
It is an error to specify both td and f, nl. If td is specified, or both f and nl are specified, along with
parameters which yield internally the L and C values, then the length is determined internally by

Length = Td/
√
LC

One can specify z0 and l, for example, which determines C. Unlike the SPICE3 (and SPICE2) lossless
line devices, the delay must be specified through the parameters; there is no default.

2.14.10.3 Initial Conditions

v1, i1, v2, i2
The (optional) initial condition specification consists of the voltage and current at each of the
transmission line ports. The initial conditions (if any) apply only when the uic option is specified
in transient analysis.

2.14.10.4 Timestep and Breakpoint Control

Internally, the transmission line models store a table of past values of the currents and voltages at the
terminals, which become excitations after the delay time. As excitations, these signals can cause errors
or nonconvergence if their rate of change is too large. These errors are reduced or eliminated by two
mechanisms: time step truncation and breakpoint setting. Time step truncation occurs if the excitation
derivative exceeds a certain threshold. A breakpoint which occurs at this time will also be rescheduled
to one delay-time later. Breakpoints are set by the independent voltage and current sources at times
where a slope change occurs, in piecewise linear outputs. At a breakpoint, the internal time step is cut
and integration order reduced to accommodate the change in input accurately.

84 CHAPTER 2. WRSPICE INPUT FORMAT

truncdontcut

If this flag is given, no complicated timestep cutting will be done. In the level=1 (Pade) case for
a lossy line, there is an initial timestep limiting employed in all cases, to slopetol·tau, where tau is
an internal time constant of the model. This limiting is usually sufficient, and provides the fastest
simulation, and therefor truncdontcut is the default in this case.

truncsl

If this flag is given, the device will use a slope-test timestep cutting algorithm. This is the default
in the lossless case, for any level.

slopetol

When using the slope-test timestep cutting algorithm, this is the fraction used in the slope test.
The default is 0.1. This parameter is also used in the level=1 pre-cutting for lossy lines, described
above.

trunclte

This applies to level=2 (full convolution) only. When this flag is given, a local truncation error
method is used for timestep control. This is the default for lossy lines with level=2.

truncnr

This applies to level=2 only. When this flag is given, a Newton-Raphson iterative method is used
for timestep control.

If no timestep control keywords are given, the defaults are the following:

Lossless case, any level truncsl

Level=1 (Pade) truncdontcut

Level=2 (convolution) trunclte

Only one of the trunc flags should be given. The latter two apply only to a lossy line with level=2,
and if given in a different case the default timestep control is applied.

The slope algorithm computes the difference between the quadratic extrapolation from the last three
and the linear extrapolation from the last two time points, and uses this difference formula to determine
the time when this error is equal to slopetol multiplied by the maximum absolute value of the signal
at the three time points.

When using level=2, there are two alternative timestep control options. If the trunclte flag is
given, the timestep is reduced by one half if the computed local truncation error is larger than an error
tolerance, which is given by

tol = trtol · (reltol · (abs(input1) + abs(input2)) + abstol

where trtol, reltol and abstol are the values of the SPICE options trtol, reltol and abstol, and input1
and input2 are the internally stored excitations. If the truncnr flag is given, a timestep is computed
based on limiting the local truncation error to the tolerance given above.

The handling of breakpoints is controlled by the following flags:

nobreaks

When this flag is given, there will be no breakpoint rescheduling.

allbreaks

When this flag is give, all breakpoints are rescheduled.

2.14. PASSIVE ELEMENT LINES 85

testbreaks

When this flag is given, which is the default, a test is applied and only breakpoints that pass this
test are rescheduled.

rel

When testing breakpoints, this is the relative tolerance value. The default is .001.

abs

When testing breakpoints, this is the absolute tolerance value. The default is 1e-12.

The breakpoint setting is controlled by the three flags nobreaks, allbreaks, and testbreaks.
Only one should be given, and the default is testbreaks. If nobreaks is set, breakpoints will not be
rescheduled. If allbreaks is set, all breakpoints will be rescheduled to the break time plus the delay
time. The default testbreaks will reschedule a breakpoint if a slope test is passed. This slope test
makes use of the rel and abs parameters. The slopes at the last two time points are computed. The
breakpoint is rescheduled if

abs(d1− d2) > max(.01·rel·vmax, abs)/dt

where d1 and d2 are the two slopes. The parameters rel and abs default to 1e-3 and 1e-12, respectively.
The dt parameter is the sum of the last two time deltas, and vmax is a running peak detect function
representing the maximum voltage applied to the line. Note that these are different defaults (and
a different algorithm) from the parameters of the same name used in the SPICE3 transmission line
models.

In most cases, the defaults for the timestep and breakpoint controls are sufficient. Excessive setting of
breakpoints and timestep truncation increases execution time, while insufficient control can produce er-
rors. An alternative approach is to limit the maximum internal timestep used with the .tran line, which
can provide highly accurate results for comparison when experimenting with the control parameters.

See the description of the transmission line model (2.14.11) for more information.

2.14.10.5 History List

lininterp

If this flag is set, linear interpolation is used to obtain the present value of signals in the history
list.

quadinterp

If this flag is set, which is the default, quadratic interpolation is used to obtain the present value
of signals in the history list.

compactrel

This is the relative tolerance used in history list compaction for level=2. The default value is the
same as the WRspice default relative tolerance (reltol variable).

compactabs

This is the absolute tolerance used in history list compaction for level=2. The default value is
the same as the WRspice default absolute tolerance (abstol variable).

The flag lininterp, when specified, will use linear interpolation instead of the default quadratic
interpolation for calculating delayed signals.

86 CHAPTER 2. WRSPICE INPUT FORMAT

The parameters compactrel and compactabs control the compaction of the past history of values
stored for convolution when using level=2. Larger values of these lower accuracy but usually increase
simulation speed. These are to be used with the trytocompact option, described in the .options

section.

2.14.11 Transmission Line Model

Type Names: ltra, tra

The general transmission line model may be used in conjunction with transmission line devices,
though the use is optional. The parameters that appear in the model are the same parameters that can
be given on the device line (with the exception of the initial conditions). These parameters are discussed
in section 2.14.10 describing the general transmission line.

Transmission line models can have either of two type names: tra or ltra. The ltra name is required
to support the SPICE3 LTRA lossy transmission line model. If this name is used, the level will default
to 2. This will be overridden if the level is set explicitly. If the tra keyword is used, then the level will
default to 1. Otherwise, the two words are interchangeable.

The parameters provided in the model will serve as defaults to the referencing device, but can be
overridden if explicitly set on the device line.

2.14.12 Uniform RC Line

General Form:
uname n1 n2 n3 modname l=len [n=lumps]

Examples:
u1 1 2 0 urcmod l=50u

urc2 1 12 2 umodl l=1mil n=6

The n1 and n2 are the two element nodes the RC line connects, while n3 is the node to which the
capacitances are connected. The modname is the model name, len is the length of the RC line in meters,
and lumps, if specified, is the number of lumped segments to use in modeling the RC line. If not specified,
the value will be computed as

N =
log
(

2πFmaxRC · ((k − 1)/k)
2
)

log(k)

where N is the number of lumps, k is the proportionality factor, R and C are the total values for the
length, and Fmax is the maximum frequency.

2.14.13 Uniform Distributed RC Model

Type Name: urc

The urc model is derived from a model proposed by L. Gertzberrg in 1974. The model is generated
by a subcircuit type expansion of the urc line into a network of lumped RC segments with internally
generated nodes. The RC segments are in a geometric progression, increasing toward the middle of the

2.15. VOLTAGE AND CURRENT SOURCES 87

urc line, with k as a proportionality constant. The number of lumped segments used, if not specified on
the urc line, is determined by the following formula:

N =
log
(

2πFmaxRC ((k − 1)/k)
2
)

log(k)

where Fmax is the maximum frequency, and R and C are the total values for the given length.

The urc will be made up strictly of resistor and capacitor segments unless the isperl parameter is
given a non-zero value, in which case the capacitors are replaced with reverse biased diodes with a zero-
bias junction capacitance equivalent to the capacitance replaced, and with a saturation current taking
the value given isperl in amps per meter of transmission line, and with an optional series resistance
specified by rsperl in ohms per meter.

URC Model Parameters
name parameter units default example

k propagation Constant - 1.5 1.2
fmax maximum frequency of interest Hz 1.0G 6.5meg
rperl resistance per unit length Ω/M 1000 10
cperl capacitance per unit length F/M 1.0e-12 2pf
isperl saturation current per unit length A/M 0 -
rsperl diode resistance per unit length Ω/M 0 -

2.15 Voltage and Current Sources

General Form:
vname n+ n- [expr] [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]
iname n+ n- [expr] [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]
aname n+ n- V|I = expr [[dc] dcvalue] [ac [acmag [acphase]] | table(name)]

[distof1 [f1mag [f1phase]]] [distof2 [f2mag [f2phase]]]

Examples:
vcc 10 0 dc 6

vin 13 2 0.001 ac 1 sin(0 1 1meg)

v2 10 1 ac table(acvals)

isrc 23 21 ac 0.333 45.0 2*sffm(0 1 10k 5 1k)

vmeas 12 9

vin 1 0 2*v(2)+v(3)

azz 2 0 v=.5*exp(v(2))

ixx 2 4 pulse(0 1 1n 10n 10n) + pulse(0 1 40n 10n 10n)

In WRspice, the specification of an “independent” source is completely general, as the output can
be governed by an arbitrary expression containing functions of other circuit variables. The syntax is a
superset of the notation used in previous versions of SPICE, which separately keyed independent and
dependent sources.

88 CHAPTER 2. WRSPICE INPUT FORMAT

The leading letter “v” keys a voltage source, and “i” keys a current source. In addition, the “arbitrary
source” used in SPICE3 is retained, but is keyed by “a”, rather than “b” (“b” is used for Josephson
junctions in WRspice). This is a special case of the general source specification included for backward
compatibility.

The n+ and n- are the positive and negative nodes, respectively. Note that voltage sources need
not be grounded. Positive current is assumed to flow from the positive node, through the source, to the
negative node. A current source of positive value will force current to flow in to the n+ node, through
the source, and out of the n- node. Voltage sources, in addition to being used for circuit excitation,
are often used as “ammeters” in WRspice, that is, zero valued voltage sources may be inserted into the
circuit for the purpose of measuring current (in WRspice, an inductor can be used for this purpose as
well). Zero-valued voltage sources will, of course, have no effect on circuit operation since they represent
short-circuits, however they add complexity which might slightly affect simulation speed.

In transient and dc analysis, sources can in general have complex definitions which involve the
dependent variable (e.g., time in transient analysis) and other circuit variables. There are built-in
functions (pulse, pwl, etc.) which can be included in the expr.

Constant values associated with the source are specified by the following option keywords:

dc dcvalue
This specifies a fixed dc analysis value for the source, and enables the source to be used in a dc
sweep if the expr is given. If the expr is not given, the source is available for use in a dc sweep
whether or not the dc keyword is given. If an expr is present without “dc dcvalue”, the time=0
value of the expr is used for dc analysis. If the source value is zero for both dc and transient
analyses, this value and the expr may be omitted. If the source is the same constant value in dc
and transient analysis, the keyword “dc” and the value can be omitted.

ac [[acmag [acphase]] | table(name)]
The parameter acmag is the ac magnitude and acphase is the ac phase. The source is set to this
value in ac analysis. If acmag is omitted following the keyword ac, a value of unity is assumed. If
acphase is omitted, a value of zero is assumed. If the source is not an ac small-signal input, the
keyword ac and the ac values are omitted. Alternatively, a table can be specified, which contains
complex values at different frequency points. In ac analysis the source value will be derived from
the table. The table with the given name should be specified in a .table line, with the ac keyword
present. The values in the table are the real and imaginary components, and not magnitude and
phase.

distof1 and distof2

These are the keywords that specify that the independent source has distortion inputs at the
frequencies f1 and f2 respectively for distortion analysis. The keywords may be followed by an
optional magnitude and phase. The default values of the magnitude and phase are 1.0 and 0.0
respectively.

The expr is used to assign a time-dependent value for transient analysis and to supply a functional
dependence for dc analysis. If a source is assigned a time-dependent value, the time-zero value is used
for dc analysis, unless a dc value is also provided.

2.15.1 Device Expressions

WRspice contains a separate expression handling system for expressions found in device lines. Voltage
and current source lines may contain expressions, as can resistor and capacitor device lines. These

2.15. VOLTAGE AND CURRENT SOURCES 89

use the same syntax as is used in vector expressions in WRspice shell commands (see 3.16.6), and in
single-quoted expressions.

Although the syntax and most of the function names are equivalent to vector expressions used in
post-processing, the mathematics subsystems are completely different. There are three main differences
from ordinary vector expressions:

1. The expressions always resolve as scalars. Before evaluation, all vectors in the current plot are
“scalarized” so that they temporarily have unit length with the current value as the data item.

2. All inputs and results are real values.

3. In theory, expressions should be differentiable with respect to node voltages and branch current
variables. If not, lack of convergence might be seen. Previous versions of WRspice were more
strict about this than the present version, which allows relational and logic operators. It is often
very convenient to use these operators, and in general it seems that their use does not prevent
convergence. Your experience may be different, however.

The expression can contain vectors from the current plot or the constants plot, and circuit param-
eters accessed through the @device[param] construct. In addition, the variable “x”, which can appear
explicitly in the expression, is defined to be the controlling variable in dependent sources, or is set to
the scale variable in the analysis (e.g., time for transient analysis).

The functions which are used in the device description should be differentiable with respect to
node voltages and branch currents to promote convergence. Internally, the expressions are symbolically
differentiated in order to calculate the Jacobian, which is used to set up the matrix which is solved during
analysis. This would seem to prevent use of the logical operators, modulus operator, relational operators
(<, >, etc.), and the tri-conditional operator (a ? b : c) in these expressions where an operand depends
on a node voltage or branch current. However, WRspice currently supports relational and logic operators
in source expressions, by assuming identically zero derivatives for these operators when differentiating.
We find, in practice, that this rarely causes obvious convergence problems, at least if used in moderation.

In addition to the built-in functions, expressions used in devices can include user-defined functions,
which must have been defined previously with the define command, or with a .param line, or in a
parameter definition list in a subcircuit call or definition. These can be used with either math package.
Internally, they are saved in a data structure known as a parse tree. When a user-defined function is
called in the context of a device equation, checking is performed on the user-defined function parse tree
to see if any of the non-differentiable operations are included. If so, an error message is generated, and
the equation setup fails.

This being said, the situation is actually a bit more complicated. As the circuit is being set up, all
device equations, after linking in the user-defined functions if any, are “simplified” by evaluating and
collapsing all of the constant terms as far as possible. This evaluation allows all of the operations. In
general, these equations can be very complex, with lots of parameters and conditional tests involving
parameters. However, after simplification, the equation typically reduces to a much simpler form, and
the conditionals and other unsupported constructs will have disappeared.

The bottom line of all of this is that for equations that appear in a device description, the circuit vari-
ables (node voltages and branch currents) can’t be used in tri-conditional and modulus sub-expressions.
For example consider the following:

.param myabs(a) = ’a < 0 ? -a : a’

.param mymax(x,y) = ’x > y ? x : y’

90 CHAPTER 2. WRSPICE INPUT FORMAT

E2 2 0 function myabs(v(1))

E3 3 0 function mymax(v(1), 0)

This will not work, as it specifically breaks the rules prohibiting tri-conditionals. However, it really
should be possible to simulate a circuit with behavior described as intended above, and it (usually) is.
One needs to find ways of expressing the behavior by using supported math.

For example, either of these alternatives would be an acceptable alternative for myabs.

.param myabs(a) = abs(a)

.param myabs(a) = sqrt(a*a)

For the special case of y = 0, an acceptable substitute for mymax would be

.param mymax(x,y) = 0.5*(abs(x) + x)

Thus, the following lines are equivalent to the original description, but will be accepted as WRspice

input.

.param myabs(a) = abs(a)

.param mymax(x,y) = 0.5*(abs(x) + x)

E2 2 0 function myabs(v(1))

E3 3 0 function mymax(v(1), 0)

Although the lists of math functions available in the two packages are similar, the internal evaluation
functions are different. The shell math functions must operate on vectors of complex values, whereas the
functions called in device expressions take scalar real values only. Furthermore, the device expressions
must be differentiable with respect to included node voltages and branch currents, as the derivative of
the expression is computed as part of the iterative process of solving the circuit matrix equations. We
have seen that this limits the operations available, and it likewise puts restrictions on the functions. The
sgn function grossly violates the differentiability requirement, and many of the functions and/or their
derivatives have restricted ranges or singularities. These can easily lead to convergence problems unless
some care is exercised.

As for all expressions, if an expression is enclosed in single quotes, it will be evaluated when the file
is read, reducing to a constant. However, if the expression contains references to circuit variables such as
node voltages or branch currents, it will be left as an expression, to be evaluated during the simulation.

The following math functions are available in device expressions on most systems:

2.15. VOLTAGE AND CURRENT SOURCES 91

abs absolute value
acos arc cosine
acosh arc hyperbolic cosine
asin arc sine
asinh arc hyperbolic sine
atan arc tangent
atanh arc hyperbolic tangent
cbrt cube root
cos cosine
cosh hyperbolic cosine
deriv derivative
erf error function
erfc error function complement
exp exponential (e raised to power)
j0 Bessel order 0
j1 Bessel order 1
jn Bessel order n
ln natural log
log natural log
log10 log base 10
pow x to power y
pwr x to power y
sgn sign (+1,0,-1)
sin sine
sinh hyperbolic sine
sqrt square root
tan tangent
tanh hyperbolic tangent
y0 Neumann order 0
y1 Neumann order 1
yn Neumann order n

Most functions take a single argument. Exceptions are jn and yn, which require two arguments.
The first argument is an integer value for the order, and the second argument is the function input.
The pow and functionally identical pwr functions also require two arguments, the first argument being
the base, and the second being the exponent. The deriv function will differentiate the parse tree of
the argument with respect to the “x” variable (whether implicit or explicit). This is completely unlike
the deriv function for vectors, which performs a numerical differentiation with respect to some scale.
Differentiating the parse tree gives an analytic result which is generally more accurate.

In addition, there are special “tran functions” (see 2.15.3) which produce specified output in transient
analysis. WRspice recognizes by context functions and tran functions with the same name (exp, sin,
gauss). An unrecognized function is assumed to be a table reference (specified with a .table line).

After simplification by collapsing all of the constant terms, the following tokens are recognized in a
device function.

92 CHAPTER 2. WRSPICE INPUT FORMAT

+,*,/ binary: add, multiply, divide
- unary or binary: negate or subtract
^ binary: exponentiation
() association
, argument separator
x independent variable
number a floating point number
string a library function, table, or circuit vector

Additionally, the following relational and logical operators are available. Use of these operators may
impede convergence. The operators evaluate to 1.0 when true, 0.0 otherwise. Inputs to logical operators
are true if integer-converted values are nonzero.

=,==,eq equality
!=,<>,><,ne inequality
>,gt greater than
<,lt less than
>=,ge greater than or equal
<=,le less than or equal
&,&&,and logical and
|,||,or logical or
~,!,not logical not

The independent variable x is context specific, and usually represents a global input variable. It
is the running variable in the current analysis (time in transient analysis, for example), or the input
variable in dependent source specifications (see 2.15.4).

In a chained analysis, the x variable will be that of core analysis. Thus, for a chained transient
analysis, x is time, as in the unchained case. Since the functional dependence is inoperable in any kind
of ac small-signal analysis (ac, noise, transfer function, pz, distortion, ac sensitivity) x is not set and
never used. In “op” analysis, x is always numerically zero. The same is true in dc sensitivity analysis.

During a “pure” dc sweep analysis, for “independent” sources (keyed by v, i, or a and not e, f, g,
or h) other than the swept ones, if an expression is given, the output of the source will be the result of
the expression where the input x is the swept voltage (or the first sweep voltage if there are two), rather
than time as when in transient anslysis. However, if the source line has a “dc” keyword and optional
following constant value, during pure dc analysis the source will output the fixed value, or zero, if the
value is omitted. However, in pure dc analysis the tran functions generally return zero. The exceptions
are pwl, table and table references, and interp. These functions return values, but with the swept
voltage (x) as the input (in the case of table the input may be explicit anyway). For “dependent”
sources (keyed by e, f, g, or h) the x is the controlling voltage or current as in transient analysis. Again,
if a “dc” keyword appears, the output will be fixed at the given value, ignoring the controlling variable.

Since circuit “vector” names used in device expressions must be resolved before the actual vector
is created, there is a potential for error not present in normal vector expressions. In particular, name
clashes between circuit node names and vectors in the constants plot can cause trouble.

In a device expressions, if a string token starts with a backslash (’\’) character, it will not be
replaced with a value, should the name happen to match one of the named constants, or other potential
substitution. This will be needed, for example, if a node name matches one of the predefined constant
names, and one needs to reference that node in a source expression. The token should be double quoted
to ensure this interpretation by the parser.

2.15. VOLTAGE AND CURRENT SOURCES 93

For example, suppose there is a node named “c”, which is also the name of a vector in the constants
plot. Such a vector existed in earlierWRspice releases, as it was the speed of light constant. This constant
is now named “const c” so a clash with this is unlikely. However, the user can create a vector named
“c” in the constants plot, so the possibility of a clash remains.

A source specification like

vcon 1 2 5*v(c)

will cause an error, possibly not until simulation time. This can be avoided by use of the form described
above.

vcon 1 2 5*v("\c")

2.15.2 POLY Expressions

In SPICE2, nonlinear polynomial dependencies are specified using a rather cumbersome syntax keyed
by the word poly. For compatibility, this syntax is recognized by the dependent sources in WRspice,
making possible the use of the large number of behavioral models developed for SPICE2.

There are three polynomial equations which can be specified through the poly(N) parameter.

poly(1) One-dimensional equation

poly(2) Two-dimensional equation

poly(3) Three-dimensional equation

The dimensionality refers to the number of controlling variables; one, two, or three. These parameters
must immediately follow the poly(N) token. The inputs must correspond to the type of the source,
either pairs of nodes for voltage-controlled sources, or voltage source or inductor names for current-
controlled sources. Following the inputs is the list of polynomial coefficients which define the equation.
These are constants, and may be in any format recognized by WRspice.

The simplest case is one dimension, where the coefficients c0, c1, ... evaluate to

c0 + c1x+ c2x
2 + c3x

3 + ...

The number of terms is arbitrary. If the number of terms is exactly one, it is assumed to be the linear
term (c1) and not the constant term. The following is an example of a voltage-controlled voltage source
which utilizes poly(1).

epolysrc 1 0 poly(1) 3 2 0 2 0.25

The source output appears at node 1 to ground (note that WRspice can use arbitrary strings as node
specifiers). The input is the voltage difference between nodes 3 and 2. The output voltage is twice the
input voltage plus .25 times the square of the input voltage.

In the two dimensional case, the coefficients are interpreted in the following order.

c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + c7x

2y + c8xy
2 + c9y

3 + ...

For example, to specify a source which produces 3.5*v(3,4) + 1.29*v(8)*v(3,4), one has

94 CHAPTER 2. WRSPICE INPUT FORMAT

exx 1 0 poly(2) 3 4 8 0 0 3.5 0 0 1.29

Note that any coefficients that are unspecified are taken as zero.

The three dimensional case has a coefficient ordering interpretation given by

c0 + c1x+ c2y + c3z + c4x
2 + c5xy + c6xz + c7y

2 + c8yz + c9z
2 + c10x

3 + c11x
2y + c12x

2z+

c13xy
2 + c14xyz + c15xz

2 + c16y
3 + c17y

2z + c18yz2 + c19z
3 + ...

which is rather complex but careful examination reveals the pattern.

2.15.3 Tran Functions

There are several built-in source functions, which are based on and extend the source specifications in
SPICE2. These generally produce time-dependent output for use in transient analysis. For brevity, these
functions are referred to as “tran functions”.

The tran functions are listed in the table below. If parameters other than source amplitudes are
omitted, default values will be assumed. The tran functions, which require multiple space or comma
separated arguments in a particular order, are:

exp exponential specification
texp exponential specification
gauss gaussian noise specification
tgauss gaussian noise specification
interp interpolation specification
pulse pulse specification
gpulse gaussian pulse specification
pwl piecewise-linear specification
sffm single frequency fm specification
am amplitude modulated specification
sin sinusoidal specification
tsin sinusoidal specification
spulse sinusoidal pulse specification
table reference to a .table specification

The the texp, tgauss, and tsin are aliases to exp, gauss, and sin tran functions that avoid possible
ambiguity with math functions of the same name.

Unlike the math functions, the tran functions have variable-length argument lists. If arguments are
omitted, default values are assumed.

The tran functions are most often used to specify voltage/current source output, however in WR-

spice these can be used in general expressions. The sin, exp, gauss tran functions have names that
conflict with math functions. There seems to be no way to absolutely reliably distinguish the tran vs.
math functions by context, nor is it possible to exclusively rename the functions without causing huge
compatibility problems.

Although the sin and exp functions are generally distinguishable except for one unlikely case, with
the additional arguments to the gauss function for HSPICE compatibility in WRspice release 3.0.0, the
problem is more acute.

2.15. VOLTAGE AND CURRENT SOURCES 95

It may be necessary to edit legacy WRspice input files to avoid this problem.

That being said, new intelligence has been added to differentiate between the two species. As in
older releases, the argument count will in many cases resolve ambiguity.

First of all, to guarantee that the tran functions are used in an expression, they can be called by the
synonym names tsin, texp, and tgauss.

If sin, exp, or gauss use white-space delimiting in the argument list, then they will be called as
tran functions. The math functions always use commas to separate arguments. Commas are also legal
argument separators in tran functions, but (perhaps) are not as frequently used. If comma argument
separators are used, the math functions are assumed.

Note that almost all math functions (whith the exception of gauss and a few others) take a single
complex vector argument. It is possible to give these functions multiple comma-separated “arguments”,
but in evaluation these are collapsed by evaluation of the comma operator:

a,b = (a + j*b)

So, sin(1,1) is equivalent to sin((1+j)), which returns a complex value.

In earlier WRspice releases, sin(a,b) was always interpreted as the tran sin function, which has a
minimum of two arguments (and similar for exp). Presently.

sin(a,b) comma delimiter implies math
sin(a b) space delimiter implies tran

If ambiguity occurs in a function specification for a voltage or current source, the tran function is
favored if the specification is ambiguous.

The tran functions implicitly use time as an independent variable, and generally return 0 in dc
analysis. Exceptions are the pwl and interp forms, which implicitly use the value of “x” which is
context-specific. In dependent sources, this is the controlling value of the source rather than time. The
table function takes its input directly from the second argument.

The tran functions can also be used in regular vector expressions. They generate a vector corre-
sponding to the current scale, which must exist, be real, and monotonically increasing. The length of
the returned vector is equal to the length of the scale.

For example:

(do a tran analysis to establish a reasonable scale)
let a = pulse(0 1 10n 10n 10n 20n)

plot a (plots a pulse waveform)

The construct can be used like any other token in a regular vector expression.

The tran functions (other than table and interp) take constant expressions as arguments. The
argument list consists of comma or space separated expressions. Arguments are parsed as follows:

1. The outer parentheses, if these exist, are stripped from the list. WRspice can recognize most
instances where parentheses are not included, since these are optional in standard SPICE syntax
for the tran functions.

96 CHAPTER 2. WRSPICE INPUT FORMAT

2. Commas that are not enclosed in parentheses or square brackets are converted to spaces.

3. Minus signs (‘-’) that are not enclosed in parentheses or square brackets, and are not followed
by white space, and are preceded by white space, are assumed to be the start of a new token
(argument). An expression termination character (semicolon) is added to the end of the previous
argument.

4. The string is parsed into individual expression units, which are the arguments. The separation is
determined by context.

There is no provision for a unary ‘+’, thus, func(a, +b) is taken as func(a+b). Parenthesis can be
added to enforce precedence. The minus sign handling implies that func(a, -b) and func(a -b) are
taken as func((a), (-b)), whereas f(a-b), f(a- b), f(a - b), etc are taken as func((a)-(b)).

In addition to the built-in functions, expressions used in sources can include user defined functions,
which must have been defined previously with the define command. These may be useful for encapsu-
lating the tran functions.

Example:
define mypulse(delay, width) pulse(0 1 delay 1n 1n width)

...

v1 1 0 mypulse(5n, 10n)

Recall that a line in the deck starting with “*@” will be executed before the deck is parsed.

title line

*@ define mypulse(delay, width) pulse(0 1 delay 1n 1n width)

v1 1 0 mypulse(5n, 10n)

r1 1 0 100

.end

The following paragraphs describe the tran functions in detail.

2.15.3.1 Exponential

General Form:
exp(v1 v2 [td1 tau1 td2 tau2])

Example:
vin 3 0 exp(-4 -1 2ns 30ns 60ns 40ns)

This function can be called as texp to avoid possible conflict with the exp math function.

parameter description default value units

v1 initial value volts or amps
v2 pulsed value volts or amps
td1 rise delay time 0.0 seconds
tau1 rise time constant tstep seconds
td2 fall delay time td1 + tstep seconds
tau2 fall time constant tstep seconds

2.15. VOLTAGE AND CURRENT SOURCES 97

The shape of the waveform is described by the following table:

time value

0 v1
td1 v1 + (v2−v1)(1 − exp(−(time−td1)/tau1))
td2 v1 + (v2−v1)(1 − exp(−(time−td1)/tau1)) +

(v1−v2)(1 − exp(−(time−td2)/tau2))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.10 for explanation. The argument count is used to distinguish this function from the math function
of the same name.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 v1
prm2 v2
prm3 td1
prm4 tau1
prm5 td2
prm6 tau2

2.15.3.2 Gaussian Random

General Form:
gauss(stddev mean lattice [interp])

Examples:
v1 1 0 gauss(.5, 2, 100n, 1)

v2 1 0 gauss(.1, 0, 0)

This function can be called as tgauss to avoid possible conflict with the gauss math function.

parameter description default value units

stddev standard deviation none
mean mean value none
lattice sample period seconds
interp interpolation 0 none

The gauss function can be used to generate correlated random output. This function takes three or
four arguments.

The parameter lattice is for use in transient analysis. A new random value is computed at each time
increment of lattice. If lattice is 0, then no lattice is used, and an uncorrelated random value is returned
for each call. The interp parameter, used when lattice is nonzero, can have value 1 or 0. If interp is

98 CHAPTER 2. WRSPICE INPUT FORMAT

nonzero, the value returned by the function is the (first order) interpolation of the random values at the
lattice points which frame the time variable. If interp is 0, the function returns the lattice cell’s value
for any time within the lattice cell, i.e., a random step with an amplitude change at every lattice point.

The first example above provides a random signal with standard deviation of .5V and mean of 2V,
based on random samples taken every 100nS.

The lattice value should be on the order of the user print increment tstep in the transient analysis.
It should not be less than the maximum internal time step, since the past history is not stored, and
a rejected time point may back up the time across more than one lattice cell, thus destroying the
correlation.

This function applies only to transient analysis, where time is the running variable. The argument
count is used to distinguish this function from the math function of the same name.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 stddev
prm2 mean
prm3 lattice
prm4 interp

One important application of this function is to provide time-domain noise generation for noise
modeling[15]. For example, below is a circuit which simulates the thermal noise generated in a resistor
at 4.2K.

*** noise demo

*@ define noise(r,t,dt,n) gauss(sqrt(2*boltz*t/(r*dt)), 0, dt, n)

r1 1 0 1.0

ir1 1 0 noise(1.0, 4.2, 0.5p, 1)

c1 1 0 1p

.control

tran 1p 1n

plot v(1)

.endc

The second line defines a function named “noise” that takes four arguments: the resistance, tem-
perature in Kelvin, the lattice time increment, and the interpolation method. This is simply a wrapper
around a gauss call, incorporating the standard noise equation for current through a resistor at a given
temperature, and taking the inherent bandwidth to be one half of the reciprocal of the lattice time
increment (per Nyquist). The noise function is used in the specification for current source ir1. In a
more complicated case, each resistor in a circuit may have an associated noise current source similarly
defined. It may be possible to demonstrate errors due to thermal noise when simulating the circuit.

2.15.3.3 Interpolation

General Form:

2.15. VOLTAGE AND CURRENT SOURCES 99

interp(vector)

Example:
vin 1 0 interp(tran1.v(1))

The output is vector interpolated to the scale of the current plot. When used in a source, the output
of the source is the interpolated vector, or the initial or final value for points off the ends of the original
scale.

For example, say an amplifier produces vector v(1) (an output) in plot tran1. One desires to apply
this as input to another circuit. This is achieved with a source specification like that shown in the
example above. This works in ordinary vector expressions as well.

2.15.3.4 Pulse

General Form:
pulse(v1 v2 [td tr tf pw per td1 td2 ...] [pattern spec])

Examples:
vin 3 0 pulse(-1 1 2ns 2ns 2ns 50ns 100ns)

vin1 1 0 pulse(0 1 2n .5n .5n 1n 0 6n 10n)

v2 4 0 v(1)*pulse(0 1 5n 10n)

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis.

The following are the numerical parameters, the pattern spec is used to specify a patterned pulse
train and the syntax will be described separately below.

parameter description default value units

v1 initial value volts or amps
v2 pulsed value volts or amps
td delay time 0.0 seconds
tr rise time tstep seconds
tf fall time tstep seconds
pw pulse width tstep seconds
per period tstop seconds

The signal starts at value v1 at time=0. At time td , the pulse begins, the value arriving linearly at
v2 after the rise time tr . The value v2 is maintained for the pulse width time pw , then reverts linearly to
value v1 over the fall time tf . If a period per is given and nonzero, a periodic train of pulses is produced,
starting at td , with the second pulse starting at td+per , etc. The minimum value for per is tr+tf+pw ,
which is silently enforced.

Numbers td1 , td2 , etc. following per are taken as additional delay values (similar to td) and a pulse
will start at each given value. These will actually be superposed periodic pulse trains if per is nonzero
(it must be given in any case when using the additional delays).

A single pulse so specified is described by the following table:

100 CHAPTER 2. WRSPICE INPUT FORMAT

time value

0 v1
td v1
td+tr v2
td+tr+pw v2
td+tr+pw+tf v1
tstop v1

Intermediate points are determined by linear interpolation. It is not an error to omit unused param-
eters, for example the specification

vxx 3 0 pulse(0 1 2n 2n)

describes a voltage which, starting from 0, begins rising at 2 nanoseconds, reaching 1 volt at 4 nanosec-
onds, and remains at that value.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 v1
prm2 v2
prm3 td
prm4 tr
prm5 tf
prm6 pw
prm7 per

2.15.3.5 Pattern Generation

The transient pulse and gpulse functions support a pattern-specification language borrowed from the
pattern source of HSPICE. This applies only when a period is given so that the source would provide
periodic output. The pattern specmust appear after the additional delay numbers, if any. The patterning
enables the user to select in which periods a pulse is actually generated, and applies to all periodic trains
if additional delays are given.

The pattern spec consists of one or more “bstrings”, each of which can have modifying options.

bdata [r[=rpt]] [rb=bit] ...

The first token is the bstring, which must start with the letter ‘b’ (case insensitive) and continues
for arbitrary length with 0 and 1 to indicate the presence or absence of a pulse in each period frame,
traversing left to right. Actually, the characters 0,f,F,n,N are taken as ‘0’, anything else is taken as
’1’. Note that the HSPICE m (intermediate value) and z (disconnected) are not currently supported.

A bstring can be followed by up to one each of two case-insensitive options.

r [= rpt]
This provides a repetition count. If an integer follows the literal ‘r’, it is taken as the repetition

2.15. VOLTAGE AND CURRENT SOURCES 101

count. White space and an equal sign can be included, and will be ignored. If no number is given,
1 is assumed, i.e., the pattern will repeat once. If r is not given, there will be no repetition. If the
number given is negative, the pattern will continue repeating indefinitely.

rb = bit
The bit is an integer ranging from 1 to the length of the bstring pattern, and indicates the start
point for repetitions, if any. If not given, the effective value is 1, indicating that the entire pattern
repeats. An integer must follow rb, white space and an equal sign will be ignored.

bprbs[N]
In WRspice, the bstring can also specify pseudo-random sequences through the syntax bprbs[N].
The N is an unsigned integer, defaulting to 6 if not given, and clipped to the range 6–12 if not in
this range. This is the degree of the pseudo-random sequence, i.e., the sequence length is 2N − 1.
This will accept the r and rb modifiers, however rb is treated a little differently. With this form,
it rotates the bit sequence, giving rotated output starting with the first pass. The same degree
with different rb values produces uncorrelated sequences.

An arbitrary number of bstrings with options can appear in the specification, the result from each
bstring with options will be concatenated. If indefinite repetition is specified for a bstring, any bstrings
that follow will be ignored.

Example:
b101101 r=1 rb=2 b000111

• emit 101101

• repeat once starting at bit 2: 01101

• emit 000111

2.15.3.6 Gaussian Pulse

General Form:
gpulse([v1 v2 td pw per td1 td2 ...] [pattern spec])

Examples:
vsfq 0 0 gpulse(0 0 20p 2p 0 40p 60p)

vpulse 1 0 gpulse(0 1 100p 5p 100p)

This generates a gaussian pulse signal, and as a special case, as a voltage source will generate single
flux quantum (SFQ) pulses. This function applies only to transient analysis, where time is the running
variable. The following are the numerical parameters, the pattern spec is used to specify a patterned
pulse train and the syntax is described in 2.15.3.5.

parameter description default value units

v1 base value 0.0 volts or amps
v2 pulse peak value v1 volts or amps
td delay time 0.0 seconds
pw pulse width see description seconds
per period 0.0 seconds

102 CHAPTER 2. WRSPICE INPUT FORMAT

Warning: The pulse width is interpreted as the full-width half-maximum in release 4.3.3 and later.
In earlier releases, this was taken as the “variance” (width where amplitude is 1/e of the peak). Presently,
this interpretation can be coerced by giving a negative pulse width, the absolute value will be used as
the variance.

The expression used to generate a pulse is
pw > 0:

value = v1 + (v2− v1)·exp(−(4 · ln(2) · (time− td)/pw)2)

pw < 0:

value = v1 + (v2− v1)·exp(−((time− td)/− pw)2)

The td delay value specifies the time of the initial pulse peak. The pw defines the pulse width, as
described above. If the per is given a nonzero value larger than twice the pw, a train of pulses will be
generated, the first being at td and at time increments of per thereafter.

Numbers found after the per are taken as additional delays, similar to td . The output is a superpo-
sition of pulses found at each delay value (including td). If the per is given a value 0.0, only one pulse
per delay value is emitted. If the per specifies a viable period, pulses are emitted at each delay value
and increments of per .

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 v1
prm2 v2
prm3 td
prm4 pw
prm5 per

Periodic pulses can be set to a pattern via the pattern spec, which can appear following all delay
values, if any. The syntax is described in 2.15.3.5.

A single flux quantum (SFQ) pulse, as a voltage applied across an inductor, will induce a single flux
quantum of

Φ0 = h/(2e) = 2.06783fWb

where h is Planck’s constant, e is the electron charge. With superconductors, the flux that threads
superconducting loops is quantized in increments of this value, due to the requirement that the super-
conducting wave function meet periodic boundary conditions around the loop.

If the pw is not given or given as zero, the source will be configured to produce an SFQ pulse with
the given amplitude. Thus, the actual pulse width will be computed internally, with amplitude not zero,
as

pw = 2
√

ln(2)Φ0/(abs(v2− v1)
√
π)

2.15. VOLTAGE AND CURRENT SOURCES 103

where Φ0 is the flux quantum whose value is given above.

Similarly, if the amplitude is set to zero, i.e., v2 = v1 , the amplitude will be computed from the pulse
width to yield an SFQ pulse. The computed amplitude is

v2 = v1 + 2
√

ln(2)Φ0/(pw
√
π)

If both amplitude and pulse width are set to zero or not given, the full-width half-maximum SFQ
pulse width is taken as the TSTEP transient analysis parameter, and the amplitude is computed as
above.

In superconducting electronics, single flux quantum pulses are generated and received by logic circuits.
A generator of SFQ pulses is therefor a useful item when working with this technology.

Example

* gaussian pulse

v1 1 0 gpulse(0 0 20p 2p 0 40p)

l1 1 2 10p

b1 2 0 100 jj3 area=.2

r2 2 0 2

.tran .1p 100p uic

.plot tran v(1) v(2) i(l1) ysep

* Nb 4500 A/cm2

.model jj3 jj(rtype=1, cct=1, icon=10m, vg=2.8m, delv=0.08m,

+ icrit=1m, r0=30, rn=1.7, cap=1.31p)

In the example, the generator produces two SFQ pulses. The second pulse causes the Josephson
junction to emit a flux quantum, the second one from the source is therefor expelled. The inductor
current shows the same value before and after the second pulse, as expected.

2.15.3.7 Piecewise Linear

General Form:
pwl(t1 v1 [t2 v2 t3 v3 t4 v4 ...] [r [[=] ti]] [td [=] delay]
pwl(vec1 [vec2] [r [[=] ti]] [td [=] delay]

Example:
vclock 7 5 pwl(0 -7 10ns -7 11ns -3 17ns -3 18ns -7 50ns -7)

vin 2 0 pwl(times amplitudes td=1ns)

Each pair of values (ti , vi) specifies that the value of the source is vi (in volts or amps) at time =
ti . The value of the source at intermediate values of time is determined by using linear interpolation on
the input values. For times before the initial time value, the return is the initial value, and for times
after the final time value, the return is the final value.

In the second form, the values are provided in the named vectors, which must be in scope when the
deck is parsed (which most often happens just before a simulation is run, and not when the file is read
into WRspice). If a single vector name is given, its values are expected to be the same as would be

104 CHAPTER 2. WRSPICE INPUT FORMAT

provided in the first form, i.e., an alternating sequence of times and amplitudes. If two vector names
are given, the first vector is expected to contain time values only, and the second vector contains the
corresponding amplitudes. If vectors are used, all values are obtained from the vectors, as it is presently
not possible to mix vectors and explicit values.

In the example below, both voltage sources provide the same output. Note that if the vectors are
saved in the constants plot, they will be resolved by name in any context.

Example

* PWL Test

.exec

compose constants.pwlvals values 0 0 10p 0 20p 1 40p 1 50p 0

compose constants.tvals values 0 10p 20p 40p 50p

compose constants.xvals values 0 0 1 1 0

.endc

v1 1 0 pwl(pwlvals)

v2 2 0 pwl(tvals xvals)

Use of vectors can simplify and make more efficient the handling of very long PWL lists. For example,
suppose that one has just run a long simulation of a circuit, and one would like to apply the output of
this circuit to another circuit. Suppose that the output is in vector v(1). First, save this vector as a
binary rawfile. The binary format is faster to read/write than the default ASCII.

set filetype=binary

write myfile.raw v(1)

Then, on a subsequent run, one can load the saved vectors (the vector and its scale are both saved),
and for convenience add them to the constants plot.

load myfile.raw

let constants.tvals = time constants.xvals = v(1)

This needs to be done once only per session. If the circuit file contains a line like

vin 2 0 pwl(tvals xvals)

Then one can run any number of simulations while avoiding the need to repeatedly parse and recreate
the long PWL list from an input file.

The pwl function is currently the only tran function that takes parameters. These parameters belong
to the pwl function, and must be included inside the parentheses when parentheses are used. The
parameters are specified with an identifier, optionally followed by an equal sign, and a number. The
parameters must appear following the values list or vector names.

r

The r (repeat) option forces the wave function to repeat periodically. A time value can optionally
follow r, which if given must be one of the ti given but not the final time value, or it can be zero.

2.15. VOLTAGE AND CURRENT SOURCES 105

If the time value is omitted, it is taken as zero. This time value is “mapped” to the final time
value when the sequence repeats.

For example, after the circuit time slightly exceeds the final time value given, the next output
value will be the value following the time given with r, and its time will be the final time plus the
difference between the r point time and the point that follows.

td

The td parameter can be set to a delay time, that will be added to all time values, including those
generated with the r parameter.

The two parameters are intended to behave in the same manner as similar parameters defined in
HSPICE. There is one difference between WRspice and HSPICE pwl behavior: if the first time value is
nonzero, in HSPICE the time zero value will be the source dc value, in WRspice is will be the value at
the first given time point.

In dependent sources where the controlling input is specified, a pwl construct if used in the expression
for the source will take as input the value of the controlling input, and not time. This is one means by
which a piecewise-linear transfer function can be implemented. A similar capability exists through the
table function.

Example:

e1 1 0 2 0 pwl(-1 1 0 0 1 1)

The example above implements a perfect rectifier (absolute value generator) for voltages between -1
and 1V. Outside this range, the output is clipped to 1V.

The r and td parameters work in this case as well, doing the same things, but with respect to the
controlling input. For example:

e1 1 0 2 0 pwl(0 0 .5 1 1 0 R)

v1 2 0 pwl(0 0 100p 5)

The output of e1 is a periodic triangular wave, generated by linearly sweeping the periodic transfer
function.

2.15.3.8 Single-Frequency FM

General Form:
sffm(vo va [fc mdi fs])

Example:
v1 12 0 sffm(0 1m 20k 5 1k)

parameter description default value units

vo offset volts or amps
va amplitude volts or amps
fc carrier frequency 1/tstop hz
mdi modulation index 0
fs signal frequency 1/tstop hz

106 CHAPTER 2. WRSPICE INPUT FORMAT

The shape of the waveform is described by the following equation:

value = vo + va·sin((2π·fc·time) + mdi ·sin(2π·fs ·time))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.10 for explanation.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 vo
prm2 va
prm3 fc
prm4 mdi
prm5 fs

2.15.3.9 Amplitude Modulation

General Form:
am(sa oc fm fc td)

Example:
vin 12 0 am(10 1 10meg 100meg 10n)

parameter description default value units

sa signal amplitude volts or amps
oc offset constant
fm modulation frequency 1/tstop hz
rc carrier frequency 0.0 hz
td signal delay 0.0 seconds

The shape of the waveform is described by the following table:

time value

0 to td 0
td to tstop sa ·{oc+ sin(2π·fm·(time− td))}·sin(2π·fc·(time− td))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis¡/a¿.
This function is a work-alike to the similar function found in HSPICE.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

2.15. VOLTAGE AND CURRENT SOURCES 107

prm1 sa
prm2 oc
prm3 fm
prm4 fc
prm5 td

2.15.3.10 Sinusoidal

General Form:
sin(vo va [freq td theta phi])

Example:
vin 3 0 sin(0 1 100meg 1ns 1e10)

This function can be called as tsin to avoid possible conflict with the sin math function.

parameter description default value units

vo offset volts or amps
va amplitude volts or amps
freq frequency 1/tstop hz
td delay 0.0 seconds
theta damping factor 0.0 1/seconds
phi phase delay 0.0 degrees

The shape of the waveform is described by the following table:

time value

0 to td vo + va·sin(π·phi/180)
td to tstop vo + va·exp(−(time−td)·theta) · sin(2π·(freq ·(time−td) + π·phi/360))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.10 for explanation. The argument count is used to distinguish this function from the math function
of the same name.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 vo
prm2 va
prm3 freq
prm4 td
prm5 theta
prm6 phi

108 CHAPTER 2. WRSPICE INPUT FORMAT

2.15.3.11 Sinusoidal Pulse

General Form:
spulse(vo vp [per td decay])

Example:
vin 1 0 spulse(0 1 25ns 40ns 1e8)

parameter description default value units

vo offset volts or amps
vp peak amplitude volts or amps
per period tstop seconds
td delay 0.0 seconds
decay decay const 0.0 1/seconds

The shape of the waveform is described by the following table:

time value

0 vo
td vo + 0.5·(vp−vo)(1 − cos(2π·(time−td)/per)·exp(−(time−td) ·decay))

This function applies only to transient analysis, where time is the running variable. When referring
to default values, tstep is the printing increment and tstop is the final time in transient analysis, see
2.7.10 for explanation.

If this function is used bare and not part of an expression in a voltage or current source, then the
general source instance parameters prm1 etc. map as below. It is possible to read and alter these values
using the special vector @device[param] construct, or with the alter and sweep commands. However,
there is no sanity checking so bad numbers can cause wild behavior or worse.

prm1 vo
prm2 vp
prm3 per
prm4 td
prm5 decay

2.15.3.12 Table Reference

General Form:
table(table name expr)
table name(expr) (for sources only)

Examples:
vin 1 0 table(tab1, v(2))

exx 1 0 2 0 table(tab2, x)

exx 1 0 2 0 tab2(x)

2.15. VOLTAGE AND CURRENT SOURCES 109

The table referenced must be specified in the input deck with a .table line. The reference to a table
is in the form of a table function, as above, which takes two arguments. The first argument is the name
of a table defined elsewhere in the circuit file with a .table line. The second argument is an expression
which provides input to the table. The return value is the interpolated value from the table.

Tables can also be referenced as part of the ac specification for a dependent or independent source.
These references are used in ac analysis, and have a different referencing syntax.

In the expression used in voltage and current sources, dependent and independent, the second form
can be used and is equivalent. The table name must not conflict with another internal or user-defined
function name.

The table reference provides one means of implementing a piecewise-linear transfer function. This
can also be accomplished by use of the pwl function in dependent sources.

2.15.4 Dependent Sources

WRspice source specifications are completely general in that they allow arbitrary functional dependence
upon circuit variables. However, for compatibility with previous versions of SPICE, the separate keying
of independent and dependent sources is retained. WRspice allows circuits to contain dependent sources
characterized by any of the four equations in the table below.

VCCS i = g(v) Voltage-Controlled Current Source
VCVS v = e(v) Voltage-Controlled Voltage Source
CCCS i = f(i) Current-Controlled Current Source
CCVS v = h(i) Current-Controlled Voltage Source

The functions g, e, f, and h represent transconductance, voltage gain, current gain, and transresis-
tance, respectively.

2.15.4.1 Voltage-Controlled Current Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
gname n+ n- nc+ nc- [expr] srcargs
gname n+ n- function | cur [=] expr srcargs
gname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
g1 2 0 5 0 0.1mmho

g2 2 0 5 0 log10(x)

g3 2 0 function log10(v(5))

The n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. The parameters nc+ and nc- are the positive and
negative controlling nodes, respectively.

In the first form, if the expr is a constant, it represents the transconductance in siemens. If no
expression is given, a unit constant value is assumed. Otherwise, the expr computes the source current,

110 CHAPTER 2. WRSPICE INPUT FORMAT

where the variable “x” if used in the expr is taken to be the controlling voltage (v(nc+,nc-)). In this
case only, the pwl construct if used in the expr takes as its input variable the value of “x” rather than
time, thus a piecewise linear transfer function can be implemented using a pwl statement. The second
form is similar, but “x” is not defined. The keywords “function” and “cur” are equivalent. The third
form allows use of the SPICE2 poly construct.

More information on the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.2 Voltage-Controlled Voltage Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
ename n+ n- nc+ nc- [expr] srcargs
ename n+ n- function | vol [=] expr srcargs
ename n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
e1 2 3 14 1 2.0

e2 2 3 14 1 x+.015*x*x

e3 2 3 function v(14,1)+.015*v(14,1)*v(14,1)

The n+ is the positive node, and n- is the negative node. nc+ and nc- are the positive and negative
controlling nodes, respectively.

In the first form, if the expr is a constant, it represents the linear voltage gain. If no expression is
given, a unit constant value is assumed. Otherwise, the expr computes the source voltage, where the
variable “x” if used in the expr is taken to be the controlling voltage (v(nc+,nc-)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “vol” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

2.15. VOLTAGE AND CURRENT SOURCES 111

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.3 Current-Controlled Current Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
fname n+ n- vnam expr srcargs
fname n+ n- function | cur [=] expr srcargs
fname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
f1 13 5 vsens 5

f2 13 5 1-x*x ac table(acdata)

f3 13 5 function 1-i(vsens)*i(vsens)

The n+ and n- are the positive and negative nodes, respectively. Current flow is from the positive
node, through the source, to the negative node. The parameter vnam is the name of a voltage source or
inductor through which the controlling current flows. If vnam refers to a voltage source, the direction of
positive controlling current flow is from the positive node, through the source, to the negative node. If
vnam names an inductor, the current flow is from the first node specified for the inductor, through the
inductor, to the second node.

In the first form, if the expr is a constant, it represents the linear current gain. If no expression is
given, a unit constant value is assumed. Otherwise, the expr computes the source current, where the
variable “x” if used in the expr is taken to be the controlling current (i(vnam)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “cur” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table

112 CHAPTER 2. WRSPICE INPUT FORMAT

multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.15.4.4 Current-Controlled Voltage Sources

This is a special case of the general source specification included for backward compatibility.

General Form:
hname n+ n- vnam expr srcargs
hname n+ n- function | vol [=] expr srcargs
hname n+ n- poly poly spec srcargs
where srcargs = [ac table(name)]

Examples:
h1 5 17 vz 0.5k

h2 5 17 0.71,0.71

h3 5 17 vz 2.5*exp(x/2.5) ac table(myvals)

h2 5 17 function 2.5*exp(i(vz)/2.5)

Above, n+ and n- are the positive and negative nodes, respectively. The parameter vnam is the
name of a voltage source or inductor through which the controlling current flows. If nam references a
voltage source, the direction of positive controlling current flow is from the positive node, through the
source, to the negative node. If vnam references an inductor, the controlling current flows from the first
node specified for the inductor, through the inductor, to the second node.

Note: In releases earlier than 4.1.15 the output for a constant transfer value case was the reverse
polarity of the description here.

In the first form, if the expr is a constant, it represents the transresistance in ohms. If no expression
is given, a unit constant value is assumed. Otherwise, the expr computes the source voltage, where the
variable “x” if used in the expr is taken to be the controlling current (i(vnam)). In this case only, the
pwl construct if used in the expr takes as its input variable the value of “x” rather than time, thus a
piecewise linear transfer function can be implemented using a pwl statement. The second form is similar,
but “x” is not defined. The keywords “function” and “vol” are equivalent. The third form allows use
of the SPICE2 poly construct.

More information of the function specification can be found in 2.15, and the poly specification is
described in 2.15.2.

If the ac parameter is given and the table keyword follows, then the named table is taken to
contain complex transfer coefficient data, which will be used in ac analysis (and possibly elsewhere, see
below). For each frequency, the source output will be the interpolated transfer coefficient from the table
multiplied by the input. The table must be specified with a .table line, and must have the ac keyword
given.

2.16. SEMICONDUCTOR DEVICES 113

If an ac table is specified, and no dc/transient transfer function or coefficient is given, then in transient
analysis, the source transfer will be obtained through Fourier analysis of the table data. This is somewhat
experimental, and may be prone to numerical errors.

In ac analysis, the transfer coefficient can be real or complex. If complex, the imaginary value follows
the real value. Only constants or constant expressions are valid in this case. If the source function is
specified in this way, the real component is used in dc and transient analysis. This will also override a
table, if given.

2.16 Semiconductor Devices

The standard WRspice device library contains models for the semiconductor devices listed in the table
below. Each of these devices references a corresponding model supplied on a .model line (see 2.13). The
model supplies most of the parameters that specify device behavior. If a corresponding model is not
found, usually a warning is issued and a default model is used.

Device Name Key
Junction Diode dio d

Bipolar Junction Transistor bjt q

Junction Field-Effect Transistor jfet j

MESFET mes z

MOSFET mos m

Each device element line contains the device name, the nodes to which the device is connected,
and the device model name. In addition, other optional parameters may be specified for some devices:
geometric factors and an initial condition.

The area factor used on the device lines determines the number of equivalent parallel devices of a
specified model. The affected parameters are marked with an asterisk under the heading “area” in the
model descriptions. Several geometric factors associated with the channel and the drain and source
diffusions can be specified on the MOSFET device line.

Two different forms of initial conditions may be specified for some devices. The first form is included
to improve the dc convergence for circuits that contain more than one stable state. If a device is specified
off, the dc operating point is determined with the device internal terminal voltages (not external node
voltages!) for that device set to zero. This effectively makes the device an open circuit. After convergence
is obtained, the program continues to iterate to obtain the exact value for the terminal voltages. If a
circuit has more than one dc stable state, the off option can be used to force the solution to correspond
to a desired state. If a device is specified off when in reality the device is conducting, the program will
still obtain the correct solution (assuming the solutions converge) but more iterations will be required
since the program must independently converge to two separate solutions. The .nodeset line serves a
similar purpose as the off option. The .nodeset directive is easier to apply and is the preferred means
to aid convergence in this situation.

The second form of initial condition is specified for use with transient analysis. These are true initial
conditions as opposed to the convergence aids above. See the description of the .ic line and the .tran
line for a detailed explanation of initial conditions.

2.16.1 Junction Diodes

General Form:

114 CHAPTER 2. WRSPICE INPUT FORMAT

dname n+ n- modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
ic=vj The initial junction voltage (initial condition) for transient analysis.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the diode area.
m=val Device multiplicity factor, similar to area.
pj=val Perimeter scale factor for sidewell.
temp=val Device operating temperature, degrees celsius.
dtemp=val Device operating temperature difference from circuit operating tempera-

ture. This is overruled if temp is also given.

Examples:
dbridge 2 10 diode1

dclmp 3 7 dmod 3.0 ic=0.2

The n+ and n- are the positive and negative nodes, respectively. The parameter modname is the
model name, area specifies the area factor, temp specifies the operating temperature, and off indicates
an (optional) starting condition of the device for dc analysis. If the area factor is omitted, a value of
1.0 is assumed. The (optional) initial voltage specification using ic=vd is intended for use with the uic
option in transient analysis, when a transient analysis is desired starting from other than the quiescent
operating point. The .ic line provides another way to set transient initial conditions.

2.16.2 Diode Model

Type Name: d

The dc characteristics of the diode are determined by the parameters is and n. An ohmic resistance,
rs, is included. Charge storage effects are modeled by a transit time, tt, and a nonlinear depletion
layer capacitance which is determined by the parameters cjo, vj, and m. The temperature dependence
of the saturation current is defined by the parameters eg, the energy, and xti, the saturation current
temperature exponent. The nominal temperature at which these parameters were measured is tnom,
which defaults to the value specified on the .options control line. Reverse breakdown is modeled by an
exponential increase in the reverse diode current and is determined by the parameters bv and ibv (both
of which are positive numbers).

The diode model is an enhanced version of the SPICE3 diode model, as used in NGspice, but with
additional support for HSPICE model parameters.

The parameters marked with an asterisk in the area column scale with the area and/or the m

(multiplicity) parameters given in the device line. The parameters marked with two asterisks scale with
the pj (perimeter factor) parameter given in the device line.

2.16. SEMICONDUCTOR DEVICES 115

Diode Model Parameters
name area parameter units default example

is, js ∗ saturation current A 1.0e-14 1.0e-14
jsw ∗∗ sidewall saturation current A 0
rs ∗ ohmic resistance Ω 0 10
trs, trs1 ohmic resistance 1st order temp

coeff
- 0

trs2 ohmic resistance 2nd order temp
coeff

- 0

n emission coefficient - 1 1.0
tt transit-time S 0 0.1ns
tt1 transit-time 1st order temp coeff - 0
tt2 transit-time 2nd order temp coeff - 0
cjo, cj0, cj ∗ zero-bias junction capacitance F 0 2PF
vj, pb junction potential V 1 0.6
m, mj grading coefficient - 0.5 0.5
tm1 grading coefficient 1st temp coeff - 0
tm2 grading coefficient 1nd temp coeff - 0
cjp, cjsw ∗∗ sidewall junction capacitance F 0
php sidewall junction potential V 0
mjsw sidewall grading coefficient - 0.33
ikf, ik ∗ forward knee current A 1e-3
ikr reverse knee current A 1e-3
eg activation energy eV 1.11 1.11 Si,

0.69 Sbd,
0.67 Ge

xti saturation-current temperature
exponent

- 3.0 3.0 junc,
2.0 Sbd

kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc forward-bias junction fit

parameter
- 0.5

fcs forward-bias sidewall junction fit
parameter

- 0.5

bv reverse breakdown voltage V infinite 40.0
ibv current at breakdown voltage A 1.0e-3 2.0e-3
tnom, tref parameter measurement

temperature
C 25 50

HSPICE Compatibility
level device type selector
tlev equation set selector
tlevc equation set selector
area area default
pj sidewall perimeter factor default
cta junction capacitance temp. coeff.
ctp sidewall capacitance temp. coeff.
tcv breakdown voltage temp. coeff.
tcv junction potential temp. coeff.
tcv sidewall potential temp. coeff.

116 CHAPTER 2. WRSPICE INPUT FORMAT

The HSPICE compatibility parameters provide some minimal compatibility with the HSPICE diode
model. The level parameter, if present, can take values of 1 and 3, corresponding to the HSPICE
junction and geometric junction models. There is presently no support for the level=2 Fowler-Nordheim
model. The tlev and tlevc parameters switch equation sets. Both take values of 0 and 1, and if set to
any other value will assume a value of 1, i.e., higher values are not supported. The remaining parameters
are as defined in the HSPICE documentation.

2.16.3 Bipolar Junction Transistors (BJTs)

General Form:
qname nc nb ne [ns] modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the BJT area.
ic=vbe,vce The initial voltages (initial condition) for transient analysis.
icvbe=vbe The initial vbe (initial condition) for transient analysis.
icvce=vce The initial vce (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:
q23 10 24 13 qmod ic=0.6,5.0

q50a 11 26 4 20 mod1

The nc, nb, and ne are the collector, base, and emitter nodes, respectively, and ns is the (optional)
substrate node. If unspecified, ground is used. The modname is the model name, area specifies the area
factor, temp specifies the operating temperature, and off indicates an initial condition of the device for
the dc analysis. If the area factor is omitted, a value of 1.0 is assumed. The initial conditions specified
using ic or alternatively icvbe and icvce are intended for use with the uic option in transient analysis,
when a transient analysis is desired starting from other than the quiescent operating point. The .ic

line provides another way to set transient initial conditions.

2.16.4 BJT Models (both NPN and PNP)

Type Names: npn, pnp

The bipolar junction transistor model in WRspice is an adaptation of the integral charge control
model of Gummel and Poon. This modified Gummel-Poon model extends the original model to include
several effects at high bias levels. The model will automatically simplify to the simpler Ebers-Moll model
when certain parameters are not specified. The parameter names used in the modified Gummel-Poon
model have been chosen to be more easily understood by the program user, and to reflect better both
physical and circuit design thinking.

The dc model is defined by the parameters is, bf, nf, ise, ikf, and ne which determine the
forward current gain characteristics, is, br, nr, isc, ikr, and nc which determine the reverse current
gain characteristics, and vaf and var which determine the output conductance for forward and reverse
regions. Three ohmic resistances rb, rc, and re are included, where rb can be high current dependent.
Base charge storage is modeled by forward and reverse transit times, tf and tr, the forward transit time

2.16. SEMICONDUCTOR DEVICES 117

tf being bias dependent if desired, and nonlinear depletion layer capacitances which are determined by
cje, vje, and mje for the B-E junction, cjc, vjc, and mjc for the B-C junction, and cjs, vjs, and mjs

for the C-S (Collector-Substrate) junction. The temperature dependence of the saturation current, is, is
determined by the energy gap, eg, and the saturation current temperature exponent, xti. Additionally
base current temperature dependence is modeled by the beta temperature exponent xtb in the new
model. The values specified are assumed to have been measured at the temperature tnom, which can be
specified on the .options line or overridden by a specification on the .model line.

The BJT parameters used in the modified Gummel-Poon model are listed below. The parameter
names used in earlier versions of SPICE2 are still accepted. The parameters marked with an asterisk in
the area column scale with the area parameter given in the device line.

There is also a level=4 BJT model which uses the VBIC equation set, as used in the NGspice-17
simulator. This model is documented elsewhere.

BJT Model Parameters
name area parameter units default example

is ∗ transport saturation current A 1.0e-16 1.0e-15
bf ideal maximum forward beta - 100 100
nf forward current emission

coefficient
- 1.0 1

vaf forward Early voltage V infinite 200
ikf ∗ corner for forward beta high

current roll-off
A infinite 0.01

ise ∗ B-E leakage saturation current A 0 1.0e-13
ne B-E leakage emission coefficient - 1.5 2
br ideal maximum reverse beta - 1 0.1
nr reverse current emission

coefficient
- 1 1

var reverse Early voltage V infinite 200
ikr ∗ corner for reverse beta high

current roll-off
A infinite 0.01

isc ∗ B-C leakage saturation current A 0 1.0e-13
nc B-C leakage emission coefficient - 2 1.5
rb ∗ zero bias base resistance Ω 0 100
ikb ∗ current where base resistance

falls halfway to its min value
A infinite 0.1

rbm ∗ minimum base resistance at high
currents

Ω rb 10

re ∗ emitter resistance Ω 0 1
rc ∗ collector resistance Ω 0 10
cje ∗ B-E zero-bias depletion

capacitance
F 0 2pf

vje B-E built-in potential V 0.75 0.6
mje B-E junction exponential factor - 0.33 0.33
tf ideal forward transit time S 0 0.1ns
xtf coefficient for bias dependence of

tf

- 0 -

vtf voltage describing VBC
dependence of tf

V infinite -

118 CHAPTER 2. WRSPICE INPUT FORMAT

itf ∗ high-current parameter for effect
on tf

A 0 -

ptf excess phase at freq=1.0/(tf·2π)
Hz

deg 0 -

cjc ∗ B-C zero-bias depletion
capacitance

F 0 2pf

vjc B-C built-in potential V 0.75 0.5
mjc B-C junction exponential factor - 0.33 0.5
xcjc fraction of B-C depletion

capacitance connected to
internal base node

- 1 -

tr ideal reverse transit time S 0 10ns
cjs ∗ zero-bias collector-substrate

capacitance
F 0 2pf

vjs substrate junction built-in
potential

V 0.75 -

mjs substrate junction exponential
factor

- 0 0.5

xtb forward and reverse beta
temperature exponent

- 0 -

eg energy gap for temperature
effect on is

eV 1.11 -

xti temperature exponent for effect
on is

- 3 -

kf flicker-noise coefficient - 0 -
af flicker-noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

tnom parameter measurement
temperature

C 25 50

2.16.5 Junction Field-Effect Transistors (JFETs)

General Form:
jname nd ng ns modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the JFET area.
ic=vds ,vgs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:

2.16. SEMICONDUCTOR DEVICES 119

j1 7 2 3 jm1 off

j43 10 4 1 jmod2 area=2

The nd , ng , and ns are the drain, gate, and source nodes, respectively. The modname is the model
name, area specifies the area factor, temp specifies the operating temperature, and off indicates an
(optional) initial condition of the device for dc analysis. If the area factor is omitted, a value of 1.0 is
assumed. The initial conditions specified using ic or alternatively icvds and icvgs are intended for use
with the uic option in transient analysis, when a transient analysis is desired starting from other than
the quiescent operating point. The .ic line provides another way to set initial conditions.

2.16.6 JFET Models (both N and P Channel)

Type Names: njf, pjf

There are two JFET models available, selectable with the level parameter given in the list of model
parameters. If level=2 is given, the Parker-Skellern JFET model from Macquarie University in Sydney,
Australia will be used. Parameters given must apply to that model. Documentation for this model is
available from the Whiteley Research web site, or from
http://www.elec.mq.edu.au/cnerf/spice/spice.html.

If no level parameter is given, or is set to something other than 2, the standard SPICE3 JFET
model will be used. This JFET model is derived from the FET model of Shichman and Hodges. The
dc characteristics are defined by the parameters vto and beta, which determine the variation of drain
current with gate voltage, lambda, which determines the output conductance, and is, the saturation
current of the two gate junctions. Two ohmic resistances, rd and rs, are included. Charge storage is
modeled by nonlinear depletion layer capacitances for both gate junctions which vary as the -1/2 power
of junction voltage and are defined by the parameters cgs, cgd, and pb. The fitting parameter b is a
new addition, see[7].

The parameters marked with an asterisk in the area column scale with the area parameter given in
the device line.

120 CHAPTER 2. WRSPICE INPUT FORMAT

JFET Model Parameters
name area parameter units default example

vto threshold voltage V -2.0 -2.0
beta ∗ transconductance parameter A/V 2 1.0e-4 1.0e-3
lambda channel length modulation

parameter
1/V 0 1.0e-4

rd ∗ drain ohmic resistance Ω 0 100
rs ∗ source ohmic resistance Ω 0 100
cgs ∗ zero-bias G-S junction

capacitance
F 0 5pf

cgd ∗ zero-bias G-D junction
capacitance

F 0 1pf

pb gate junction potential V 1 0.6
is ∗ gate junction saturation current A 1.0e-14 1.0e-14
b doping tail parameter - 1 1.1
kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

tnom parameter measurement
temperature

C 25 50

2.16.7 MESFETs

General Form:
zname nd ng ns modname [parameters ...]

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the MESFET area.
ic=vds ,vgs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.

Examples:
z1 7 2 3 zm1 off

zout 21 4 16 zmod1 area=5

The nd , ng , and ns are the drain, gate, and source nodes, respectively. The modname is the model
name, area specifies the area factor, and off indicates an initial condition of the device for dc analysis.
If the area factor is omitted, a value of 1.0 is assumed. The initial condition specified using ic or
alternatively icvds and icvgs are intended for use with the uic option in transient analysis, when
a transient analysis is desired starting from other than the quiescent operating point. The .ic line
provides another way to set initial conditions.

2.16. SEMICONDUCTOR DEVICES 121

2.16.8 MESFET Models (both N and P Channel)

Type Names: nmf, pmf

The MESFET model is derived from the GaAs FET model of Statz et al. as described in[10]. The dc
characteristics are defined by the parameters vto, b, and beta, which determine the variation of drain
current with gate voltage, alpha, which determines saturation voltage, and lambda, which determines
the output conductance. The formula are given by

Id =
β(Vgs − VT)

2

1 + b(Vgs − VT)

(

1−
(

1− α
Vds

3

)3
)

(1 + λVds) for 0 < Vds < 3/α

Id =
β(Vgs − VT)

2

1 + b(Vgs − VT)
(1 + λVds) for Vds > 3/α

Two ohmic resistances, rd and rs, are included. Charge storage is modeled by total gate charge as
a function of gate-drain and gate-source voltages and is defined by the parameters cgs, cgd, and pb.

The parameters marked with an asterisk in the area column scale with the area parameter given in
the device line.

MES Model Parameters
name area parameter units default example

vto pinch-off voltage V -2.0 -2.0
beta ∗ transconductance parameter A/V 2 1.0e-4 1.0e-3
b ∗ doping tail extending parameter 1/V 0.3 0.3
alpha ∗ saturation voltage parameter 1/V 2 2
lambda channel length modulation

parameter
1/V 0 1.0e-4

rd ∗ drain ohmic resistance Ω 0 100
rs ∗ source ohmic resistance Ω 0 100
cgs ∗ zero-bias G-S junction

capacitance
F 0 5pf

cgd ∗ zero-bias G-D junction
capacitance

F 0 1pf

pb gate junction potential V 1 0.6
kf flicker noise coefficient - 0 -
af flicker noise exponent - 1 -
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

2.16.9 MOSFETs

General Form:
mname nd ng ns nb modname [parameters ...]

122 CHAPTER 2. WRSPICE INPUT FORMAT

Parameter Name Description

off Device is initially nonconducting, for circuit convergence assistance.
m=val Device multiplicity factor.
l=val Channel length in meters.
w=val Channel width in meters.
ad=val Drain diffusion area in square meters.
as=val Source diffusion area in square meters.
pd=val Drain junction perimeter in meters.
ps=val Source junction perimeter in meters.
nrd=val Drain equivalent squares for resistance.
nrs=val Source equivalent squares for resistance.
ic=vds ,vgs ,vbs The initial voltages (initial condition) for transient analysis.
icvds=vds The initial vds (initial condition) for transient analysis.
icvgs=vgs The initial vgs (initial condition) for transient analysis.
icvbs=vbs The initial vbs (initial condition) for transient analysis.
temp=val Device operating temperature, degrees celsius.

Examples:
m1 24 2 0 20 type1

m31 2 17 6 10 modm l=5u w=2u

m1 2 9 3 0 mod1 l=10u w=5u ad=100p as=100p pd=40u ps=40u

The parameters listed above are representative of the SPICE3 MOS models, but except for ‘m’ are
fairly universal. Some third-party MOS models may have additional nodes and parameters. Consult the
model documentation for the full listing.

The nd , ng , ns , and nb are the drain, gate, source, and bulk (substrate) nodes, respectively. The
modname is the model name, l and w specify the channel length and width in meters, and ad and as

specify the areas of the drain and source diffusions in sq-meters. Note that the suffix ‘u’ specifies microns
(1E-6 m) and ‘p’ sq-microns (1E-12 sq-m). If any of l, w, ad, or as are not specified, default values
are used. The use of defaults simplifies input file preparation, as well as the editing required if device
geometries are to be changed. The pd and ps specify the perimeters of the drain and source junctions in
meters, nrd and nrs designate the equivalent number of squares of the drain and source diffusions; these
values multiply the sheet resistance rsh specified on the .model line for an accurate representation of the
parasitic series drain and source resistance of each transistor. The pd and ps default to 0.0 while nrd and
nrs default to 1.0. The parameter off indicates an initial condition of the device for dc analysis. The
initial conditions specified using ic or alternatively icvds, icvgs amd icvbs are intended for use with
the uic option in transient analysis, when a transient analysis is desired starting from other than the
quiescent operating point. operating point. The .ic line provides another way to set initial conditions.

MOS devices using model levels 1–3 accept a real parameter “m” which scales all the instance capac-
itances, areas, and currents by the given factor. This can be used as a short-cut for modeling multiple
devices, e.g., m = 2 is equivalent to two identical devices in parallel. This is not available for most of
the more complicated and third-party models.

2.16.10 MOSFET Models (both N and P channel)

Type Names: nmos, pmos

WRspice provides the basic MOS models provided in SPICE2/3, plus third-party models from various
development groups. A complete listing of the MOS models supported in the current WRspice release is

2.16. SEMICONDUCTOR DEVICES 123

provided below. Documentation for the third-party models is available on the Whiteley Research web
site. This section will describe the features common to all MOS models.

The level parameter in the MOS model description specifies the model to be used. Where possible,
the level chosen for the imported models will match the level used in Synopsys HSPICE.

2.16.10.1 MOS Default Values

The MOS device length, width, source area and drain area will default to common values if not specified
for a device. These values are set by the following variables:

Variable Purpose Default

defad drain area 0 M2

defas source area 0 M2

defl gate length 1 uM
defw gate width 1 uM

2.16.10.2 MOS Model Binning

WRspice supports MOS model selection by the L and W MOS element line. This facility is used to
automatically select the proper model for a specific device dimension, from among several models which
are nominally similar but optimized for a particular device size. This facility works with any of the MOS
model levels.

The MOS models for the specified ranges should use the same “base” name plus an arbitrary but
unique extension separated from the base name with a period. The element line should refer to the
model by the base name. Each of the different models with the same base name should have ranges
specified with the model parameters LMIN, LMAX, WMIN, WMAX. The model associated with an instance is
the first model found such that the base name matches, and LMIN <= L <= LMAX and WMIN <= W <=

WMAX. If the MIN/MAX parameters are not found in a model line, the test is always true, i.e., if no
MIN/MAX parameters are specified in a model, that model would match any L, W.

Example:

m1 1 2 3 4 nm l=1.5u w=1u

m2 a b c d nm l=3u w=5u

...

.model nm.1 nmos(level=8 lmin=1u lmax=2u wmin=1u wmax=2u ...)

.model nm.2 nmos(level=8 lmin=2u lmax=4u wmin=1u wmax=2u ...)

.model nm.3 nmos(level=8 lmin=1u lmax=2u wmin=2u wmax=5u ...)

.model nm.4 nmos(level=8 lmin=2u lmax=4u wmin=2u wmax=5u ...)

.model nm.5 nmos(level=8 ...)

In this example m1 would use model nm.1, and m2 would use nm.4. The model nm.5 is a “catch all”
for elements that don’t match the other models. The extension can be omitted in one of the model
names.

If a model that uses selection cannot be resolved, the circuit run will be aborted.

124 CHAPTER 2. WRSPICE INPUT FORMAT

2.16.10.3 SPICE2/3 Legacy Models

This section describes the basic SPICE2/3 models. The level 1–3 and 6 models can be used for quick anal-
ysis and examples, but are probably not suitable for serious design work using modern deep-submicron
devices. The BSIM1 and BSIM2 models are for compatibility only, and are not likely to be useful except
for analysis of legacy projects.

The dc characteristics of the level 1 through level 3 MOSFETs are defined by the device parameters
vto, kp, lambda, phi and gamma. These parameters are computed by WRspice if process parameters
(nsub, tox, ...) are given, but user-specified values always override. The parameter vto is positive
(negative) for enhancement mode and negative (positive) for depletion mode N-channel (P-channel)
devices. Charge storage is modeled by three constant capacitors, cgso, cgdo, and cgbo which represent
overlap capacitances, by the nonlinear thin-oxide capacitance which is distributed among the gate, source,
drain, and bulk regions, and by the nonlinear depletion-layer capacitances for both substrate junctions
divided into bottom and periphery, which vary as the mj and mjsw power of junction voltage respectively,
and are determined by the parameters cbd, cbs, cj, cjsw, mj, mjsw and pb. Charge storage effects are
modeled by the piecewise linear voltage dependent capacitance model proposed by Meyer. The thin-
oxide charge storage effects are treated slightly differently for the level 1 model. These voltage-dependent
capacitances are included only if tox is specified in the input description and they are represented using
Meyer’s formulation.

There is some overlap among the parameters describing the junctions, e.g., the reverse current can be
input either as is (in Amps) or as js (in Amps/m2). Whereas the first is an absolute value, the second
is multiplied by ad and as to give the reverse current of the drain and source junctions respectively. This
methodology has been chosen to avoid always relating junction characteristics with ad and as entered
on the device line; the areas can be defaulted. The same idea applies also to the zero-bias junction
capacitances cbd and cbs (in Farads) on one hand, and cj (in F/m2) on the other. The parasitic drain
and source series resistance can be expressed as either rd and rs (in ohms) or rsh (in ohms/sq.), the
latter being multiplied by the number of squares nrd and nrs input on the device line.

MOS Level 1 to Level 3 Parameters
name parameter units default example

level Model index - 1
vto zero-bias threshold voltage V 0.0 1.0
kp transconductance parameter A/V 2 2.0e-5 3.1e-5

gamma bulk threshold parameter V 1/2 0.0 0.37
phi surface potential V 0.6 0.65
lambda channel-length modulation

(MOS1 and MOS2 only)
1/V 0.0 0.02

rd drain ohmic resistance Ω 0.0 1.0
rs source ohmic resistance Ω 0.0 1.0
cbd zero-bias B-D junction

capacitance
F 0.0 20fF

cbs zero-bias B-S junction
capacitance

F 0.0 20fF

is bulk junction saturation current A 1.0e-14 1.0e-15
pb bulk junction potential A 0.8 0.87
cgso gate-source overlap capacitance

per channel width
F/M 0.0 4.0e-11

2.16. SEMICONDUCTOR DEVICES 125

cgdo gate-drain overlap capacitance
per channel width

F/M 0.0 4.0e-11

cgbo gate-bulk overlap capacitance
per channel length

F/M 0.0 2.0e-10

rsh drain and source diffusion sheet
resistance

Ω/✷ 0.0 10.0

cj zero-bias bulk junction bottom
capacitance per junction area

F/M2 0.0 2.0e-4

mj bulk junction bottom grading
coeff

- 0.5 0.5

cjsw zero-bias bulk junction sidewall
capacitance per junction
perimeter

F/M 0.0 1.0e-9

mjsw bulk junction sidewall grading
coeff.

- 0.50 (level 1),
0.33 (level 2,3)

-

js bulk junction saturation current
per junction area

A/M2 1.0e-8 -

tox oxide thickness M 1.0e-7 1.0e-7
nsub substrate doping 1/cM3 0.0 4.0e15
nss surface state density 1/cM2 0.0 1.0e10
nfs fast surface state density 1/cM2 0.0 1.0e10
tpg type of gate material: +1 opp.

to substrate, -1 same as
substrate, 0 Al gate

- 1.0 -

xj metallurgical junction depth M 0.0 1u
ld lateral diffusion M 0.0 0.8u
uo surface mobility cM2/V S 600 700
ucrit critical field for mobility

degradation (MOS2 only)
V/cM 1.0e4 1.0e4

uexp critical field exponent in mobility
degradation (MOS2 only)

- 0.0 0.1

utra transverse field coeff (mobility)
(deleted for MOS2)

- 0.0 0.3

vmax maximum drift velocity of
carriers

M/S 0.0 5.0e4

neff total channel charge (fixed and
mobile) coefficient (MOS2 only)

- 1.0 5.0

kf flicker noise coefficient - 0.0 1.0e-26
af flicker noise exponent - 1.0 1.2
fc coefficient for forward-bias

depletion capacitance formula
- 0.5 -

delta width effect on threshold voltage
(MOS2 and MOS3)

- 0.0 1.0

theta mobility modulation (MOS3
only)

1/V 0.0 0.1

eta static feedback (MOS3 only) - 0.0 1.0
kappa saturation field factor (MOS3

only)
- 0.2 0.5

126 CHAPTER 2. WRSPICE INPUT FORMAT

tnom parameter measurement
temperature

C 25 50

The level 4 (BSIM1) parameters are all values obtained from process characterization, and can be
generated automatically. J. Pierret[3] describes a means of generating a “process” file, and the program
proc2mod provided withWRspice will convert this file into a sequence of .model lines suitable for inclusion
in WRspice input. Parameters marked below with an * in the l/w column also have corresponding
parameters with a length and width dependency. For example, vfb is the basic parameter with units of
volts, and lvfb and wvfb also exist and have units of volt-µmeter. The formula

P = P0 +
PL

Leffective
+

PW

Weffective

is used to evaluate the parameter for the actual device specified with

Leffective = Linput − dl

and

Weffective = Winput − dw.

Note that unlike the other models in WRspice, the BSIM model is designed for use with a process
characterization system that provides all the parameters, thus there are no defaults for the parameters,
and leaving one out is considered an error. For an example set of parameters and the format of a process
file, see the SPICE2 implementation notes[2].

BSIM (Level 4) Parameters
name l/w parameter units

vfb ∗ flat-band voltage V
phi ∗ surface inversion potential V

k1 ∗ body effect coefficient V 1/2

k2 ∗ drain/source depletion charge sharing coefficient -
eta ∗ zero-bias drain-induced barrier lowering

coefficient
-

muz zero-bias mobility cM2/V S
dl shortening of channel µM
dw narrowing of channel µM
u0 ∗ zero-bias transverse-field mobility degradation

coefficient
V −1

u1 ∗ zero-bias velocity saturation coefficient µM/V
x2mz ∗ sens. of mobility to substrate bias at Vds = 0 cM2/V 2S
x2e ∗ sens. of drain-induced barrier lowering to

substrate bias
V −1

x3e ∗ sens. of drain-induced barrier lowering to drain
bias at Vds = Vdd

V −1

2.16. SEMICONDUCTOR DEVICES 127

x2u0 ∗ sens. of transverse field mobility degradation to
substrate bias

V−2

x2u1 ∗ sens. of velocity saturation effect to substrate
bias

µMV −2

mus mobility at zero substrate bias and at Vds = Vdd cM2/V 2S
x2ms ∗ sens. of mobility to substrate bias at Vds = Vdd cM2/V 2S
x3ms ∗ sens. of mobility to drain bias at Vds = Vdd cM2/V 2S
x3u1 ∗ sens. of velocity saturation effect on drain bias at

Vds = Vdd
µMV −2

tox gate oxide thickness µM
temp temperature at which parameters were measured C
vdd measurement bias range V
cgdo gate-drain overlap capacitance per channel width F/M
cgso gate-source overlap capacitance per channel

width
F/M

cgbo gate-bulk overlap capacitance per channel length F/M
xpart gate-oxide capacitance charge model flag -
n0 ∗ zero-bias subthreshold slope coefficient -
nb ∗ sens. of subthreshold slope to substrate bias -
nd ∗ sens. of subthreshold slope to drain bias -
rsh drain and source diffusion sheet resistance Ω/✷
js source drain junction current density A/M2

pb built in potential of source drain junction V
mj grading coefficient of source drain junction -
pbsw built in potential of source,drain junction sidewall V
mjsw grading coefficient of source drain junction

sidewall
-

cj source drain junction capacitance per unit area F/M2

cjsw source drain junction sidewall capacitance per
unit length

F/M

wdf source drain junction default width M
dell source drain junction length reduction M

The parameter xpart = 0 selects a 40/60 drain/source charge partition in saturation, while xpart

= 1 selects a 0/100 drain/source charge partition.

2.16.10.4 Imported MOS Models

The device library supplied with WRspice contains a number of MOS models supplied by various devel-
opment groups. The models that are currently provided in the device library are listed below. Specific
models are selected through the level parameter. Other parameters are specific to that model, and
there is not in general a great deal of commonality of parameter names between the various models.
Only the simple models provided in SPICE3 will be documented. Documentation for the third-party
models is available from the Whiteley Research web site.

The user should see the help system for the most recent list of available models, since the list may
have changed after the manual was printed.

128 CHAPTER 2. WRSPICE INPUT FORMAT

The devmod command can be used to change the model levels of these devices, with the exception
of the MOS device (levels 1–3 and 6) whose level numbers are fixed. Alternatively, the .mosmap keyword
can be used in SPICE input to map the level number of a foreign simulator into the number expected
by WRspice. The .mosmap line, which must be read before the corresponding .model line, is followed
by two integers. The first integer is the level number found in the file, the second is the WRspice level
number appropriate for the model parameter set. Both of these methods avoid the need to copy the
model file and edit the level number.

The table below lists all of the MOS levels recognized in WRspice.

Level Name Description

1 MOS The SPICE3 mos1 (Shichman-Hodges) model
2 MOS The SPICE3 mos2 model described in [1]
3 MOS The SPICE3 mos3 semi-empirical model (see[1])
4 BSIM1 The SPICE3 bsim1 empirical model described in [2]
5 BSIM2 The SPICE3 bsimw model, successor to bsim1
6 MOS The SPICE3 mos6 model
7, 49 BSIM3.2.0 U.C. Berkeley bsim-3.2.0 model
8, 47 BSIM3.2.4 U.C. Berkeley bsim-3.2.4 model
9, 53 BSIM3.3.0 U.C. Berkeley bsim-3.3.0 model
12 BSIM4.2.1 U.C. Berkeley bsim-4.2.1 model
13 BSIM4.3.0 U.C. Berkeley bsim-4.3.0 model
14 BSIM4.4.0 U.C. Berkeley bsim-4.4.0 model
15, 54 BSIM4.6.5 U.C. Berkeley bsim-4.6.5 model
16, 56 BSIM4.7.0 U.C. Berkeley bsim-4.7.0 model
17, 59 BSIM4.8.0 U.C. Berkeley bsim-4.8.0 model
20 BSIMSOI-3.0 U.C. Berkeley bsimsoi-3.0 SOI model
21 BSIMSOI-3.2 U.C. Berkeley bsimsoi-3.2 SOI model
22, 57 BSIMSOI-4.0 U.C. Berkeley bsimsoi-4.0 SOI model
23, 70 BSIMSOI-4.3 U.C. Berkeley bsimsoi-4.3 SOI model
24, 71 BSIMSOI-4.4 U.C. Berkeley bsimsoi-4.4 SOI model
25, 55 EKV-2.6 EPFL (Switzerland) MOS model release 2.6
30 HISIM-1.1.0 Hiroshima University hisim-1.1.0 model
31, 64 HISIM-1.2.0 Hiroshima University hisim-1.2.0 model
33 Soi3 Southampton Thermal Analogue (STAG-2.6) SOI model
36, 58 UFSOI-7.5 U. Florida SOI model release 7.5

Notes:

BSIM models
The home page for the Berkeley BSIMmodels is http://www-device.eecs.berkeley.edu/ bsim3.
The home page for the Berkeley BSIMSOI models is http://www-device.eecs.berkeley.edu/ bsimsoi.

In WRspice release 3.2.5, MOS level 54 was changed to point to the BSIM-4.6.5 model, which
replaced the BSIM-4.6.1 model. In earlier releases, level 54 pointed to BSIM-4.3.0. Going forward,
level 54 will point to the “latest and greatest” BSIM4 model available.

EKV-2.6
The level EKV-2.6 model installation has not been validated by EPFL, and by agreement until
such validation is performed there is no claim that this is THE EKV model. The EKV home page
is http://legwww.epfl.ch/ekv.

2.16. SEMICONDUCTOR DEVICES 129

STAG
The STAG (Southampton Thermal Analogue Model) does not appear to be available from or
supported by the author anymore. This model will likely be removed in a future release.

HiSIM
The HiSIM model source code is no longer generally available, and is behind a Comapct Modeling
Council firewall. It is unlikely that newer HiSIM models will be added unless there is a specific
customer request.

UFSOI-7.5
The home page for the U. Florida modes is http://www.soi.tec.ufl.edu.

Manuals for the BSIM3/4 and third-party MOS models are available on the Whiteley Research web
site.

If you need a specific device model, please send a note to Whiteley Research. It is possible that the
model can be added.

2.16.10.5 HSPICE MOS Level 49 Compatibility in WRspice

In WRspice, level 49 is equivalent to level 7, which is the BSIM3v3.2 model from Berkeley. However,
there are differences in the parameter sets between this model and the level 49 model of HSPICE, which
is based on BSIM3 and customized for HSPICE. In particular, the HSPICE extensions are not supported
in WRspice.

This document lists the parameters that are accepted in HSPICE level 49 model parameter sets that
are not supported in the Berkeley model, or have different interpretation. The parameters are listed in
alphabetical order, by category. This list is possibly incomplete.

This list also applies to the level 8 (BSIM3v3.2.4) model in WRspice. In WRspice release 2.2.50 and
earlier, level 49 was mapped to level 8. However, the VERSION parameter in level 8 must be “3.2.4” if
given, which is not generally true in imported files. The level 7 model handles earlier versions, notably
3.1, without complaint.

2.16.10.5.1 General parameters

BINFLAG

This is not used for WRspice.

SCALM, SCALE
In HSPICE these are the “model scaling factor” and “element scaling factor”. There are noWRspice

equivalents.

TREF

Temperature at which parameters are extracted. This is taken as an alias for the BSIM3 TNOM

parameter in WRspice.

NQSMOD

This is accepted by WRspice as an extension to BSIM3, and serves as the default for devices that
use the model. If also given on the device line, that value will override.

130 CHAPTER 2. WRSPICE INPUT FORMAT

2.16.10.5.2 Length and Width

LREF, WREF
In HSPICE these are “channel length reference” and “channel width reference”. There are no
WRspice equivalents.

XW, XL
In HSPICE these account for masking and etching effects. In release 3.1.5 and later, the XW and XL

parameters are handled by the BSIM3 bulk-mos models (levels 7, 8, 9, 47, 49, and 53) implementing
the formula below. With earlier releases, one must modify WINT and LINT.

WINTnew = WINTold - XW/2
LINTnew = LINTold - XL/2

2.16.10.5.3 MOS Diode Model Parameters

ACM

In HSPICE this selects the area calculation method. WRspice uses only one model for the bulk-to-
source and bulk-to-drain diodes. It corresponds to the HSPICE equivalent of ACM=0. Do not use
this parameter for WRspice. ACM is not needed if AS, AD, PS, and PD are specified explicitly.

CJGATE

In HSPICE this is the zero-bias gate-edge sidewall bulk junction capacitance used with ACM=3
only. There is no WRspice equivalent.

HDIF, LDIF
In HSPICE this is the “length of heavily doped diffusion” and “length of lightly doped diffusion”.
They are used with the HSPICE ACM=2 MOS diode models, and there are no WRspice equivalents.
HDIF and LDIF are not needed if AS, AD, PS, and PD are specified explicitly.

N

In HSPICE this is the “emission coefficient”, and is taken as an alias for the BSIM3 NJ parameter.

RDC

In HSPICE this is additional drain resistance due to contact resistance. If RD is specified, use

RDnew = RDold + RDC

If RSH is specified, then RDC should be added to RD=NRD*RSH. Since NRD is a device parameter and
not a model parameter, a typical NRD value must be used.

RSC

In HSPICE this is additional source resistance due to contact resistance. If RS is specified, use

RSnew = RSold + RSC

If RSH is specified, then RSC should be added to RS=NRS*RSH. Since NRS is a device parameter and
not a model parameter, a typical NRS value must be used.

WMLT, LMLT
In HSPICE these are “length of heavily doped diffusion” and “length of lightly doped diffusion”
used in the ACM=1–3 models. There are no WRspice equivalents. WMLT and LMLT are not needed if
AS, AD PS, and PD are specified explicitly.

2.16. SEMICONDUCTOR DEVICES 131

2.16.10.5.4 Capacitance Parameters

CAPOP

Do not use CAPOP for WRspice. CAPMOD is included in the BSIM3 model. CAPOP is HSPICE specific,
and not included in the BSIM3 parameter set. The default BSIM3 capacitance model is CAPMOD=3.

CJM

This is taken as an alias for the BSIM3 CJ parameter in WRspice.

MJ0

This is taken as an alias for the BSIM3 MJ parameter in WRspice.

PJ

This is taken as an alias for the BSIM3 PB parameter in WRspice.

CTA, CTP
In HSPICE these are the “junction capacitance CJ temp. coeff.” and “junction sidewall capaci-
tance CJSW temp. coeff”, used with TLEVC=1. There are no WRspice equivalents.

PTA, PTP
In HSPICE these are the “junction potential PB temp. coeff.” and “fermi potential PHI temp.
coeff”, used with TLEVC=1 or 2. There are no WRspice equivalents.

PHP

This is taken as an alias for the BSIM3 PBSW parameter in WRspice

TLEV, TLEVC
In HSPICE this is the “temperature equation level selector” and “temperature equation level
selector for junction capacitances and potentials”. Do not use these parameters for WRspice.

2.16.10.5.5 Impact Ionization

ALPHA, LALPHA, WALPHA, VCR, LVCR, WVCR, and IIRAT

These are impact ionization parameters in HSPICE. There are no WRspice equivalents. BSIM3
has its own impact ionization model which is instead used in most cases.

2.16.10.5.6 V3.2 parameters Level 49 parameter sets in WRspice may include BSIM3v3.2 param-
eters, though historically HSPICE level 49 was based on BSIM3v3.1. The following parameters are new
for v3.2:

ALPHA1, ACDE, MOIN, NOFF, VOFFCV
All except ALPHA1 are used in a new capacitance model (CAPMOD=3). ALPHA1 modifies the substrate
current equation as follows:

Isub ~ (ALPHA0 + ALPHA1*Leff) / Leff

132 CHAPTER 2. WRSPICE INPUT FORMAT

2.17 Superconductor Devices

2.17.1 Josephson Junctions

General Form:
bname n+ n- [np] [modname] [parameters ...]

The default Josephson junction model is an extended version of the RSJ model as used by Jewett[11].
There are actually three Josephson junction models available, through the levelmodel parameter, which
can take values 1 through 3. The default level=1 model is the RSJ model mentioned. This model has
a simplified Verilog-A version which can be found among the Verilog-A examples. This can be compiled
with the adms utility into a run-time loadable module which can be loaded with the devload command.
A pre-compiled module is provided with the example. Once loaded into WRspice, the model can be
accessed with level=2.

For level=3, a microscopic tunnel junction ”Werthamer” model, also known as a Tunnel Junction
Model (TJM) is provided. The model is more physics-based than the empirical RSJ model.

Unless stated otherwise, information presented here applies to instances of the standard RSJ model
(level=1) and the Verilog-A Josephson junction model (level=2) provided with WRspice in the Verilog-
A examples.

The instance parameters for the microscopic model are described in the 2.17.1.2.

Josephson Junction Instance parameters, Levels 1 and 2

Parameter Name Description

pijj=1|0 Whether the device is a “pi” junction.
area=val Scale factor that multiplies all currents and other values, effectively modi-

fying the junction area.
ics=val Instantiated critical current, used as scale factor for capacitance, conduc-

tances.
temp k=val Device temperature, Kelvin.
lser=val Junction series parasitic inductance.
lsh=val Shunt resistor series parasitic inductance.
ic=vj ,phi The initial junction voltage and phase (initial condition) for transient anal-

ysis.
vj=vj The initial junction voltage (initial condition) for transient analysis, alias

ic v.
phi=phi The initial junction phase (initial condition) for transient analysis, alias

ic phase.
control=name Controlling voltage source or inductor name.
vshunt=val Voltage to specify external shunt resistance.
n (read only) SFQ emission count.
phsf (read only) True if SFQ count change at current time point.
phst (read only) Time of last SFQ emission.
v (read only) Terminal voltage.
phase (read only) Junction phase, alias phs.
tcf (read only) Temperature compensation factor.
vg or vgap (read only) Gap voltage.

2.17. SUPERCONDUCTOR DEVICES 133

vless (read only) Gap threshold voltage.
vmore (read only) Gap knee voltage.
icrit (read only) Maximum critical current.
cc (read only) Capacitance current.
cj (read only) Josephson current.
cq (read only) Quasiparticle current.
c (read only) Total device current.
cap (read only) Capacitance.
g0 (read only) Subgap conductance.
gn (read only) Normal conductance.
gs (read only) Quasiparticle onset conductance.
gshunt (read only) External shunt conductance from vshunt.
rshunt (read only) External shunt resistance from vshunt.
lshval (read only) External shunt resistor parasitic inductance.
g1 (read only) NbN quasiparticle parameter.
g2 (read only) NbN quasiparticle parameter.
node1 (read only) Node 1 number.
node2 (read only) Node 2 number.
pnode (read only) Phase node number.
lsernode (read only) Internal lser node number.
lserbrn (read only) Internal lser branch number.
lshnode (read only) Internal lsh node number.
lshbrn (read only) Internal lsh branch number.

Examples:
b1 1 0 10 jj1 ics=200uA

b1 1 0 10 jj1 ics=200uA

bxx 2 0 type1 control=l3

b2 4 5 ybco phi=1.57

The n+ and n- are the positive and negative element nodes, respectively. These are followed by an
optional phase node. The phase node, if specified, generally should have no other connections in the
circuit, but the voltage of this node gives the phase of the junction in radians. The modname is the
name of the Josephson junction model. If no model is specified, then a default model is used (see the
description of the Josephson model for the default values). Other (optional) parameters follow in any
order.

pijj

If the pijj parameter is given and set to a nonzero integer value, the device instance will behave
as a “pi” junction. This type of junction has a ground state with phase π rather than 0. The value
given on the device line (if any) overrides the value given in the model.

area

range: 0.05 – 20.0
Deprecated, do not use in new files.
Histrorically, this parameter has been used to set the actual critical current of a Josephson junction
instance. It is not a physical area, but rather a scale factor, representing the ratio of the instance
critical current to the reference critical current. The parameter is retained for backwards compat-
ibility, but should not be used in new circuit descrfiptions. The ics parameter (below) should be

134 CHAPTER 2. WRSPICE INPUT FORMAT

used instead. By using ics, one can change the critical current of the reference junction without
changing the instance critical currents, which is not the case for area. In the new paradigm, the
reference junction critical current corresponds to a “typical” mid-sized junction, with a not neces-
sarily convenient critical current value. Use of area assumes that the reference critical current is
something nice, like the historical 1mA, and unchanging. If not specified and ics is not given, the
effective value is 1.0.

ics

range: 0.02*icrit – 50.0*icrit
This gives the actual critical current of the instantiated junction, and in addition scales all con-
ductance and capacitance values from the reference junction appropriately. This is equivalent to
giving the area parameter with a value of ics/icrit. The default is icrit, the reference junction
critical current.

temp k

range: 0.0 – 0.95*tc
This is the assumed operating temperature of the device, in Kelvin. The default is the model
deftemp value. See the model description for more information about temperature modeling.

lser

range: 0.0 – 10.0pH
This models series inductance of the physical Josephson junction structure, caused by constriction
of current through the junction orifice. This inductance might typically be in the range of 0.1 to
0.3 picohenries. If nonzero, an internal node is added to the model, providing the connection point
of the inductance and the Josephson junction. The default value is 0.0, meaning that no parasitic
inductance is assumed. Nonzero given values less than 0.01pH revert to zero.

lsh

range: 0.0 – 100.0pH
This parameter specifies the series inductance of the external shunt resistance. The vshunt instance
or model parameter must be specified such that a positive external shunt conductance is applied,
otherwise this parameter is ignored. Ordinarily, the lsh0/lsh1 model parameters would be used
to specify the inductance, this parameter can be used to override these values on a per-instance
basis if desired.

ic

Levels 1 and 3 only.
The keyword is expected to be followed by two numbers, giving the initial junction voltage and
phase in radians. These apply in transient analysis when the “uic” option is included in the
transient analysis specification. The initial junction voltage and phase both default to 0.0.

vj or ic v

This provides the initial voltage of the junction when the “uic” option is included in the transient
analysis specification. The initial junction voltage defaults to 0.0.

phi or ic phase

This provides the initial junction phase in radians when the “uic” option is included in the transient
analysis specification.

control

level 1 only.
The control parameter is only needed if critical current modulation is part of the circuit operation,
and is only relevant to Josephson junction model types that support critical current modulation,
that is, the model parameter cct is given a value larger than 1. The name in the control

2.17. SUPERCONDUCTOR DEVICES 135

specification is the name of either a voltage source or inductor which appears somewhere in the
circuit. The current flowing through the indicated device is taken as the junction control current.

vshunt

range: 0.0 – nominal gap voltage
See the description of the vshunt model parameter. The model parameter, if given, will provide
the default used in all instances. However this can be overridden on a per-instance basis with the
vshunt instance parameter.

The remaining parameters are “read only” and can be accessed with the @device[param] special vector
notation during the simulation (in callbacks) or after the simulation if the vector is saved with the save
command or equivalent.

n (read only)
This integer value is incremented whenever the junction phase changes by plus or minus 2π. It is
intended for pass/fail testing of single flux quantum (SFQ) circuit operation.

phsf (read only)
This flag is set true at the time point when the SFQ emission count changes. This is intended to
facilitate pass/fail testing of SFQ circuits.

phst (read only)
This read-only parameter contains the last time that the SFQ emission count changed, intended
for use in SFQ pass/fail testing.

v (read only)
The voltage across the junction.

phase (read only)
The junction phase. Reading this is an alternative to using a third node to obtain the phase.

tcf (read only)
The temperature correction factor that modifies the critical current at operating temperatures
other than nominal. See the description of the temperature dependence of the RSJ model in
2.17.2.2.

vg or vgap (read only)
The gap voltage of the junction.

vless (read only)
The voltage where the quasiparticle step current begins to rise. it is the lower bounding point used
to indicate the delv gap spread, i.e., it is equal to vg - delv/2.

vmore (read only)
The voltage where the quasiparticle step ends and the normal resistive part begins. It is the upper
point used to indicate the delv gap spread, equal to vg + delv/2.

icrit (read only)
The critical current of the junction instance.

cc (read only)
The current flowing through the geometric capacitance of the junction.

cj (read only)
The pair current (supercurrent) flowing through the junction.

136 CHAPTER 2. WRSPICE INPUT FORMAT

cq (read only)
The quasiparticle (normal) current flowing through the device.

c (read only)
The total current flowing through the device, the sum of cc, cj and cq.

cap (read only)
The geometric capacitance of the device instance.

g0 (read only)
The subgap conductance of the device instance.

gn (read only)
The normal state conductance of the device instance.

gs (read only)
The conductance of the quasiparticle branch at the gap voltage.

gshunt (read only)
If the vshunt instance or model parameter is given and nonzero, gshunt will return the external
conductance added to the intrinsic conductance so that the total conductance multiplied by the
critical current will equal vshunt.

rshunt (read only)
If gshunt is nonzero, rshunt will be the reciprocal, otherwise it will be 0.

lshval (read only)
If the vshunt instance or model parameter is given and nonzero, this will be the parasitic inductance
assumed in the external shunt resistance. This will depend on the settings of the lsh0 and lsh1

model parameters, and the lsh instance parameter which overrides the model parameters if given.

g1 (read only)
This applies if the rtype model parameter is set to 3, which indicates use of the NbN polynomial
model for subgap conductance. This is the third-order amplitude in the polynomial.

g2 (read only)
This applies if the rtype model parameter is set to 3, which indicates use of the NbN polynomial
model for subgap conductance. This is the fifth-order amplitude in the polynomial.

node1 (read only)
The internal node number of the first node.

node2 (read only)
The internal node number of the second node.

pnode (read only)
The internal node number of the third (phase) node, 0 or -1 if not used.

lsernode (read only)
The internal node number of the device internal node added for series parasitic inductance. This
will be 0 or -1 if not used (no series parasitic inductance assumed).

lserbrn (read only)
If series parasitic inductance is nonzero (lser given) this will be the internal number of the branch
node of the inductor.

2.17. SUPERCONDUCTOR DEVICES 137

lshnode (read only)
If the vshunt instance or model parameter is given and nonzero, and series parasitic inductance
is nonzero, this will be the internal node number of the internal device node that incorporates the
series inductance.

lshbrn (read only)
If the vshunt instance or model parameter is given and nonzero, and series parasitic inductance is
nonzero, this will be the internal branch number of the inductor’s branch.

2.17.1.1 Josephson Junction Description

The Josephson junction device has unique behavior which complicates simulation with a SPICE-type
simulator. Central is the idea of phase, which is a quantum-mechanical concept and is generally invisible
in the non-quantum world. However with superconductivity, and with Josephson junctions in particular,
phase becomes not only observable, but a critical parameter describing these devices and the circuits
that contain them.

Without going into the detailed physics, one can accept that phase is an angle which applies to any
superconductor. The angle is a fixed value anywhere on the superconductor, unless current is flowing.
Flowing current produces magnetic flux, and magnetic flux produces a change in phase. One can express
this as follows:

LI = flux = Φ0(φ/2π)

Here, L is the inductance, Φ0 is the magnetic flux quantum (Planck’s constant divided by twice
the electron charge) and φ is the phase difference across the inductor. The supercurrent flowing in a
Josephson junction is given by

I = Icsin(φ)

where Ic is the junction critical current, and φ is the phase difference across the junction. The
junction phase is proportional to the time integral of junction voltage:

φ = (2π/Φ0)
∫ t

−∞
V (t)dt

The important consequence is that the sum of the phase differences around any loop consisting of
Josephson junctions and inductors must be a multiple of 2π. This is due to the requirement that the
superconducting wave function be continuous around the loop. Further, if the loop phase is not zero,
it implies that a persistent current is flowing around the loop, and that the magnetic flux through the
loop is a multiple of the flux quantum Φ0.

We therefor observe that in a circuit containing loops of Josephson junctions and inductors, which
includes about all useful circuits:

1. The DC voltage across each Junction or inductor is zero.

2. The DC current applied to the circuit splits in such a manner as to satisfy the phase relations
above.

138 CHAPTER 2. WRSPICE INPUT FORMAT

Without any built-in concept of phase, it would appear to be impossible to find the DC operating
point of a circuit containing Josephson junctions and inductors with a SPICE simulator. However, there
are ways to accomplish this.

The time-honored approach, used successfully for many years, is to skip DC analysis entirely. One
generally is interested only in transient analysis, describing the time evolution of the circuit under
stimulus, and a DC analysis would only be necessary to find the initial values of circuit voltages and
currents. Instead of a DC analysis, what is done is every voltage and current source starts at zero voltage
or current, and ramps to the final value in a few picoseconds. The transient analysis is performed using
the “use initial conditions” (“uic”) option, where there is no DC operating point analysis, and transient
analysis starts immediately with any supplied initial condicions (which are not generally given in this
case). By ramping up from zero, the phase condition around junction/inductor loops is satisfied via
Kirchhoff’s voltage law. Actually, this ensures that the loop phase is constant, but it is zero as we
started from zero. Initially, there is no “trapped flux” in the inductor/junction loops, so assumption of
zero phase is correct. Thus the prescription is to ramp up all sources from zero, use the uic option of
transient analysis, and wait for any transients caused by the ramping sources to die away before starting
the “real” simulation. The ramping-up effectively replaces the DC operating point analysis.

The second approach is to use phase-mode DC analysis (see 2.7.3.1), which is used in WRspice

transparently when Josephson junctions are present. This applies to explicit DC analysis as well as
operating point analysis. Further, this enables AC and similar small-signal analysis with Josephson
junctions in WRspice.

See the Josephson junction model description for more information.

2.17.1.2 Josephson Junction (Tunnel Junction Model)

General Form:
bname n+ n- [np] [modname] [parameters ...]

Instance parameters, JJ level 3:

Parameter Name Description

area=val Scale factor that multiplies all currents and other values, effectively modi-
fying the junction area.

ics=val Instantiated critical current, used as scale factor for capacitance, conduc-
tances.

temp k=val Device temperature, Kelvin.
lser=val Junction series parasitic inductance.
lsh=val Shunt resistor series parasitic inductance.
ic=vj ,phi The initial junction voltage and phase (initial condition) for transient anal-

ysis.
vj=vj The initial junction voltage (initial condition) for transient analysis, alias

ic v.
phi=phi The initial junction phase (initial condition) for transient analysis, alias

ic phase.
vshunt=val Voltage to specify external shunt resistance.
n (read only) SFQ emission count.
phsf (read only) True if SFQ count change at current time point.
phst (read only) Time of last SFQ emission.

2.17. SUPERCONDUCTOR DEVICES 139

v (read only) Terminal voltage.
phase (read only) Junction phase, alias phs.
tcf (read only) Temperature compensation factor.
icrit (read only) Maximum critical current.
cc (read only) Capacitance current.
cj (read only) Josephson current.
cq (read only) Quasiparticle current.
c (read only) Total device current.
cap (read only) Capacitance.
g0 (read only) Subgap conductance.
gn (read only) Normal conductance.
rsint (read only) Intrinsic subgap resistance.
gshunt (read only) External shunt conductance from vshunt.
rshunt (read only) External shunt resistance from vshunt.
lshval (read only) External shunt resistor parasitic inductance.
del1 (read only) Side 1 delta.
del2 (read only) Side 2 delta.
vg or vgap (read only) Gap voltage.
vdp (read only) Dropback voltage.
omega (read only) Plasma resonance frequency, radians.
betac (read only) Stewart-McCumber parameter.
alphan (read only) TJM alphaN value.
kgap (read only) TJM kgap value.
rejpt (read only) TJM rejpt value.
kgap rejpt (read only) TJM kgap rejpt value.
node1 (read only) Node 1 number.
node2 (read only) Node 2 number.
pnode (read only) Phase node number.
lsernode (read only) Internal lser node number.
lserbrn (read only) Internal lser branch number.
lshnode (read only) Internal lsh node number.
lshbrn (read only) Internal lsh branch number.

Examples:
b1 1 0 10 jj1 ics=200uA

b1 1 0 10 jj1 ics=200uA

b2 4 5 ybco phi=1.57

The n+ and n- are the positive and negative element nodes, respectively. These are followed by an
optional phase node. The phase node, if specified, generally should have no other connections in the
circuit, but the voltage of this node gives the phase of the junction in radians. The modname is the
name of the Josephson junction model. If no model is specified, then a default model is used (see the
description of the Josephson model for the default values). Other (optional) parameters follow in any
order.

area

range: 0.05 – 20.0
Deprecated, do not use in new files.

140 CHAPTER 2. WRSPICE INPUT FORMAT

Histrorically, this parameter has been used to set the actual critical current of a Josephson junction
instance. It is not a physical area, but rather a scale factor, representing the ratio of the instance
critical current to the reference critical current. The parameter is retained for backwards compat-
ibility, but should not be used in new circuit descrfiptions. The ics parameter (below) should be
used instead. By using ics, one can change the critical current of the reference junction without
changing the instance critical currents, which is not the case for area. In the new paradigm, the
reference junction critical current corresponds to a “typical” mid-sized junction, with a not neces-
sarily convenient critical current value. Use of area assumes that the reference critical current is
something nice, like the historical 1mA, and unchanging. If not specified and ics is not given, the
effective value is 1.0.

ics

range: 0.02*icrit – 50.0*icrit
This gives the actual critical current of the instantiated junction, and in addition scales all con-
ductance and capacitance values from the reference junction appropriately. This is equivalent to
giving the area parameter with a value of ics/icrit. The default is icrit, the reference junction
critical current.

temp k

range: 0.0 – 0.95*tc
This is the assumed operating temperature of the device, in Kelvin. The default is the model
deftemp value. See the model description for more information about temperature modeling.

lser

range: 0.0 – 10.0pH
This models series inductance of the physical Josephson junction structure, caused by constriction
of current through the junction orifice. This inductance might typically be in the range of 0.1 to
0.3 picohenries. If nonzero, an internal node is added to the model, providing the connection point
of the inductance and the Josephson junction. The default value is 0.0, meaning that no parasitic
inductance is assumed. Nonzero given values less than 0.01pH revert to zero.

lsh

range: 0.0 – 100.0pH
This parameter specifies the series inductance of the external shunt resistance. The vshunt instance
or model parameter must be specified such that a positive external shunt conductance is applied,
otherwise this parameter is ignored. Ordinarily, the lsh0/lsh1 model parameters would be used
to specify the inductance, this parameter can be used to override these values on a per-instance
basis if desired.

ic

Levels 1 and 3 only.
The keyword is expected to be followed by two numbers, giving the initial junction voltage and
phase in radians. These apply in transient analysis when the “uic” option is included in the
transient analysis specification. The initial junction voltage and phase both default to 0.0.

vj or ic v

This provides the initial voltage of the junction when the “uic” option is included in the transient
analysis specification. The initial junction voltage defaults to 0.0.

phi or ic phase

This provides the initial junction phase in radians when the “uic” option is included in the transient
analysis specification.

2.17. SUPERCONDUCTOR DEVICES 141

vshunt

range: 0.0 – nominal gap voltage
See the description of the vshunt model parameter. The model parameter, if given, will provide
the default used in all instances. However this can be overridden on a per-instance basis with the
vshunt instance parameter.

The remaining parameters are “read only” and can be accessed with the @device[param] special vector
notation during the simulation (in callbacks) or after the simulation if the vector is saved with the save
command or equivalent.

n (read only)
This integer value is incremented whenever the junction phase changes by plus or minus 2π. It is
intended for pass/fail testing of single flux quantum (SFQ) circuit operation.

phsf (read only)
This flag is set true at the time point when the SFQ emission count changes. This is intended to
facilitate pass/fail testing of SFQ circuits.

phst (read only)
This read-only parameter contains the last time that the SFQ emission count changed, intended
for use in SFQ pass/fail testing.

v (read only)
The voltage across the junction.

phase (read only)
The junction phase. Reading this is an alternative to using a third node to obtain the phase.

tcf (read only)
The temperature correction factor that modifies the critical current at operating temperatures
other than nominal. See the description of the temperature dependence of the TJM model in
2.17.2.4.

icrit (read only)
The critical current of the junction instance.

cc (read only)
The current flowing through the geometric capacitance of the junction.

cj (read only)
The pair current (supercurrent) flowing through the junction.

cq (read only)
The quasiparticle (normal) current flowing through the device.

c (read only)
The total current flowing through the device, the sum of cc, cj and cq.

cap (read only)
The geometric capacitance of the device instance.

g0 (read only)
The subgap conductance of the device instance.

gn (read only)
The normal state conductance of the device instance.

142 CHAPTER 2. WRSPICE INPUT FORMAT

rsint (read only)
The intrinsic subgap resistance. This is predicted from the tunnel junction model, but the predicted
resistance is in general much higher than seen in actual fabricated junctions. There is evidently
quasiparticle conduction mechanisms that are not described in the tunnel junction model.

gshunt (read only)
If the vshunt instance or model parameter is given and nonzero, gshunt will return the external
conductance added to the intrinsic conductance so that the total conductance multiplied by the
critical current will equal vshunt.

rshunt (read only)
If gshunt is nonzero, rshunt will be the reciprocal, otherwise it will be 0.

lshval (read only)
If the vshunt instance or model parameter is given and nonzero, this will be the parasitic inductance
assumed in the external shunt resistance. This will depend on the settings of the lsh0 and lsh1

model parameters, and the lsh instance parameter which overrides the model parameters if given.

del1 (read only)
This is the computed energy gap of the side 1 superconductor. This is computed using the BCS
formula taking as input operating temperature, the superconducting transition temperature of side
1, and the Debye temperature of side 1.

del2 (read only)
This is the computed energy gap of the side 2 superconductor. This is computed using the BCS
formula taking as input operating temperature, the superconducting transition temperature of side
2, and the Debye temperature of side 2.

vg or vgap (read only)
The junction gap voltage, which is the sum of del1 and del2.

vdp (read only)
The dropback voltage, which is the same as the voltage corrresponding to the plasma resonance
frequency.

omega (read only)
The plasma resonance frequency in radians per second.

betac (read only)
The Stewart-McCumber parameter of the junction.

alphan (read only)
Internal model critical current scaling factor.

kgap (read only)
Internal model normalized gap parameter.

kgap rejpt (read only)
Internal model normalized gap parameter.

rejpt (read only)
Internal model normalized resistance.

node1 (read only)
The internal node number of the first node.

2.17. SUPERCONDUCTOR DEVICES 143

node2 (read only)
The internal node number of the second node.

pnode (read only)
The internal node number of the third (phase) node, 0 or -1 if not used.

lsernode (read only)
The internal node number of the device internal node added for series parasitic inductance. This
will be 0 or -1 if not used (no series parasitic inductance assumed).

lserbrn (read only)
If series parasitic inductance is nonzero (lser given) this will be the internal number of the branch
node of the inductor.

lshnode (read only)
If the vshunt instance or model parameter is given and nonzero, and series parasitic inductance
is nonzero, this will be the internal node number of the internal device node that incorporates the
series inductance.

lshbrn (read only)
If the vshunt model parameter is given and nonzero, and series parasitic inductance is nonzero,
this will be the internal branch number of the inductor’s branch.

144 CHAPTER 2. WRSPICE INPUT FORMAT

2.17.2 Josephson Junction Model

Type Name: jj

The default Josephson junction model is an extended version of the RSJ model as used by Jewett[11].
There are actually three Josephson junction models available, through the levelmodel parameter, which
can take values 1 through 3. The default level=1 model is the RSJ model mentioned. This model has
a simplified Verilog-A version which can be found among the Verilog-A examples. This can be compiled
with the adms utility into a run-time loadable module which can be loaded with the devload command.
A pre-compiled module is provided with the example. Once loaded into WRspice, the model can be
accessed with level=2¿.

For level=3, a microscopic tunnel junction “Werthamer” model, also known as a tunnel junction
model (TJM) is provided. The model is more physics-based than the empirical RSJ model.

2.17.2.1 Josephson Junction Model (RSJ Modxel)

The parameters marked with an asterisk in the area column scale with the ics parameter given in the
device line, not necessarily linearly. The present model paradigm assumes that the model parameters
apply to a “reference” junction, which is a typical mid-critical current device as produced by the fouhdry.
Instantiations derive from the reference device for a desired critical current. Appropriate scaling, not
necessarily linear, will be applied when formulating instance capacitance and conductances.

Josephson Junction RSJ Model (levels 1 and 2) Parameters

JJ Model Parameters
name area parameter units default

level Model type - 1
pijj Default is a pi junction - 0
rtype Quasiparticle current model - 1
cct Critical current model - 1
icon Critical current first zero A 1.0e-2
tc Superconducting transition temperature K 9.26
tdebye Debye temperature K 276
tnom Parameter measurement temperature K 4.2
deftemp Operating temperature K tnom

tcfct Temperature dependence fitting parameter 1.74
vg or vgap Gap voltage V 2.6e-3
delv Gap voltage spread V 80.0e-6
icrit ∗ Reference junction critical current A 1.0e-3
cap ∗ Reference junction capacitance F 0.7e-12
cpic Capacitance per critical current F/A 0.7e-9
cmu Capacitance scaling parameter 0.0
vm Reference junction icrit*rsub V 16.5e-3
rsub or r0 ∗ Reference junction subgap resistance Ω vm/icrit

icrn Reference junction icrit*rnorm V 1.65e-3
rnorm or rn ∗ Reference normal state resistance Ω icrn/icrit

gmu Conductance scaling parameter 0.0
icfct or icfact Ratio of critical to step currents - π/4

2.17. SUPERCONDUCTOR DEVICES 145

force no limits imposed on vm, rsub, icrn, rnorm 0
vshunt Voltage to specify external shunt resistance V 0.0
lsh0 Shunt resistor inductance constant part H 0.0
lsh1 Shunt resistor inductance per ohm H/Ω 0.0
tsfactor Phase change max per time step per 2π dphimax/2π
tsaccel Ratio max time step to that at ¡tt¿vdp¡/tt¿ 1.0
vdp Dropback voltage (read only)

Detailed information about these parameters is presented below. Unless stated otherwise, this infor-
mation also applies to the internal RSJ model (level=1) and the Verilog-A Josephson junction model
provided with WRspice in the Verilog-A examples (level=2).

level

This specifies the model to use. There are three choices provided in WRspice. Level 1 (the default)
is the internal RSJ model, and level 2 indicates the Verilog-A example RSJ model, which is available
if it has been loaded. The third choice is level 3, which is an internal microscopic tunnel junction
model described in the next section.

pijj

If this flag is given a nonzero integer value, the junctions will be modeled as a “pi junction”
meaning that the zero-current phase is π rather than zero. Such devices have been fabricated
using ferromagnetic barrier materials. Although these devices have some interesting behavior,
they are not at this point available or used with any frequency.

rtype

The rtype parameter determines the type of quasiparticle branch modeling employed. Legal values
are listed below, only 0 and 1 are supported in level 2.

0 The junction is completely unshunted, all shunt conductances set to zero.
1 Standard model (the default).
2 Analytic exponentially-derived approximation.
3 Fifth order polynomial expansion model.
4 “Temperature” variation, allow modulation of the gap parameter.

Values for rtype larger than 1 are not currently supported in the Verilog-A model supplied with
WRspice in the Verilog-A examples.

The default is rtype=1. Setting rtype=0 will disable modeling of the quasiparticle current, ef-
fectively setting the shunt resistance to infinity. Conditions with rtype=1 and 2 are as described
by Jewett, however it is not assumed that the normal resistance projects through the origin. The
icfact parameter can be set to a value lower than the default BCS theoretical value to reflect the
behavior of most real junctions. The quasiparticle resistance is approximated with a fifth order
polynomial if rtype=3, which seems to give good results for the modeling of some NbN junctions
(which tend to have gently sloping quasiparticle curves).

Rtype=4 uses a piecewise-linear quasiparticle characteristic identical to rtype=1, however the gap
voltage and critical current are now proportional to the absolute value of the control current set
with a control=src name entry in the device line. This is to facilitate modeling of temperature
changes or nonequilibrium effects. For control current of 1 (Amp) or greater, the full gap and
critical current are used, otherwise they decrease linearly to zero. If no device control source is

146 CHAPTER 2. WRSPICE INPUT FORMAT

specified, the algorithm reverts to rtype=1. It is expected that a nonlinear transfer function will
be implemented with a controlled source, which will in turn provide the controlling current to
the junction in this mode. For example, the controlling current can be translated from a circuit
voltage representing temperature with an external nonlinear source. The functional dependence is
in general a complicated function, but a reasonable approximation is 1−(T/Tc)

4. See the examples
(A.3) for an example input file (ex10.cir) which illustrates rtype=4.

It is currently not possible to use other than the piecewise linear model with this type of tem-
perature variation. If rtype=4, then legal values for the critical current parameter are cct=0 (no
critical current) and cct=1 (fixed critical current). If another value is specified for cct, cct reverts
to 0. Thus, magnetic coupling and quasiparticle injection are not simultaneously available.

cct

The cct parameter can take one of the following values in level 1, only 0 and 1 are supported in
level 2.

0 No critical current.
1 Fixed critical current.
2 Sin(x)/x modulated supercurrent.
3 Symmetric linear reduction modulation.
4 Asymmetric linear reduction modulation.

Values for cct larger than 1 are not currently supported in the Verilog-A model supplied with
WRspice in the Verilog-A examples.

The control instance parameter should be used with devices using cct 2,3, or 4. With cct=2,
the first zero is equal to the value of the model parameter icon. For cct=3, the maximum critical
current is at control current zero, and it reduces linearly to zero at control current = ±icon.
Junctions with cct=4 have maximum critical current at control current = −icon, and linear
reduction to zero at control current = +icon. If cct is specified as 2, 3, or 4, the area parameter,
if given, is set to unity. Otherwise, the model parameters are scaled appropriately by the area
before use.

icon

range: 1e-4 – 1.0
Level 1 only.
This parameter applies when the cct parameter is set to one of the choices larger the 1, where
critical current modulation is modeled. The value of icon is the first value for (assumed) full
suppression of critical current.

The parameter is not currently recognized by the Verilog-A Josephson junction model provided
with WRspice, as that model does not currently support values of cct larger than 1.

tc

range: 0.1K – 280K
This is the transition temperature of the material used in the Josephson junction. We assume
that both junction electrodes use the same material. The default value is 9.26K, the transition
temperature of niobium.

tdebye

range: 40K – 500K
This is the Debye temperature of the material used in the Josephson junction. The default is 276K
corresponding to niobium. The model support can compute the superconducting energy gap as a
function of temperature, transition temperature, and Debye temperature using a BCS expression.

2.17. SUPERCONDUCTOR DEVICES 147

tnom

range: 0.0K – 0.95*tc
This is the temperature at which all model parameters are measured. The default is 4.2K, the
boiling point of liquid helium.

deftemp

range: 0.0K – 0.95*tc
This is the default operating temperature of instances of the model, which can be overridden on a
per-instance basis by specifying the temp k instance parameter. The default is the tnom value.

tcfct

range: 1.5 – 2.5
This is an empirical fitting parameter for approximate temperature dependence (see 2.17.2.2) of
the energy gap, default is 1.74.

icrit

range: 1nA – 0.1A
This is the critical current of the reference junction at nominal temperature, which defaults to
1.0mA if not given. This parameter is not used if cct is 0. the superconducting current through
a Josepjson junctions is

I = Icsin(φ)

where Ic is the critical current. and the junction “phase” is

φ = (2π/Φ0)
∫ t

−∞
V (t)dt .

The V(t) is the junction voltage, and Φ0 is the magnetic flux quantum.

The icrit parameter should not be confused with the ics instance parameter. The latter is
actually a scale factor which specifies the instantiated device critical current as well as appropriately
scaling conductances and capacitance, from the model reference current which is icrit.

vg or vgap
range: 0.1mV – 10.0mV
This parameter specifies the gap voltage, which in a hysteretic Josephson junction is a voltage
at which there is a large and abrupt increase in conductivity. This parameter is material depen-
dent. If not given, the value used is computed using BCS theory from the operating temperature,
superconducting transition temperature, and Debye temperature, assuming both electrodes are
identical.

delv

range: 0.001vg – 0.2vg
This specifies the assumed width, in voltage, of the quasiparticle step region, or gap. In this
region, current increases sharply with increasing voltage. The default value of 80uV is reasonable
for high-quality niobium/aluminum oxide Josephson junctions independent of foundry.

cap

range: 0.0 – 1nF
This is the capacitance of the reference junction, in farads. This will override the cpic parameter
if given, setting a fixed value for reference junction capacitance, invariant with icrit. If not given,
junction specific capacitance is set via the cpic parameter, see below.

cpic

range: 0.0 – 1e-9
This supplies the default capacitance per critical current in F/A. This defaults to the MIT Lincoln

148 CHAPTER 2. WRSPICE INPUT FORMAT

Laboratory SFQ5EE process ¡a href=”tolpygo”¿[Tolpygo]¡/a¿ value (0.7pF for 1.0 mA), and will
set the junction capacitance if ¡tt¿cap¡/tt¿ is not given. With ¡tt¿cap¡/tt¿ not given, changing
¡tt¿icrit¡/tt¿ will change the assumed capacitance of the reference junction.

cmu

range: 0.0 – 1.0
This is a new parameter in the current model, which is intended to account for nonlinearity in
scaling of capacitance with area (or critical current, we actually define “area” as the actual over
the reference critical current). It is anticipated that the actual junction capacitance consists of two
components: a physical area dependent “bulk” term, and a perimeter-dependent fringing term.
The cmu is a real number between 0 and 1 where if 0 we assume no perimeter dependence, and if
1 we assume that all variation scales with the perimeter. The default value is 0. The capacitance
of an instantiated junctions is as follows:

C = cap(A(1− cmu) +
√
Acmu)

Here, A is the “area” scaling factor, which is the ratio of the junction critical current to the
reference critical current.

vm

range: 8mV – 100mV
This is the product of the reference subgap resistance and the reference device critical current.
This parameter is commonly provided by foundries, and is a standard indicator for junction quality
(higher is better). Values tend to decrease with increasing critical current density. This defaults
to the value for the MIT Lincoln Laboratory SFQ5EE process[16], which is 16.5mV, The reference
junction subgap resistance is obtained from the value of this parameter and the critical current,
unless given explicitly.

rsub or r0
range: 8mV/icrit – 100mV/icrit
The reference junction subgap resistance can be given directly with this parameter, and a given
value will override the vm value if also given.

icrn

range: 1.5mV – 1.9mV
This is the product of the reference junction “normal state” resistance and the critical current,
where the normal state resistance is the differential resistance measured well above the gap. The de-
fault value is that provided for the MIT Lincoln Laboratory SFQ5EE process[16] which is 1.65mV.
This too is a commonly given parameter from Josephson foundries for characterizing junctions. If
not specified explicitly, this provides the reference junction normal state resistance from the critical
current.

rnorm or rn
range: 1.5mV/icrit – 1.9mV/icrit
The reference junction normal state resistance can be given explicitly with this parameter, which
will override icrn if this is also given.

gmu

range: 0.0 – 1.0
This is analogous to cmu, and applies to the subgap and normal conductances. The vm, in particular,
may vary with junction physical size, with small junctions having lower vm than larger ones. This
parameter should capture this effect. It is taken that a significant part of the conductivity is due
to defects or imperfections around the periphery of the junction area, and the contribution would
therefor scale with the perimeter. The scaling for conductivity is as follows:

2.17. SUPERCONDUCTOR DEVICES 149

Gx = Gx0(A(1− gmu) +
√
Agmu)

Here, Gx refers to either the subgap or normal conductance, Gx0 is the same parameter for the
reference junction. The A is the scaling parameter, that is, the ratio of instance to reference critical
currents. The default value is 0, meaning that scaling is assumed purely linear, which will be the
case until a number is provided through additional data analysis. It may prove necessary to have
separate scaling parameters for subgap and above gap condutance, at which time a new model
parameter may be added.

icfct or icfact
range: 0.5 – π/4
This parameter sets the ratio of the critical current to the quasiparticle step height. Theory
provides the default value of π/4 which is usually adequately close. Characterization of fabricated
junctions would provide an improved number.

force

range: 0 or 1
If this flag is set, then the only range test applied to subgap and above gap resistance values is that
they be larger than zero. This affects the parameters that set the quasiparticle branch conductance
values, any input other than a short circuit is allowed.

vshunt

range: 0.0 – nominal gap voltage
This parameter is unique in that it does not describe an as-fabricated junction characteristic.
Rather, it is for convenience in specifying a shunt resistance to use globally in SFQ circuits, If
given (in volts) conductance will be added automatically so that the product of the total subgap
conductance and the critical current will equal vshunt. This avoids having to calculate the value of
and add an explicit resistor across each Josephson junction, as used for damping in these circuits.
The designer should choose a value consistent with the process parameters and the amount of
damping required. Higher values will provide less damping, usually critical damping is desired.
This parameter defaults to 0, meaning that no additional demping is supplied by default.

lsh0

range: 0.0 – 2.0pH

lsh1

range: 0.0 – 10.0pH/Ω
These parameters specify series parasitic inductance in the external shunt resistor. the vshunt

parameter must be given a value such that the added external conductance is positive, or these
parameters are ignored. The inductance consists of a constant part (lsh0) assumed to come from
resistor contacts, plus a value (lsh1) proportional to the resistance in ohms, intended to capture
the length dependence.

tsfactor

range: 0.001 – 1.0
This is mainly for compatibility with the Verilog-A Josephson junction model provided with WR-

spice in the Verilog-A examples. This is equivalent to the WRspice dphimax parameter, but is
normalized to 2π. If not given, it defaults to dphimax/2π in WRspice, or 0.1 in the Verilog-A
model not used in WRspice. This is the maximum phase change allowed between internal time
points.

tsaccel

range: 1.0 – 100.0
Time step limiting is performed relative to the Josephson frequency of the instantaneous absolute

150 CHAPTER 2. WRSPICE INPUT FORMAT

junction voltage or the dropback voltage, whichever is larger. The phase change is limited by
tsfactor, thus corresponding to a maximum time step relative to the period of the frequency
corresponding to the voltage. Note that in SFQ circuits, where the junctions are critically damped,
the junction voltage is unlikely to exceed the dropback voltage, which is numerically equal to the
critical current times the shunt resistance (vshunt). This implies that the maximum time step is
a fixed value by default.

When simulating SFQ circuits, between SFQ pulses there is often significant time where signals
are quiescent and one could probably take larger time steps, speeding simulation. This appears
true to an extent, however one can see signs of instability if steps are too large.

The tsaccel parameter is the ratio of the longest time step allowed to that allowed at the dropback
voltage. In computing the time step, the low voltage threshold is reduced to the dropback voltage
divided by tsaccel, so time steps will be inversely proportional to voltages above this value.

Experimentation suggests that a value of 2.5 is a good choice for RSFQ circuits, your results may
vary.

vdp (read only)
This parameter returns the computed value of the dropback voltage, which is the voltage at which
the return trace of a hysteretic Josephson junction i-v curve snaps back to the zero-voltage state.
If is also the voltage equivalent of the plasma resonance, and the product of critical current and
shunt resistance for critical damping.

2.17.2.2 RSJ Model Temperature Dependence

When the junction is not operating at the nominal temperature as specified with the tnom parameter,
a correction factor is applied to the critical current to account for the temperature difference. The
superconducting energy gap and therefor the junction gap voltage will also change as a function of
temperature.

If the gap voltage is not specified with the vg parameter or its alias vgap, the model will compute
the gap voltage from BCS theory using the superconducting transition temperature (tc parameter) and
Debye temperature (tdebye parameter) at the operating temperature.

When a gap voltage is supplied, it is taken as the value at the nominal temperature. The model utilizes
an interpolation formula to represent temperature variation of the gap parameter of the superconductor
in the case.

In either case, the RSJ model currently assumes that the same material appears on either side of the
barrier.

Below is the approximation formula for the superconducting energy gap that is employed when the
nominal junction gap voltage is given explicitly. The junction vap voltage is twice the superconductor
energy gap.

∆ = ∆0tanh(tcfct
√

(tc/T − 1))

Reference: https://physics.stackexchange.com/questions/192416/
interpolation-formula-for-bcs-superconducting-gap

Here, ∆ is the gap parameter, with the subscript indicating the value at temperature T=0. The
tcfct parameter is semi-empirical, commonly cited as 1.74, which is the default value.

In order to apply temperature correction one takes the assumption that parameters for the reference
junction are measured at nominal temperature tnom, and we therefor have

2.17. SUPERCONDUCTOR DEVICES 151

∆nom = ∆0tanh(tcfct
√

(tc/tnom− 1))

The correction factor, which will multiply device gap voltage, is the ratio ∆/∆nom. This will apply
when the nominal gap voltage is given. When not given, the gap voltage is computed directly with BCS
theory and the approximation formula is not used.

The critical current temperature variation again follows BCS theory. The temperature correction
factor tcf multiplies the instance critical current to account for the temperature difference between
operating and nominal temperatures.

tcf = (V g/V gnom)(tanh(eV g/4KT)/tanh(eV gnom/4KTnom))

Here, V g is the computed gap voltage, e is the electron charge, K is Boltzmann’s constant, T is
temperature in Kelvin,

2.17.2.3 Josephson Tunnel Junction Model

For level=3, a microscopic tunnel junction ”Werthamer” model, also known as a tunnel junction model
(TJM) is indicated. The model is more physics-based that the empirical RSJ model. The formulation
follows the method of

A. A. Odintsov, V. K. Semenov and A. B. Zorin, IEEE Trans. Magn. 23, 763 (1987).

as implemented in the the open-source MitMoJCo project on https://github.com/drgulevich/mitmojco.
The actual model computations make use of predefined fitting parameters that can be produced with
the mmjco program provided with WRspice (B.2). The mmjco program integrates the tunneling current
expressions producing a tunnel current amplitude (TCA) table. This is compressed into a smaller rep-
resentation using the OSZ approach in the reference, which in addition to saving memory allows rapid
evaluation of the model expressions, basically replacing a required integration by a short series expan-
sion. Thus model evaluation can be relatively inexpensive, though it is not as fast as the simple RSJ
model.

The parameters marked with an asterisk in the area column scale with the ics parameter given in
the device line, not necessarily linearly. The present model paradigm assumes that the model parameters
apply to a “reference” junction, which is a typical mid-critical current device as produced by the fouhdry.
Instantiations derive from the reference device for a desired critical current. Appropriate scaling, not
necessarily linear, will be applied when formulating instance capacitance and conductances.

Josephson Tunnel Junction Model (Level 3) Parameters

JJ Model Parameters
name area parameter units default

level Model type - 3
coeffset Coefficient set name -
rtype Quasiparticle current enabled - 1
cct Critical current enabled - 1
tnom Parameter measurement temperature K 4.2
deftemp Operating temperature K tnom

152 CHAPTER 2. WRSPICE INPUT FORMAT

tc Superconducting transition temperature K 9.26
tc1 Superconducting transition temp side 1 K 9.26
tc2 Superconducting transition temp side 2 K 9.26
tdebye Debye temperature K 276
tdebye1 Debye temperature side 1 K 276
tdebye2 Debye temperature side 2 K 276
smf Riedel smoothing factor − 0.008
nterms Terms in fit table − 8
nxpts Points in TCA table − 500
thr Fitting threshold parameter − 0,2
icrit ∗ Reference junction critical current A 1.0e-3
cap ∗ Reference junction capacitance F 0.7e-12
cpic Capacitance per critical current F/A 0.7e-9
cmu Capacitance scaling parameter 0.0
vm Reference junction icrit*rsub V 16.5e-3
rsub or r0 ∗ Reference junction subgap resistance Ω vm/icrit

gmu Conductance scaling parameter 0.0
icfct or icfact Ratio of critical to step currents - π/4
force no limits imposed on vm, rsub 0
vshunt Voltage to specify external shunt resistance V 0.0
lsh0 Shunt resistor inductance constant part H 0.0
lsh1 Shunt resistor inductance per ohm H/Ω 0.0
tsfactor Phase change max per time step per 2π dphimax/2π
tsaccel Ratio max time step to that at ¡tt¿vdp¡/tt¿ 1.0
del1 (read only) Energy gap side 1 V
del2 (read only) Energy gap side 2 V
vg or vgap (read only) Gap voltage V

Detailed information about these parameters is presented below.

level

This specifies the model to use, which is 3 in the present case.

coeffset

This provides the name of the table of compressed tunnel current amplitudes to use in the model.
These are provided as files as produced from the mmjco utility provided with WRspice (see B.2).
Single temperature “.fit” files will overrule any other temperatures provided to the model. If a
tempature-swept “.swp” file is provided, the model is able to accommodate temperatures within
the range of the sweep. The files are searched for along a path provided by setting the tjm path
variable, or a path can be provided directly. The default is to search the current directory and
$HOME/.mmjco if that directory exists.

These files are produced automatically as needed according to the given model parameters and
cached in the users .mmjco directory. Therefor it is not common to use this parameter to load
a set by name, except to supply a name for a sweep file that the user has prepared with mmjco

which would provide precomputed data for all temperatures that might be of use, thereby avoiding
on-the-fly table creation which can take some time.

2.17. SUPERCONDUCTOR DEVICES 153

There are two built-in coefficient sets, “tjm1” (the default) and “tjm2”. These are the MitMoJCo
NbNb 4k2 008 and NbNb 4K2 001 parameter sets, respectively. Both assume niobium at tempera-
ture 4.2K and differ in the level of smoothing applied to mitigate the Riedel singularity. ¡/dl¿

rtype

For the tunnel junction model, rtype is a flag, set by default, that enables inclusion of the quasi-
particle current. If set to 0, quasiparticle current will not be included in the model.

cct

For the tunnel junction model, cct is a flag, set by default, that enables inclusion of the pair
current. If set to 0, pair current will not be included in the model.

tnom

range: 0.0K – 0.95*tc
This is the temperature at which all model parameters are measured. The default is 4.2K, the
boiling point of liquid helium.

deftemp

range: 0.0K – 0.95*tc
This is the default operating temperature of instances of the model, which can be overridden on a
per-instance basis by specifying the temp k instance parameter. The default is the tnom value.

tc, tc1, tc2
range: 0.1K – 280K
This is the superconducting transition temperature of the material(s) used in the Josephson junc-
tion. The default value is 9.26K, the transition temperature of niobium. The transition tempera-
ture may be set separately on side 1 and side 2 of the junction using the tc1 and tc2 keywords.
The tc keyword sets both sides. If ambiguous, the last real or implied setting has precedence.

tdebye, tdebye1, tdebye2
range: 40K – 500K
This is the Debye temperature of the material(s) used in the Josephson junction. The default is
276K corresponding to niobium. As for the transition temperature, the two sides of the junction
can be set independently. The model support computes the superconducting energy gap as a
function of temperature, transition temperature, and Debye temperature using a BCS expression.

smf

range: 0.001 – 0.099
This is a smoothing factor used when constructing the tunnel current amplitude tables, the use
of which eliminates the Riedel singularity. The default value is 0.008. Higher values have larger
smoothing, reducing the impact of the peaks at the gap.

nterms

range: 6 – 20
The computed tunnel current amplitude tables are compressed to tables having this many terms.
The more terms that are included, the more accurate are the parameter sets. However, the time
to prepare the fit tables grows rapidly with the number of terms. The default number of terms is
8, which seems to provide reasonable accuracy.

nxpts

range: 100 – 9999
This sets the number of energy values over which the tunnel current amplitude tables are computed.
The default is 500. Points are computed between zero and twice the junction gap energy. More
points may provide more accurate results.

154 CHAPTER 2. WRSPICE INPUT FORMAT

thr

range: 0.1 – 0.5
This is the ratio of absolute to relative tolerance used in the table compression algorithm. The
default value of 0.2 seems to give good results.

icrit

range: 1nA – 0.1A
This is the critical current of the reference junction at nominal temperature, which defaults to
1.0mA if not given. This parameter is not used if cct is 0. The icrit parameter should not be
confused with the ics instance parameter. The latter is actually a scale factor which specifies the
instantiated device critical current as well as appropriately scaling conductances and capacitance,
from the model reference current which is icrit.

cap

range: 0.0 – 1nF
This is the capacitance of the reference junction, in farads. This will override the cpic parameter
if given, setting a fixed value for reference junction capacitance, invariant with icrit. If not given,
junction specific capacitance is set via the cpic parameter, see below.

cpic

range: 0.0 – 1e-9
This supplies the default capacitance per critical current in F/A. This defaults to the MIT Lincoln
Laboratory SFQ5EE process ¡a href=”tolpygo”¿[Tolpygo]¡/a¿ value (0.7pF for 1.0 mA), and will
set the junction capacitance if ¡tt¿cap¡/tt¿ is not given. With ¡tt¿cap¡/tt¿ not given, changing
¡tt¿icrit¡/tt¿ will change the assumed capacitance of the reference junction.

cmu

range: 0.0 – 1.0
This is a new parameter in the current model, which is intended to account for nonlinearity in
scaling of capacitance with area (or critical current, we actually define “area” as the actual over
the reference critical current). It is anticipated that the actual junction capacitance consists of two
components: a physical area dependent “bulk” term, and a perimeter-dependent fringing term.
The cmu is a real number between 0 and 1 where if 0 we assume no perimeter dependence, and if
1 we assume that all variation scales with the perimeter. The default value is 0. The capacitance
of an instantiated junctions is as follows:

C = cap(A(1− cmu) +
√
Acmu)

Here, A is the “area” scaling factor, which is the ratio of the junction critical current to the
reference critical current.

vm

range: 8mV – 100mV, or 0
This is the product of the reference subgap resistance and the reference device critical current.
This parameter is commonly provided by foundries, and is a standard indicator for junction quality
(higher is better). Values tend to decrease with increasing critical current density. This defaults
to the value for the MIT Lincoln Laboratory SFQ5EE process[16], which is 16.5mV, The reference
junction subgap resistance is obtained from the value of this parameter and the critical current,
unless given explicitly.

The intrinsic subgap conductivity will be subtracted if smaller than the given vm implies. If vm is
set to 0, then no additional conductivity will be added and only the intrinsic conductivity will be
seen. Often, the intrinsic subgap conductivity is much smaller than observed in real junctions.

2.17. SUPERCONDUCTOR DEVICES 155

rsub or r0
range: 8mV/icrit – 100mV/icrit, or 0
The reference junction subgap resistance can be given directly with this parameter, and a given
value will override the vm value if also given.

The subgap conductance will be reduced by the intrinsic condutance if this is smaller. If vm is
given as 0 and this parameter is not given, the parameter value will be 0. If the value is 0, no
additional conductance will be added.

gmu

range: 0.0 – 1.0
This is analogous to cmu, and applies to the subgap and normal conductances. The vm, in particular,
may vary with junction physical size, with small junctions having lower vm than larger ones. This
parameter should capture this effect. It is taken that a significant part of the conductivity is due
to defects or imperfections around the periphery of the junction area, and the contribution would
therefor scale with the perimeter. The scaling for conductivity is as follows:

Gx = Gx0(A(1− gmu) +
√
Agmu)

Here, Gx refers to either the subgap or normal conductance, Gx0 is the same parameter for the
reference junction. The A is the scaling parameter, that is, the ratio of instance to reference critical
currents. The default value is 0, meaning that scaling is assumed purely linear, which will be the
case until a number is provided through additional data analysis. It may prove necessary to have
separate scaling parameters for subgap and above gap condutance, at which time a new model
parameter may be added.

icfct or icfact
range: 0.5 – π/4
This parameter sets the ratio of the critical current to the quasiparticle step height. Theory
provides the default value of π/4 which is usually adequately close. Characterization of fabricated
junctions would provide an improved number.

force

range: 0 or 1
If this flag is set, then the only range test applied to subgap resistance values is that they be larger
than zero. This affects the parameters that set the quasiparticle branch conductance values, any
input other than a short circuit is allowed.

vshunt

range: 0.0 – nominal gap voltage
This parameter is unique in that it does not describe an as-fabricated junction characteristic.
Rather, it is for convenience in specifying a shunt resistance to use globally in SFQ circuits, If
given (in volts) conductance will be added automatically so that the product of the total subgap
conductance and the critical current will equal vshunt. This avoids having to calculate the value of
and add an explicit resistor across each Josephson junction, as used for damping in these circuits.
The designer should choose a value consistent with the process parameters and the amount of
damping required. Higher values will provide less damping, usually critical damping is desired.
This parameter defaults to 0, meaning that no additional demping is supplied by default.

lsh0

range: 0.0 – 2.0pH

lsh1

range: 0.0 – 10.0pH/Ω
These parameters specify series parasitic inductance in the external shunt resistor. the vshunt

156 CHAPTER 2. WRSPICE INPUT FORMAT

parameter must be given a value such that the added external conductance is positive, or these
parameters are ignored. The inductance consists of a constant part (lsh0) assumed to come from
resistor contacts, plus a value (lsh1) proportional to the resistance in ohms, intended to capture
the length dependence.

tsfactor

range: 0.001 – 1.0
This is mainly for compatibility with the Verilog-A Josephson junction model provided with WR-

spice in the Verilog-A examples. This is equivalent to the WRspice dphimax parameter, but is
normalized to 2π. If not given, it defaults to dphimax/2π in WRspice, or 0.1 in the Verilog-A
model not used in WRspice. This is the maximum phase change allowed between internal time
points.

tsaccel

range: 1.0 – 100.0
Time step limiting is performed relative to the Josephson frequency of the instantaneous absolute
junction voltage or the dropback voltage, whichever is larger. The phase change is limited by
tsfactor, thus corresponding to a maximum time step relative to the period of the frequency
corresponding to the voltage. Note that in SFQ circuits, where the junctions are critically damped,
the junction voltage is unlikely to exceed the dropback voltage, which is numerically equal to the
critical current times the shunt resistance (vshunt). This implies that the maximum time step is
a fixed value by default.

When simulating SFQ circuits, between SFQ pulses there is often significant time where signals
are quiescent and one could probably take larger time steps, speeding simulation. This appears
true to an extent, however one can see signs of instability if steps are too large.

The tsaccel parameter is the ratio of the longest time step allowed to that allowed at the dropback
voltage. In computing the time step, the low voltage threshold is reduced to the dropback voltage
divided by tsaccel, so time steps will be inversely proportional to voltages above this value.

Experimentation suggests that a value of 2.5 is a good choice for RSFQ circuits, your results may
vary.

del1, del2 (read only)
These two read-only parameters return the gap potential in the electrodes. These are computed
internally as a function of temperature.

vg or vgap (read only)
The junction gap voltage, equal to del1 + del2.

2.17.2.4 TJM Model Temperature Dependence

When the junction is not operating at the nominal temperature as specified with the tnom parameter,
a correction factor is applied to the critical current to account for the temperature difference. The
superconducting energy gap and therefor the junction gap voltage will also change as a function of
temperature.

In the TJM model, the energy gaps are always computed from the BCS integral equation involving
superconducting transition temperature, Debye temperature, and operating temperature. The materials
may be different on the two sides of the barrier. The junction gap voltage is the sum of the gap potentials
of the two materials.

2.17. SUPERCONDUCTOR DEVICES 157

The critical current temperature variation again follows BCS theory. The temperature correction
factor tcf multiplies the instance critical current to account for the temperature difference between
operating and nominal temperatures.

tcf = (V g/V gnom)(tanh(eV g/4KT)/tanh(eV gnom/4KTnom))

Here, V g is the computed gap voltage, e is the electron charge, K is Boltzmann’s constant, T is
temperature in Kelvin,

158 CHAPTER 2. WRSPICE INPUT FORMAT

This page intentionally left blank.

Chapter 3

The WRspice User Interface

3.1 Starting WRspice

The WRspice simulator is invoked by typing

wrspice options ... input files ...

All arguments are optional. There are several options which are recognized specifically by WRspice.
These options are case insensitive — the option letters can be given in upper or lower case. In addition,
there are a few additional options recognized by the graphics system.

The command line options are flagged with the ‘-’ character, but this can be changed by setting the
SPICE OPTCHAR environment variable. Below, the use of the ‘-’ character is assumed for simplicity.

Graphical WRspice requires an X server under UNIX. When using X, the DISPLAY environment
variable should already be set, but if one wants to display graphics on a different machine than the one
running WRspice, DISPLAY should be of the form machine:0. For example, if one wants the display to
go to the workstation named “crab”, for the C-shell one would enter “setenv DISPLAY crab:0” at the
shell prompt, or equivalently for the Bourne shell one would enter “DISPLAY=crab; export DISPLAY”
or the more compact form “export DISPLAY=crab” if supported. Note that this can also be supplied
using the -d option.

Further arguments are taken to be WRspice input files, which are read and saved in memory. If batch
mode is requested (-b option) then they are run immediately. WRspice will accept SPICE2 input files,
and output ASCII plots, Fourier analyses, and node printouts as specified in .plot, .four, and .print

lines. If an out parameter is given on a .width line, the effect is the same as “set width = ...”.
Since WRspice ASCII plots do not use multiple ranges, however, if vectors together on a .plot card
have different ranges they will not provide as much information as they would in SPICE2. The output
of WRspice is also much less verbose than SPICE2, in that the only data printed is that requested by
the above lines.

The following option forms are accepted by WRspice. The option letter can be lower or upper case.

-b

Run in batch mode. WRspice will read the standard input or the specified input files and do the
simulation. Note that if the standard input is not a terminal, WRspice will default to batch mode,

159

160 CHAPTER 3. THE WRSPICE USER INTERFACE

unless the -i option is given. In batch mode, WRspice generates output files for operating range
and Monte Carlo analysis, otherwise if the -r option is used (-r filename) WRspice generates a
plot data file, or generates an ASCII plot or print on standard output, as per .plot/.print lines,
if no filename was specified. See the description of the write command (4.5.12) for information
about the file formats available and how they can be specified.

-c flags
This option sets the case sensitivity of various name classes in WRspice. These classes are:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

The flags is a word consisting of letters, each letter corresponds to a class from the list above. If
lower-case, the class will be case-sensitive. If upper-case, the class will be case-insensitive.

The letters are f, u, v, p, c, and n corresponding to the classes listed above. By default, all
identifiers are case-insensitive, which corresponds to the string “FUVPCN”. Letters can appear in
any order, and unrecognized characters are ignored. Not all letters need be included, only those
seen will be used.

This word should follow -c or -C in the command line options, separated by space.

Case sensitivity can also be set from a startup file using the setcase command. This command
takes as an argument a string as described above. The command line setting occurs after setting
from a startup file.

-d [host]:server[.screen]
This option is applicable when running under X windows, and specifies the name of the display to
use. The host is the hostname of the physical display, server specifies the display server number,
and screen specifies the screen number. Either or both of the host and screen elements to the
display specification can be omitted. If host is omitted, the local display is assumed. If screen is
omitted, screen 0 is assumed (and the period is unnecessary). The colon and (display) server are
necessary in all cases. This option can also be given as -display and --display.

-dnone

This is a special form of the -d option that when given will suppress all use of graphics. This can
be desirable when running WRspice remotely over a slow terminal connection. This option will
also work under Windows, if for some reason it is necessary to run WRspice in text-only mode.

-i

Run in interactive (as opposed to batch) mode. This is useful if the standard input is not a terminal
but interactive mode is desired. Command completion is not available unless the standard input
is a terminal, however. Interactive mode is the default when the standard input is a terminal.

-j

Run in JSPICE3 compatibility mode. This applies when running interactively, and causes the
following behavior.

1. The Tool Control window is not shown.

2. The noerrwin variable is set, which causes error messages to be printed in the console rather
than to a separate error window.

3.1. STARTING WRSPICE 161

3. The subc catmode variable is set to “spice3” and the subc catchar variable is set to “:”
(colon). This sets the subcircuit expansion method to match JSPICE3 and SPICE3.

-m path
The path is to a loadable device module (see 3.18) file, or to a directory containing module files.
Giving this option causes the indicated module, or modules found in the directory, to be loaded
into WRspice on program startup, after the ¡tt¿.wrspiceinit¡/tt¿ file has been read. The option can
be given more than once. If given, auto-loading of modules from the modpath or the devices sub-
directory in the startup directory will not be done. Modules can be loaded from within WRspice

with the devload command.

-mnone

This option will suppress auto-loading of modules from the modpath or the devices sub-directory
in the startup directory.

-n

Don’t try to execute the user’s startup files (.wrspiceinit files) upon startup. Normally WRspice

tries to find these files in the user’s home directory and the current directory, and will execute
them in that order. In Windows, the “home directory” can be specified by setting the HOME
environment variable. The global file wrspiceinit in the system startup directory is sourced in
any case.

-o outfile
The argument outfile specifies a file to be used for output, rather than the standard output (ter-
minal).

-p

Open WRspice in a mode which takes input from a UNIX port, used to establish interprocess
communications as a slave process.

-q

Disable command completion, which saves memory and may run slightly faster. This prevents
initial loading of the command completion data structures. If the variable nocc is set and unset,
command completion will be turned on, however most internal keywords will not be present in the
database.

-r filename
Use filename as the default file into which the results of the simulation are saved with the write
command, and for data output in batch mode. This can be overridden with the rawfile variable.
See the description of the write command (4.5.12) for information about the file formats available,
and how they can be specified.

-s

Run in server mode. This is like batch mode, except that a temporary rawfile is used and then
written to the standard output, preceded by a line with a single ‘@’, after the simulation is done.
This mode is used by the /WRspice daemon wrspiced. In server mode, WRspice reads input from
the standard input, and generates output, in rawfile or margin analysis file format, on the standard
output. The -r and -b options are ignored.

-t termname
This specifies the name of the terminal, as known in a termcap or terminfo database. The terminal
name is only needed in interactive mode when line editing is enabled, and is generally obtained
from the TERM environment variable. Occasionally, this option is useful in overriding bad terminal
info specifications allowing line editing to work, such as by giving a value of “vt220” when running
in an xterm.

162 CHAPTER 3. THE WRSPICE USER INTERFACE

-x

This option, if given, will cause WRspice to provide its own window for text input, if WRspice is in
interactive mode and graphics is available. Under the X window system, the “xterm” command is
used to obtain the text window.

The UNIX/Linux graphical subsystem will accept the following options. It is unlikely that the user
will ever need these.

--class classname
This option specifies the application class name under which resources for the application should
be found.

--name appname
This option specifies the name under which resources for the application should be found. This op-
tion is useful in shell aliases to distinguish between invocations of an application, without resorting
to creating links to alter the executable file name. This option can also be given as “-name”.

--sync

This option indicates that requests to the X server should be sent synchronously, instead of asyn-
chronously. Since Xlib normally buffers requests to the server, errors do not necessarily get reported
immediately after they occur. This option turns off the buffering so that the application can be
debugged. It should never be used with a working program. This option can also be given as
“-synchronous”.

--no-xshm

If set, the X server will not use shared memory.

--v

If this argument is given, WRspice will print a version string consisting of three tokens to the
standard output, and exit. The format is

version osname arch

for example “4.3.11 LinuxCentos7 x86 64”.

--vv

If this argument is given, WRspice will print a CVS-style release tag string in the form

wrs-4-3-1

to the standard output, and exit.

--vb

If this argument is given, WRspice will print the build date to the standard output, and exit.

3.2 Environment Variables

Environment variables are keyword/value pairs that are made available to an application by the command
shell or operating system. The value of an environment variable is a text string, which may be empty.
Environment variables can be set by the user to control various defaults in WRspice.

3.2. ENVIRONMENT VARIABLES 163

3.2.1 Unix/Linux

Environment variables are maintained by the user’s command shell. It is often convenient to set envi-
ronment variables in a shell startup file such as .cshrc or .login for the C-shell or .profile for the
Bourne shell. These files reside in the user’s home directory. See the manual page for your shell for more
information.

For the C-shell, the command that sets an environment variable is

setenv variable name [value]

For example,

setenv XT DUMMY "hello world!"

Note that if the value contains white space, it should be quoted. Note also that it is not necessary to
have a value, in which case the variable acts as a boolean (set or not set).

In the C-shell, one can use setenv without arguments, or printenv, to list all of the environment
variables currently set.

For a modern Bourne-type shell, such as bash, the corresponding command is

export variable name[=value]

In this type of shell one can list the variables currently set by giving the shell set command with no
arguments.

3.2.2 Microsoft Windows

Under Windows, environment variables can be set in a DOS box with the “set” command before
starting the program from the command line, or in the AUTOEXEC.BAT file, or from the System entry
in the Control Panel. Only the latter two methods work if the programs are started from an icon. If
using a Cygwin bash-box, environment variables can be set in the startup file as under Unix.

WRspice is not compatible with the mintty terminal emulator which is the current default in Cygwin.
Only Cygwin-built programs work properly from this terminal if they use a command line interface.

3.2.3 WRspice Environment Variables

The following environment variables are used by all XicTools programs.

WRSPICE HOME
If found in the environment when WRspice starts, it is expected to contain a path to the WRspice

installation area or equivalent, which defaults to “/usr/local/xictools/wrspice”. This overrides
XT PREFIX if that environment variable is also found.

There is an important subtlety when using this variable. Although it allows WRspice to find its
startup files anywhere, only the directory structure implied by XT PREFIX, that is, for ¡i¿WRspice¡/i¿,

$XT PREFIX/xictools/wrspice

164 CHAPTER 3. THE WRSPICE USER INTERFACE

is compatible with the program installation script. The variable is perhaps useful for pointing
WRspice toward a secondary set of startup files, perhaps heavily customized by the user, which
may reside in an arbitrary location.

WRSPICE FIFO
When WRspice starts, it creates a “named pipe”, otherwise known as a fifo (see 3.15.11). Text
written to the fifo is piped into WRspice, as if input with the source command. If this variable is
found in the environment, the text of this variable is taken as the base name for the fifo, instead
of “wrsfifo”. In Unix/Linux, this name can have a full path. All components of the path except
for the file name must exist. If there is a conflict with an existing entity, an integer suffix will be
added to make the name unique. In Windows, any path given is stripped and ignored.

XT PREFIX
All of the XicTools programs respond to the XT PREFIX environment variable. When the tools are
installed in a non-standard location, i.e., other than /usr/local, this can be set to the directory
prefix which effectively replaces “/usr/local”, and the programs will be able to access the instal-
lation library files without further directives. This should not be needed under Windows, as the
Registry provides the default paths.

XT HOMEDIR
Under Windows, the user’s “home” directory is determined by looking at environment variables.

In Linux, the HOME environment variable is set the the user’s home directory, and this is also
true under Windows if using a Linux emulation package such as Cygwin or MSYS. However, in
this case HOME will be relative to the file system as seen within the emulator, and not the actual
Windows file system as seen in Xic or WRspice which are Windows-native programs. Therefor, the
HOME environment variable is ignored under Windows.

Instead, the programs will first look for XT HOMEDIR. This should be set to the Windows path to
the user’s MSYS2 or Cygwin home directory. For example, this can be done from the bash profile

file by adding a line

export XT HOMEDIR=c:/msys64/home/yourlogin

Setting this will allow Xic and WRspice to find files in the user’s MSYS2 home directory, even
though the programs are Windows native and don’t know the MSYS2 paths.

The deprecated XIC START DIR variable is checked next, and if found its value is taken as the
user’s home directory in the same manner.

If not found, the HOMEDIR and HOMEPATH variables, if both are found, are concatenated to yield
the home directory path. In the unlikely event that these are not set, the USERPROFILE variable
is checked, and if all else fails, “C:\” is assumed. The HOMEDIR/HOMEPATH and USERPROFILE
variables are set by Windows, at least in some Windows versions.

Under other operating systems, the home directory is well-defined and is obtained from operating
system calls.

XTNETDEBUG
If the variable XTNETDEBUG is defined, Xic and WRspice will echo interprocess messages sent and
received to the console. In server mode, Xic will not go into the background, but will remain in
the foreground, printing status messages while servicing requests.

XT KLU PATH
This can be set to the full path to the KLU (sparse matrix solver) plug-in. For example, this path
by default in a Linux installation is

3.2. ENVIRONMENT VARIABLES 165

/usr/local/xictools/wrspice/startup/klu wr.so

The plug-in is found automatically so this variable is needed only for special cases.

The KLU version changed in wrspice-4.2.7, and the plug-ins are not compatible. Current WRspice

releases will not load the old plug-in, however older releases will load a new plug-in if found in the
default location, which will likely cause a program crash. This variable can be set in this case to
avoid the problem.

XT LOCAL MALLOC
Linux and FreeBSD releases can use an included local memory allocation package. In earlier
WRspice releases, this allocator, rather than the allocator provided by the operating system, was
used by default. In 32–bit releases, the local allocator was often able to allocate more memory
than the allocators provided by the operating system. It also provided custom error reporting and
statistics.

This feature is now disabled, as in modern operating systems there is dubious benefit, and it
can produce stability problems in some cases. However, if this variable is set in the environment
when WRspice is started, the local allocator will be used. The interested user is encouraged to
experiment.

XT SYSTEM MALLOC
This variable was once used to disable the internal local memory allocator, which in earlier releases
was enabled by default. Currently, this variable is ignored.

XT GUI COMPACT
When set, no extra space is allowed around pushbutton contents in the graphical interface. Such
space can cause menu button images to be truncated on low-resolution displays if the theme in
use imposes too much space. Setting this variable is a quick fix for this problem, though one could
also change the theme.

There are several environment variables which can be used to alter some of the WRspice defaults.
On startup, WRspice checks for the following variables in the environment, and alters internal defaults
accordingly. The defaults can be modified when the program is built, the defaults listed below are those
assigned in the distribution.

HOME
This is used only in the Microsoft Windows version, and can be set to a full directory path which
will be taken as the user’s home directory.

DISPLAY
This variable defines the X window system display that WRspice will use, but is ignored if the -d
option is used on the WRspice command line. The display must be specified for graphics to be
enabled in WRspice.

EDITOR
If defined to the invoking string for a text editor, that editor will be used in the edit command.
This is superseded by the SPICE EDITOR variable, if set.

SPICE EDITOR
The text editor called by the edit command can be set with this variable. The variable is defined
to the command string one would type to invoke the editor. This will supersede the EDITOR
variable, if set, but which would otherwise have the same effect. If no editor is specified in the
environment, or with the editor shell variable, which supersedes the environment variables, a
default internal editor is used. The default internal editor can also be specified by setting
SPICE EDITOR to nothing, “default”, or “xeditor”.

166 CHAPTER 3. THE WRSPICE USER INTERFACE

TMPDIR
This specifies a directory to use for temporary files, and is superseded by SPICE TMP DIR, if
defined. The default location if not specified is /tmp.

SPICE TMP DIR
When WRspice creates a temporary file, it will look for a directory named by the
SPICE TMP DIR environment variable, and if not found the directory named in the TMPDIR
variable, and if still not found the file will be created in /tmp.

SPICE EXEC DIR
This variable can be used to define the directory containing the XicTools binaries, used by the
aspice command and the wrspiced daemon. If not set, the default is
“/usr/local/xictools/bin”, or, if XT PREFIX is set, its value replaces “/usr/local”.

SPICE PATH
This can be used to set the full path to the WRspice executable, for the aspice command and the
wrspiced daemon. If not set, the default is “/usr/local/xictools/bin/wrspice”, or, if
XT PREFIX is set, its value replaces “/usr/local”. The SPICE EXEC DIR variable can also be
used for this purpose, unless the wrspice executable has been renamed. The spicepath shell
variable, if set, will override the path set in the environment.

SPICE LIB DIR
This variable can be used to change the default location where WRspice looks for system startup
files. If not set, the internal default is “/usr/local/xictools/wrspice/startup”, or, if
XT PREFIX is set, its value replaces “/usr/local”.

SPICE INP PATH
This can be set to a list of directories to search for input files and scripts. If not set, the internal
default is “(. /usr/local/xictools/wrspice/scripts)”, or, if XT PREFIX is set, its value
replaces “/usr/local”.

SPICE HLP PATH
This can be set to a list of directories to search for help database files. If not set, the internal
default is “(/usr/local/xictools/wrspice/help)”, or, if XT PREFIX is set, its value
replaces “/usr/local”. This is superseded by the helppath shell variable, if set.

SPICE NEWS FILE
This variable can be set to the full path to a text file which is printed when WRspice starts. If
not set, the file /usr/local/xictools/wrspice/startup/news will be printed, if it exists (if
XT PREFIX is set, its value replaces “/usr/local”).

SPICE BUGADDR
This variable can be set to an internet mail address to use in the bug reporting command. If not
set, the built in default is the Whiteley Research technical support address.

SPICE OPTCHAR
This variable can be defined to a character that will be used to flag options on the WRspice

command line. If not defined, the option character is “−”.

SPICE ASCIIRAWFILE
If this variable is defined to “0” (zero), or to a word starting with ‘f’ or ‘F’ such as “False”, or
‘n’ or ‘N’ such as “No”, WRspice will create binary plot-data files (rawfiles). If not set or set to
something else, WRspice will create the default ASCII-format rawfiles. The filetype shell variable
can also be used to set the mode, which will supersede the environment variable. The rawfiles are
normally created with the write command.

3.3. SPARSE MATRIX PACKAGE 167

SPICE HOST
This variable can be used to set the host name to use for remote SPICE runs. The host name
can optionally be suffixed by a colon followed by the port number to use for communication with
the wrspiced daemon. If not given, the port is obtained from the operating system for
“wrspice/tcp”, or 6114 (the IANA registered port number for this service) if this is not defined.
There is no default for this variable. Hosts can also be specified with the rhost command, and
given with the rhost shell variable.

SPICE DAEMONLOG
This variable is used by the wrspiced daemon program to set an alternate path for the log file.
The default path is /tmp/wrspiced.log.

SPICENOMAIL
If the variable SPICENOMAIL is set, no mail will be sent during a program crash. If a fatal error
is encountered, a file named “gdbout” is created in the current directory, which contains a stack
backtrace from the stack frame of the error. Despite the name, the file is generated internally on
all platforms, and no longer makes use of the gdb program.

By default, this file will be emailed to Whiteley Research for analysis. However, the emailing can
be suppressed by setting this variable in the environment. The gdbout file is produced in any
case, and would be very useful to Whiteley Research for fixing program bugs.

XTNOMAIL
This has the same effect as SPICENOMAIL but also prevents email from the Xic program.

3.3 Sparse Matrix Package

The core of a SPICE simulator is the set of functions that set up, factor, and solve the circuit equations.
The circuit equations form a matrix, whose elements, for most circuits, are mostly zero. This type of
matrix is deemed “sparse”. The speed with which the matrix can be filled, factored, and solved has a
major impact on simulation speed.

Historically, WRspice has used a derivative of the venerable Sparse package written by Ken Kundert
at Berkeley for sparse matrix processing. The package has been modified for improved performance,
specifically by sorting the matrix elements into an order which maximizes memory locality and minimizes
page-swapping and cache misses. The original C-language package was also translated into a set of C++
classes, improving maintainability and easing the integration of enhancements.

Although the Sparse package provides solid performance, newer algorithms have become available in
recent years which, in some or most cases, provide better performance. The KLU package, written by
Tim Davis at the University of Florida, is one such example. This package is distributed under a GNU
license, which prevents direct incorporation into a proprietary commercial application such as WRspice,
however commercial applications may use the package as a shared library.

WRspice distributions provide KLU in the form of a “plug-in”. A plug-in is a shared library that is
loaded directly by the application at run-time, rather than relying on the system loader. By using the
plug-in, the application can still run properly whether or not the plug-in is available. If loading was
performed by the system as for a normal shared library, WRspice would not run unless the plug-in is
accessible.

The KLU plug-in is installed in the startup directory in the WRspice installation area. Thus, for
normal installations, it should always be accessible. By default, WRspice will load and use KLU for

168 CHAPTER 3. THE WRSPICE USER INTERFACE

spares matrix processing, overriding the Sparse package. However, it is possible to direct WRspice to use
Sparse rather than KLU if desired.

For large post-extraction mixed-mode CMOS circuits used for benchmarking, the KLU package
provides a 2-3 times improvement in simulation speed over Sparse. These circuits contain hundreds of
transistors, and thousands of resistors and capacitors. For less complex circuits, the speed advantage
may be smaller, and in some cases KLU may actually be slower. KLU was observed to be slower in
rather simple circuits containing Josephson junctions. Users are encouraged to use the rusage command
and determine which package provides the best performance on their circuits.

The following option variables control the sparse matrix handling. The first two can be set from the
General page of the Simulation Options tool. The useadjoint variable can be set from the Devices
page of the Simulation Options tool. The Simulation Options tool is obtained from the Sim Opts
button in the Tools menu of the WRspice Tool Control Window. The variables can also be set with
the set command, or in a .options line in SPICE input.

noklu

When this boolean variable is set, KLU will not be used for sparse matrix calculations. Otherwise,
if the KLU plug-in is available, KLU will be used by default. The KLU plug-in is provided with
all WRspice distributions, and is installed in the startup directory.

nomatsort

When using Sparse (i.e., KLU is unavailable or disabled), this boolean variable when set will
prevent using element sorting to improve speed. This corresponds to the legacy WRspice sparse
code. It may be interesting for comparison purposes, but setting this variable will slow simulation
of most circuits. This variable has no effect if KLU is being used.

useadjoint

Most of the BSIM device models in WRspice have added code that builds an adjoint matrix which
is used to accurately compute device currents. The computed currents are not used in the device
models, but are available as simulation outputs. This has a small performance overhead so is not
enabled by default, but will be enabled by setting this variable. Without this it may not be possible
to obtain device currents during the simulation, using the device[param] “pseudo-vector”. This
applies whether KLU or Sparse is used for matrix operations.

3.4 Initialization Files

Prior releases of WRspice could be configured to check for the availability of program updates on startup.
There was also provision for display of a message if one was “broadcast” from the Whiteley Research
web site. This latter feature was never used, and neither feature is currently supported in WRspice.
Thus, there is no longer a network access attempt on program startup, which may save time.

Program updates are handled in the help system (see 3.14.1), for all of the XicTools packages. Either
the help system built into Xic and WRspice, or the stand-alone mozy program can be used to check for,
download, and install updates. Giving the keyword “:xt pkgs” will display a page that provides update
information and download/install buttons.

If a new WRspice release is run for the first time, the release notes will appear in a pop-up window,
as if the Notes button in the Help menu was pressed. There is a file in the user’s .wr cache directory
named “wrspice current release” that contains a release number. If, when WRspice starts, this file
is missing or the release number is not current, WRspice will show the release notes and update the file.
If the release numbers match, there is no action.

3.4. INITIALIZATION FILES 169

WRspice will attempt to source startup files used for initialization when the program is started. First,
a file named “wrspiceinit” is searched for in the system startup directory, and if found is sourced into
WRspice. The system startup directory has a default location built into the program
(/usr/local/xictools/wrspice/startup, or if XT PREFIX is set in the environment, its value replaces
“/usr/local”), but this can be changed by setting the SPICE LIB DIR environment variable to another
location.

.wrspiceinit file
Files named “.wrspiceinit” are searched for in the user’s home directory, and the current direc-
tory, and are sourced, if found, in that order. If running on Microsoft Windows which does not
support the notion of a home directory, WRspice will look in the environment for a variable named
“HOME”, and its value will be taken as the path to the ”home directory”. If not set, the search is
skipped.

These files have identical format, and contain ordinary script commands, which can be used to
set the default behavior of WRspice. The first line is ignored, but all remaining lines are taken as
script commands. The special directive tbsetup, which can only appear in these files, provides
the setup information for the graphical interface. Unlike ordinary input files, it is not necessary to
enclose the commands in .control or .exec blocks in the startup files.

X Resources
When using the X-window system, the X resource-passing mechanism can be used to set the
default colors used in plots. The resource mechanism is otherwise ignored in the current version
of WRspice. The base names for the color resources are “color0” through “color19”, with the
corresponding class names capitalized. Thus, one way to define alternative plotting colors is to
create a file named “Wrspice” in the user’s home directory, which contains lines like

*color2: red

for each new color definition. The color name should be known to the X window system, i.e., be
listed in the rgb.txt file in the X-windows system library.

The same definitions could be placed in a .wrspiceinit file with lines like “set color2 = red”.

3.4.1 The tbsetup Command

This command can appear in the startup files only. It is inserted into or updated in the .wrspiceinit
file in the user’s home directory in response to the tbupdate command, or from pressing the Update
Tools button in the File menu of the Tool Control window. It is not likely that the user will need to
work with tbsetup directly, though it can be used to customize the Tools menu in the Tool Control
window.

The command string takes the following form:

tbsetup [old] [vert] [toolbar on|off x y] [name1 on|off x y] [name2 ...

The old and vert keywords are ignored. They exist for backward compatibility.

By invoking the tbupdate command from the prompt line or pressing the Update Tools button in
the File menu of the Tool Control window, a .wrspiceinit file is created in the user’s home directory
if necessary, and the tbsetup command will be added or updated. This will save the current state of
the windows from the Tools menu, which will be recreated when the program is started the next time.

170 CHAPTER 3. THE WRSPICE USER INTERFACE

If no tbsetup command is found on program startup, a default configuration is used (all tools initially
invisible).

For each argument block in the tbsetup call, the first token gives the tool name, with the “toolbar”
entry indicating the Tool Control window itself. For other than the Tool Control window, which
is always shown, the on and off keywords specify whether the tools are shown at startup. The two
numbers that follow give the position of the upper left corner of the tool on the screen (the screen origin
is the upper left corner, coordinates are in pixels). For other than the first (Tool Control window)
entry, the blocks can be rearranged or deleted. The Tools menu will show only the tools listed, in the
order given. Thus, the Tools menu can be customized.

To generate an initial custom configuration, simply start WRspice on a system that supports graphics,
and the Tool Control window will appear somewhere on-screen. After opening some of the tools from
theToolsmenu and arranging them as necessary and/or moving theTool Control window, theUpdate
Tools button in the File menu can be pressed. A .wrspiceinit file will be created, or an existing file
updated, in the user’s home directory. Alternatively, the tbupdate command can be given from the
command line. Hand editing of the .wrspiceinit file may be used to remove buttons or change the
button order in the Tools menu. Once edited, only the tools present will be updated.

3.5 The Tool Control Window

When the DISPLAY variable is found in the environment upon program startup, WRspice assumes that a
graphical (X-window) server is available, and will enable its graphical components. If this initialization
fails, WRspice will terminate. If the DISPLAY variable is not set, and the -d option is not used on the
command line to specify the display, or the -dnone command line option is given, then WRspice will
run in text-only mode. In this mode, the core functionality is available, but not the graphical niceties
such as plotting (other than the infamous crude line-printer plots of yore). Under Microsoft Windows,
graphics is (of course) always available.

When a graphical interface is available, WRspice by default provides a small Tool Control window
which provides menus for controlling WRspice, and a display containing a tabulation of memory statis-
tics. The menus contain buttons which bring up graphical screens, from which much most of WRspice

can be controlled in a (perhaps) more user-friendly fashion. The locations of the pop-ups and their
active/inactive status at program startup can be preset by the user.

When running WRspice through the Xic program, by default the Tool Control window will appear
when connection to WRspice has been established. The Xic variable NoSpiceTools can be set, before the
connection is established, to prevent the Tool Control window from appearing.

The text area lists the following quantities, though some may not be listed if the operating system
does not provide this information. The listing is updated every few seconds. The first line of text shows
the current running status of WRspice: idle, running, or stopped. Also shown on this line is the elapsed
wall-clock time from the last status change. The time format is hours:minutes:seconds. The seconds
entry has two decimal places (resolution is .01 second). The hours field is not included if zero. The
user and system lines are similar, but display the total user cpu time used by the process, and the
total system cpu time, respectively. The user time generally includes input/output processing time,
where the system time is pure cpu usage. The data size entry displays the total allocated memory in
Kb used by the program. This is only the memory allocated by the program for data, and does not
include additional memory overhead reported by programs such as top and ps. This size is limited to
the program limit, which is given in the following line. This limit can be changed with the maxdata
variable. The final system limit line displays the maximum memory available from the system for the
process.

3.5. THE TOOL CONTROL WINDOW 171

WRspice supports the xdnd and Motif drag and drop protocols. One is able to drag files from many
file manager programs into the Tool Control window of WRspice or the main window of Xic, and that
file will be loaded into the program. The File Selection and Files Listing pop-ups participate in the
protocols as sources and receivers. The text editor and mail pop-ups are drag receivers.

The file must be a standard file on the same machine. If it is from a tar file, or on a different
machine, first drag it to the desktop or to a directory, then into WRspice. (Note: The GNOME gmc file
manager allows one to view the contents of tar files, etc. as a “virtual file system”. Window Maker and
Enlightenment window managers, at least, are drag/drop aware.)

In the upper left of the Tool Control window is the WR button, which contains the Whiteley
Research corporate logo. Pressing this button brings up a mail client (see 3.9), pre-loaded with the
address of the Whiteley Research support staff. The text field containing the address, as well as the
subject, can be changed. This can be used to send questions and bug reports to Whiteley Research, or
to send messages or data files to colleagues.

To the right of the WR button are the Run (green arrow) and Stop (red X) buttons. Pressing
the Run button is equivalent to giving the run command on the command line, without arguments.
Pressing the Stop button issues an interrupt signal that will pause a simulation in progress, the same
as if the user typed Ctrl-C in the console window.

To the right of the buttons is a menu bar with four entries: File, Edit, Tools, and Help. Pressing
the mouse button 1 on these entries brings up a drop-down menu containing various commands.

The File menu contains commands for manipulating disk files.

File Select
Bring up a file manager panel. This panel allows files and directories to be created, deleted, and
renamed, or read into WRspice. The file manager is described in 3.7.

Source
This button creates a dialog, soliciting a file to input into WRspice, as with the source command.
When the dialog is active, the Tool Control text window is active as a drag receiver, so that file
names can be dragged and dropped from compatible windows (such as the file manager), and the
file name will be loaded into the dialog.

Load
This button is similar in operation to the Source button, however the file is expected to be a
rawfile, which is the native plot-file format, or a Common Simulation Data Format (CSDF) file.
Like the Source dialog, the Load dialog supports drag and drop protocols through the text area
of the Tool Control window. The file is read and data are made available for analysis, similar to
the load command.

Update Tools
The Update Tools button will save the current tool configuration, and the next time WRspice is
started, the same tools will be available, in the same locations on-screen. The tools are available
in the Tools menu to be described.

Initialization of the graphical interface is directed from the system init file wrspiceinit found
in the startup directory, or more appropriately from the user’s startup files (.wrspiceinit files)
as found in the current or user’s home directory. Only the file in the home directory can be
automatically updated from withinWRspice. A special command tbsetup, which is only recognized
in these files, performs the initialization. The tbsetup function takes a long, messy command line,
however fortunately the user has an easy way to automatically add this line, using the Update
Tools command. This action is also available from the command line tbupdate command.

172 CHAPTER 3. THE WRSPICE USER INTERFACE

The Update Tools and tbupdate commands will create or update a .wrspiceinit file in the
user’s home directory. If the home directory can’t be determined, the current directory will be
used.

Update WRspice
Pressing this button is equivalent to giving thewrupdate command, and is equivalent to giving the
special keyword “:xt pkgs” to the help system, which brings up the XicTools package management
page (see 3.14.1). The page lists installed and available packages for each of the XicTools programs
for the current operating system, and provides buttons to download and install the packages.

Unlike in earlier WRspice releases, there is no provision for automatic checking for updates, so this
command or equivalent should be run periodically to check for updated packages. The computer
must have http access to the internet for successful use of this functionality.

Quit
The Quit button will terminate the WRspice session, after confirmation if there is unsaved work.
This can also be accomplished with the quit or exit command line functions.

The Edit menu contains commands used to modify input files.

Text Editor
This button brings up a text editor, similar to the edit command. The default text editor is
described in 3.8, but the user can specify a different editor with the EDITOR or SPICE EDITOR
environment variables, or with the editor variable.

Xic
This button launches the Xic program, if it is available.

For schematic capture, the Xic program must be installed. When either editor is started, the currently
loaded circuit, if any, and if it has graphical information in the case of Xic, is loaded into the editor. The
simulation process can be initiated and controlled through Xic. The internal text editor has a Source
button, which allows the modified circuit to be passed directly back to WRspice for simulation. If another
editor is used, changes will have to be saved to disk and sourced from WRspice.

The Tools menu contains a configurable collection of command buttons which initiate pop-ups
which control or display various aspects or WRspice. Each of these pop-ups is a graphical short cut to a
collection of command line commands. Many users prefer the point-and-click interface to the command
line, though some do not. With WRspice, the user has a choice. The command functions available in
the Tools menu are listed below, in the order found in the menu.

Fonts
This brings up the Font Selection panel (see 3.10.1) that allows selection of the font used in the
text areas of the various tools, and in plot windows used for displaying simulation results.

Files
Pop up the Path Files Listing panel (see 3.10.2) which displays a list of the files found along
the sourcepath. Files can be sourced or edited through this panel.

Circuits
Bring up the Circuits panel (see 3.10.3) listing the circuits that are currently in memory. The
panel provides capabilities for choosing the current circuit and deleting circuits from memory.

3.5. THE TOOL CONTROL WINDOW 173

Plots
Bring up the Plots panel (see 3.10.4) which displays a list of the plots in memory. The panel
provides capabilities for selecting the current plot, and for deleting plots.

Plot Opts
Bring up the Plot Options panel (see 3.10.5) to control the myriad of variables associated with
plotting.

Colors
Bring up thePlot Colors panel (see 3.10.6) to set the colors used in the plots.

Vectors
Pop up the Vectors panel (see 3.10.7) listing the vectors in the current plot. The panel provides
an interface for plotting or printing these vectors.

Variables
Pop up the Variables panel (see 3.10.8) displaying the shell variables currently set.

Shell
Bring up the Shell Options panel (see 3.10.9) used to control the default settings associated
with the WRspice shell.

Sim Opts
Pop up the Simulation Options panel (see 3.10.10) used to modify the variables which affect
circuit simulation.

Commands
Bring up the Command Options panel (see 3.10.11) to customize the variables associated with
the various commands.

Runops
Pop up the Runops panel (see 3.10.12) which lists the “runops” currently in effect. The runops
are directives to interactively plot, or trace variables during simulation, or to pause the simulation
when a condition is met. The panel provides capability for deactivating or deleting runops.

Debug
Bring up theDebug Options panel (see 3.10.13) used to control the debugging modes ofWRspice.

The Help menu provides entry into the help system, and provides access to other information. The
buttons found in this menu are listed below.

Help
Bring up the help viewer loaded with the top-level page. The help system provides an extensive
cross-referenced HTML database, and contains the latest information on WRspice features. The
help system is described in 3.14.

About
Bring up a text window with the current WRspice version number, copyright, and legal disclaimer.

Notes
Bring up a text browser loaded with the release notes for the current release of WRspice. The
release notes provide detailed information about changes in the present release, and serve as a
supplement to the manual. Changes and new features should also have been incorporated into the
help database.

174 CHAPTER 3. THE WRSPICE USER INTERFACE

3.6 Text Entry Windows

The GTK interface provides single and multi-line text entry windows for use in the graphical interface.
These entry areas use a common set of key bindings (see 3.6.3) and respond to and use the system
clipboard (see 3.6.2) and other selection mechanisms in the same way.

3.6.1 Single-Line Text Entry

In many operations, text is entered by the user into single-line text-entry areas that appear in pop-up
windows. These entry areas provide a number of editing and interprocess communication features which
will be described in subsequent sections.

In both Unix/Linux and Windows, the single-line entry is typically also a receiver of drop events,
meaning that text can be dragged form a drag source, such as the File Manager, and dropped in the
entry area by releasing button 1. The dragged text will be inserted into the text in the entry area, either
at the cursor or at the drop location, depending on the implementation.

3.6.2 Selections and Clipboards

Under Unix/Linux, there are two similar data transfer registers: the “primary selection”, and the “clip-
board”. both correspond to system-wide registers, which can accommodate one data item (usually a
text string) each. When text is selected in any window, usually by dragging over the text with button 1
held down, that text is automatically copied into the primary selection register. The primary selection
can be “pasted” into other windows that are accepting text entry.

The clipboard, on the other hand, is generally set and used only by the GTK text-entry widgets.
This includes the single-line entry used in many places, and the multi-line text window used in the text
editor (see 3.8), file browser, and some other places including error reporting and info windows. From
these windows, there are key bindings that cut (erase) or copy selected text to the clipboard, or paste
clipboard text into the window. The cut/paste functions are only available if text in the window is
editable, copy is always available.

Under Windows there is a single “Windows clipboard” which is a system-wide data-transfer register
that can accommodate a single data item (usually a string). This can be used to pass data between
windows. In use, the Windows clipboard is somewhat like the Unix/Linux clipboard.

Text in most text display windows can be selected by dragging with button 1 held down, however
the selected text is not automatically added to the Windows clipboard. On must initiate a cut or copy
operation in the window to actually save the selected text to the Windows clipboard. The “copy to
clipboard” accelerator Ctrl-c is available from most windows that present highlighted or selected text.
Note that there is no indication when text is copied to the clipboard, the selected text in all windows
is unaffected, i.e., it won’t change color or disappear. The user must remember which text was most
recently copied to the Windows clipboard.

Clicking with button 2 will paste the primary selection into the line at the click location, if the
window text is editable.

Clicking with button 3 will will bring up a context menu. From the menu, the user can select editing
operations.

The GTK interface hides the details of the underlying selection mechanisms, creating a consistent
interface under Windows or Uniix/Linux. There is one important difference, however: in Windows, the

3.7. THE FILE MANAGER 175

primary selection applies only to the program containing the selection. In Unix/Linux, the primary
selection applies to the entire desktop,

3.6.3 GTK Text Input Key Bindings

The following table provides the key bindings for editable text entry areas in GTK-2. However, be
advised that these bindings are programmable, and may be augmented or changed by installation of a
local theme.

GTK Single-Line Bindings

Ctrl-a Select all text
Ctrl-c Copy selected text to clipboard
Ctrl-v Paste clipboard at cursor
Ctrl-x Cut selection to clipboard
Home Move cursor to beginning of line
End Move cursor to end of line
Left Move cursor left one character
Ctrl-Left Move cursor left one word
Right Move cursor right one character
Ctrl-Right Move cursor right one word
Backspace Delete previous character
Ctrl-Backspace Delete previous word
Clear Delete current line
Shift-Insert Paste clipboard at cursor
Ctrl-Insert Copy selected text to clipboard
Delete Delete next character
Shift-Delete Cut selected text to clipboard
Ctrl-Delete Delete next word

Clicking with button 1 will move the cursor to that location. Double clicking will select the clicked-
on word. Triple clicking will select the entire line. Button 1 is also used to select text by dragging the
pointer over the text to select.

Clicking with button 2 will paste the primary selection into the line at the click location, if the
window text is editable.

Clicking with button 3 will will bring up a context menu. From the menu, the user can select editing
operations.

These operations are basically the same in Windows and Unix/Linux, with one important difference:
in Windows, the primary selection applies only to the program containing the selection. In Unix/Linux,
the primary selection applies to the entire desktop, like the clipboard.

3.7 The File Manager

The File Selection pop-up allows the user the navigate the host’s file systems, and select a file for input
to the program.

176 CHAPTER 3. THE WRSPICE USER INTERFACE

The panel provides two windows; the left window displays the subdirectories in a tree format, and
the right window displays a listing of files in a columnar form. The panel is similar in operation to the
Windows Explorer tool provided by Microsoft.

When the panel first appears, the directories listing contains a single entry, which is shown selected,
and the files window contains a list of files found in that directory. The tree “root” is selected by the
application, and may or may not be the current directory. If the directory contains subdirectories, a
small box containing a ‘+’ symbol will appear next to the directory entry. Clicking on the ‘+’ will cause
the subdirectories to be displayed in the directory listing, and the ‘+’ will change to a ‘-’. Clicking
again on the ‘-’ will hide the subdirectory entries. Clicking on a subdirectory name will select that
subdirectory, and list its files in the files listing window. The ‘+’ box will appear with subdirectories
only after the subdirectory is selected.

Clicking on the blue triangle in the menu bar will push the current tree root to its parent directory.
If the tree root is pushed to the top level directory, the blue triangle is grayed. The label at the bottom
of the panel displays the current root of the tree. There is also a New Root item in the File menu,
which allows the user to enter a new root directory for the tree listing. In Windows, this must be used
to list files on a drive other than the current drive.

The Up menu is similar, but it produces a drop-down list of parent directories. Selecting one of the
parents will set the root to that parent, the same as pressing the blue triangle button multiple times to
climb the directory tree.

The New CWD button in the File menu allows the user to enter a new current working directory
for the program. This will also reset the root to the new current working directory. The small dialog
window which receives the input, and also a similar dialog window associated with the New Root
button, are sensitive as drop receivers for files. In particular, one can drag a directory from the tree
listing and drop it on the dialog, and the text of the dialog will be set to the full path to the directory.

The files listed in the files listing always correspond to the currently selected directory. File names
can be selected in the files listing window, and once selected, the files can be transferred to the calling
application. The Go button, which has a green octagon icon, accomplishes this, as does the Open entry
in the File menu. These buttons are only active when a file is selected. One can also double-click the
file name which will send the file to the application, whether or not the name was selected.

Files can be dragged and dropped into the application, as an alternative to the Go button. Files
and directories can also be dragged/dropped between multiple instances of the File Selection pop-up,
or to other file manager programs, or to other directories within the same file manager pop-up. The
currently selected directory is the target for files dropped in the files listing window. When dragging in
the directory listing, the underlying directory is highlighted. The highlighted directory will be the drop
target.

A confirmation pop-up will always appear after a drag/drop. This specifies the source and destination
files or directories, and gives the user the choice of moving, copying or (if not in Windows) symbolically
linking, or aborting the operation.

The File menu contains a number of commands which provide additional manipulations. The New
Folder button will create a subdirectory in the currently selected directory (after prompting for a name).
The Delete button will delete the currently selected file. If no file is selected, and the currently selected
directory has no files or subdirectories, it will be deleted. The Rename command allows the name of
the currently selected file to be changed. If no file is selected, the name change applies to the currently
selected directory.

The Listing menu contains entries which affect the file name list. By default, all files are listed,
however the user can restrict the listing to certain files with the filtering option. The Show Filter

3.8. THE TEXT EDITOR 177

button displays an option menu at the bottom of the files listing. The first two choices are “all files” and
the set of extensions known to correspond to supported layout file formats. The remaining choices are
editable and can be set by the user. The format is the same as one uses on a Unix command line for, e.g.,
the ls command, except that the characters up to the first colon (‘:’) are ignored. It is intended that the
first token be a name for the pattern set, followed by a colon. The remaining tokens are space-separated
patterns, any one of which if matching a file will cause the file to be listed.

In matching filenames, the character ‘.’ at the beginning of a filename must be matched explicitly.
The character ‘*’ matches any string of characters, including the null string. The character ‘?’ matches
any single character. The sequence ‘[...]’ matches any one of the characters enclosed. Within ‘[...]’, a pair
of characters separated by ‘-’ matches any character lexically between the two. Some patterns can be
negated: The sequence ‘[ˆ...]’ matches any single character not specified by the characters and/or ranges
of characters in the braces. An entire pattern can also be negated with ‘^’. The notation ‘a{b,c,d}e’ is
a shorthand for ‘abe ace ade’.

The Relist button will update the files list. The file listing is automatically updated when a new
filter is selected, or when Enter is pressed when editing a filter string.

The files are normally listed alphabetically, however if List by Date is selected, files will be listed in
reverse chronological order of their creation or last modification time. Thus, the most-recently modified
file will be listed first.

The Show Label toggle button controls whether or not the label area is shown. The label area
contains the root directory and current directory, or a file info string. By default, the label area is shown
when the pop-up is created as a stand-alone file selector, but is not shown when the pop-up appears as
an adjunct when soliciting a file name.

When the pointer is over a file name in the file listing, info about the file is printed in the label area
(if the label area is visible). This is a string very similar to the “ls -l” file listing in Unix/Linux. It
provides:

1. The permission bit settings and file type codes as in “ls -l” (Unix/Linux only).

2. The owner and group (Unix/Linux only).

3. The file size in bytes.

4. The last modification date and time.

While the panel is active, a monitor is applied to the listed files and directories which will auto-
matically update the display if the directories change. The listings should respond to external file or
directory additions or deletions within half a second.

3.8 The Text Editor

The graphical interface provides a general-purpose text editor window. It is used for editing text files or
blocks, and may be invoked in read-only mode for use as a file viewer. In that mode, commands which
modify the text are not available.

This is not the world’s greatest text editor, but it works fine for quick changes and as a file viewer.
For industrial-strength editing, a favorite stand-alone text editor is probably a better choice.

The following commands are found in the File menu of the editor. Not all of these commands may
be available, for example the Open button is absent when editing text blocks.

178 CHAPTER 3. THE WRSPICE USER INTERFACE

Open
Bring up the File Selection panel. This may be used to select a file to load into the editor. This
is the same file manager available from the Open button in the File menu of the Tool Control
Window.

Load
Bring up a dialog which solicits the name of a file to edit. If the current document is modified and
not saved, a warning will be issued, and the file will not be loaded. Pressing Load a second time
will load the new file, discarding the current document.

Read
Bring up a dialog which solicits the name of a file whose text is to be inserted into the document
at the cursor position.

Save
Save the document to disk, or back to the application if editing a text block under the control of
some command.

Save As
Pop up a dialog which solicits a new file name to save the current document under. If there is
selected text, the selected text will be saved, not the entire document.

Print
Bring up a pop-up which enables the document to be printed to a printer, or saved to a file.

Write CRLF
This menu item appears only in the Windows version. It controls the line termination format used
in files written by the text editor. The default is to use the archaic Windows two-byte (DOS)
termination. If this button is unset, the more modern and efficient Unix-style termination is used.
Older Windows programs such as Notepad require two-byte termination. Most newer objects and
programs can use either format, as can the XicTools programs.

Quit
Exit the editor. If the document is modified and not saved, a warning is issued, and the editor is
not exited. Pressing Quit again will exit the editor without saving.

The editor can also be dismissed with the window manager “dismiss window” function, which may
be an ‘X’ button in the title bar. This has the same effect as the Quit button.

The editor is sensitive as a drop receiver. If a file is dragged into the editor and dropped, and neither
of the Load or Read dialogs is visible, the Load dialog will appear with the name of the dropped file
preloaded into the dialog text area. If the drop occurs with the Load dialog visible, the dropped file
name will be entered into the Load dialog. Otherwise, if the Read dialog is visible, the text will be
inserted into that dialog.

If the Ctrl key is held during the drop, and the text is not read-only, the text will instead be inserted
into the document at the insertion point.

The following commands are found in the Edit menu of the text editor.

Undo This will undo the last modification, progressively. The number of operations that can be undone
is unlimited.

Redo This will redo previously undone operations, progressively.

3.9. THE MAIL CLIENT 179

The remaining entries allow copying of selected text to and from other windows. These work with
the clipboard provided by the operating system, which is a means of transferring a data item between
windows on the desktop (see 3.6.2).

Cut to Clipboard
Delete selected text to the clipboard. The accelerator Ctrl-x also performs this operation. This
function is not available if the text is read-only.

Copy to Clipboard
Copy selected text to the clipboard. The accelerator Ctrl-c also performs this operation. This
function is available whether or not the text is read-only.

Paste from Clipboard
Paste the contents of the clipboard into the document at the cursor location. The accelerator
Ctrl-v also performs this operation. This function is not available if the text is read-only.

Paste Primary (Unix/Linux only)
Paste the contents of the primary selection register into the document at the cursor location. The
accelerator Alt-p also performs this operation. This function is not available if the text is read-only.

The following commands are found in the Options menu of the editor.

Search
Pop up a dialog which solicits a regular expression to search for in the document. The up and
down arrow buttons will perform the search, in the direction of the arrows. If the No Case button
is active, case will be ignored in the search. The next matching text in the document will be
highlighted. If there is no match, “not found” will be displayed in the message area of the pop-up.

The search starts at the current text insertion point (the location of the I-beam cursor). This may
not be visible if the text is read-only, but the location can be set by clicking with button 1. The
search does not wrap.

Source
Read the content of the editor into WRspice as through the source command. One can also save
the file to disk, and use the source command directly.

Font
This brings up a tool for selecting the font to use in the text window. Selecting a font will change
the present font, and will set the default font for new text editor class windows. This includes the
file browser and mail client pop-ups.

The GTK interface provides a number of default key bindings (see 3.6.3) which also apply to single-
line text entry windows. These are actually programmable, and the advanced user may wish to augment
the default set locally.

3.9 The Mail Client

The mail client can be used to send mail to arbitrary mail addresses, though when the panel appears,
it is pre-loaded with the address of Whiteley Research technical support. The text field containing the
address, as well as the subject, can be changed.

180 CHAPTER 3. THE WRSPICE USER INTERFACE

The main text window is a text editor with operations similar to the text editor used elsewhere in Xic

and WRspice. The File menu contains commands to read another text file into the editor at the location
of the cursor (Read), save the text to a file (Save As) and send the text to a printer (Print). When
done, the Send Mail command in the File menu is invoked to actually send the message. Alternatively,
one can quit the mail client without sending mail by pressing Quit.

The Edit menu contains commands to cut, copy, and paste text.

The Options menu contains a Search command to find a text string in the text. The Attach
command is used to add a mime attachment to the message. Pressing this button will cause prompting
for the name of a file to attach. While the prompt pop-up is visible, dragging a file into the mail client
will load that file name into the pop-up. This is also true of the Read command. Attachments are shown
as icons arrayed along the tool bar of the mail client. Pressing the mouse button over an attachment
icon will allow the attachment to be removed.

In the Windows version, since Windows does not provide a reliable interface for internet mail, the
mail client and crash-dump report may not work. Mail is sent by passing the message to a Windows
interface called “MAPI”, which in turn relies on another installed program to actually send the mail.
In the past, the mail system was known to work if Outlook Express was installed and configured as the
”Simple MAPI mail client”. It is unknown whether this is still an option with recent Windows releases.

To get mail working in Windows 8, it was necessary to download and install something called “live
mail” from Microsoft, which eventually worked. This application supports MAPI, apparently the default
Windows 8 Mail application does not. The default Windows 8 Mail application also does not work with
POP3 servers.

3.10 The Tools Menu Tools and Panels

The sub-sections describe the tools and panels that are obtained from buttons in the Tools menu of
the Tool Control windows. These provide a graphical interface to list data and manipulate WRspice,
supplementing the traditional command line interface.

3.10.1 The Fonts Tool

This panel, available from the Fonts button in the Tools menu of the Tool Control window, allows
selection of the fonts used in the graphical interface. A drop-down menu provides selection of the various
font targets. Pressing the Apply button will immediately apply the selected font to all visible windows
which use the font.

The drop-down font targets list contains the following entries:

Fixed Pitch Text Window Font
This sets the font used in pop-up multi-line text windows, such as the Files Listing and others,
where the names are formatted into columns.

Proportional Text Window Font
This sets the font used in pop-up multi-line text windows where text is not formatted, such as the
error message pop-up.

Fixed Pitch Drawing Window Font
This is the font used in the plot windows and in the Tool Control window.

3.10. THE TOOLS MENU TOOLS AND PANELS 181

Text Editor Font
This is the font used in the Text Editor pop-up.

HTML Viewer Proportional Font (Unix/Linux only)
This is the base font used for proportional text in the HTML viewer (help windows).

HTML Viewer Fixed Pitch Font (Unix/Linux only)
This is the base fixed-pitch font used by the HTML viewer.

The Font button in the Options menu of the Text Editor brings up a similar panel, as does the
Font button in ther Options menu of the help viewer.

These fonts can be set in the .wrspiceinit startup file by giving setfont commands. These are
inserted automatically when the Update Tools button in the File menu is pressed, or a tbupdate
command is given.

3.10.2 The Files Tool

This panel is available from the Files button in the Tools menu of the Tool Control window. It
provides a listing of files found in each directory of the “sourcepath” search path. The sourcepath is a
list of directories that are searched for circuit description files, if a file name is given to WRspice without
a path prefix.

The panel contains a drop-down menu which has an entry for each directory in the search path. The
main text area lists the files found in the currently selected directory.

A file from the list can be selected by clicking with mouse button 1 on the text. The text can
be deselected by clicking in the text window away from any text. The file listing participates in the
drag/drop protocol as a drag source and drop receiver.

The following buttons are provided:

Edit
If a file is selected, bring up a text editor with the file loaded as with the edit command. If no file
is selected, the button becomes active, and the user can click on a file in the text window to edit
it.

Source
If a file is selected, source it as with the source command. If no file is selected, the button becomes
active, and the user can click on a file in the text window to source it.

Help
Bring up help on this panel.

Dismiss
Remove the files panel from the screen.

3.10.3 The Circuits Tool

This panel is available from the Circuits button in the Tools menu of the Tool Control window. It
provides a listing of the circuits currently in memory. A circuit description can be read from a file with
the source command. If the user clicks on the text of one of the listed circuits, that circuit becomes

182 CHAPTER 3. THE WRSPICE USER INTERFACE

the current circuit, i.e., the circuit which will simulate with the run command. The panel contains the
following buttons:

Delete Current
Delete the current circuit from memory.

Help
Bring up help on this panel.

Dismiss
Remove the circuits panel from the screen.

3.10.4 The Plots Tool

This panel is available from the Plots button in the Tools menu of the Tool Control window. It
provides a listing of the plots currently in memory. A plot is a collection of output data vectors generated
during a simulation run. In addition, there is always the constants plot, which contains some useful
physical constants. A plot from the list can be selected as the current plot by clicking on the text in the
list. The current plot is used to resolve vector names in expressions given to commands and elsewhere.
The panel contains the following buttons:

New Plot
This creates an empty plot structure, and makes it the current plot.

Delete Current
Delete the current plot from memory.

Help
Bring up help on this panel.

Dismiss
Remove the plots panel from the screen.

3.10.5 Plot Options Panel

ThePlot Options panel is obtained from thePlot Opts button in theToolsmenu of theTool Control
window. The panel can control the values of internal variables related to plotting. These variables can
also be set with the set command, though the panel may provide a more convenient interface.

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

The panel is organized into multiple pages, with each page containing the variables in a particular
category. These will be listed below.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

3.10. THE TOOLS MENU TOOLS AND PANELS 183

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

The plot1 Page
This page contains entries which control the appearance of plots shown on-screen.

The plot2 Page
This page contains additional entries which control the appearance of plots shown on-screen.

The asciiplot Page
This page sets variables associated with the asciiplot command, which generates a text-mode
“plot” of output variables. This is not often used currently, but provides a nostalgic link to the
days of line printers and punched cards.

The hardcopy Page
This provides a number of entries which relate to the hardcopy command and graphics printing
in general.

The xgraph Page
This provides settings for the interface to the xgraph program, which was once used for simulation
output plotting in Berkeley SPICE.

3.10.6 Plot Colors Panel

The Plot Colors panel is obtained from the Colors button in the Tools menu of the Tool Control
window. The panel can control the values of internal variables used to define colors used in plotting.
These variables can also be set with the set command, though the panel may provide a more convenient
interface.

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

184 CHAPTER 3. THE WRSPICE USER INTERFACE

3.10.7 The Vectors Tool

This panel is available from the Vectors button in the Tools menu of the Tool Control window. It
provides a listing of the vectors in the current plot. The current plot can be selected with the Plots
button in the Tools menu.

A vector can be selected by clicking on the text, and selection is indicated by a ‘>’ symbol in the first
column. Any number of vectors can be selected. Click on the vector entry a second time to deselect it.
The selected vectors are used by the buttons described below.

Help
Bring up help on this panel.

Desel All
Desselect all selected vectors.

Print
Print the values of the selected vectors in the console window, as with the print command.

Plot
Plot the values of the selected vectors, as with the plot command.

Delete
Delete the selected vectors from the plot.

Dismiss
Remove the vectors panel from the screen.

3.10.8 The Variables Tool

This panel is available from the Variables button in the Tools menu of the Tool Control window. It
provides a listing of the variables currently set in the shell, either with the set command or by other
means. The format of the listing is the same as that used by the set command without arguments. The
following buttons are available:

Help
Bring up help on this panel.

Dismiss
Remove the variables panel from the screen.

3.10.9 Shell Options Panel

The Shell Options panel is obtained from the Shell button in the Tools menu of the Tool Control
window. The panel can control the values of internal variables used to define behavior of the WRspice

shell. The shell is similar to the UNIX C-shell, and many of the variable names may be familiar from
that context. These variables can also be set with the set command, though the panel may provide a
more convenient interface.

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

3.10. THE TOOLS MENU TOOLS AND PANELS 185

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

3.10.10 Simulation Options Panel

The Simulation Options panel is obtained from the Sim Opts button in the Tools menu of the Tool
Control window. The panel can control the values of internal variables used to define parameters used
while simulating. These variables can also be set with the set command, though the panel may provide
a more convenient interface. They are also commonly set in .options lines in SPICE input files.

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

The panel is organized into multiple pages, with each page containing the variables in a particular
category. These will be listed below.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

The General Page
This page contains entries for some common simulation settings.

The Timestep Page
This page privides a number of entries that control or affect the timestep prediction in transient
analysis, including the integration method.

The Tolerance Page
The entries provided on this page set the precision required for convergence in simulation.

186 CHAPTER 3. THE WRSPICE USER INTERFACE

The Convergence Page
This page provides entries which control convergence iteration limits and similar, including setting
the algorithm for initial dc operating point computation.

The Devices Page
The Devices page provides some settings which affect particular device types or models.

The Temperature Page
The two global temperature parameters can be set from this page.

The Parser Page
This page provides controls which affect parsing of circuit descriptions.

3.10.11 Command Options Panel

The Command Options panel is obtained from the Commands button in the Tools menu of the
Tool Control window. The panel can control the values of internal variables used to define behavior
of WRspice commands. These variables can also be set with the set command, though the panel may
provide a more convenient interface.

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

The panel is organized into multiple pages, with each page containing the variables in a particular
category. These will be listed below.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

The General Page
This page contains entries for variables that are general in nature, affecting more than one com-
mand.

The aspice Page
This page contains variables that apply to the aspice command, which initiates asynchronous
WRspice runs.

The check Page
This page applies to the check command, which initiates Monte Carlo and operating range analysis.

The diff Page
The entries in this page affect the diff command, which compares simulation output data.

3.10. THE TOOLS MENU TOOLS AND PANELS 187

The edit Page
This page applies to the edit command and related, which edit circuit input for WRspice.

The fourier Page
The variables set by entries in this page affect the fourier command, and other commands which
perform Fourier analysis.

The help Page
These entries apply to the help system.

The print Page
This page provides entries which apply to the print command. The print command is used to
print simulation results or other vector data.

The rawfile Page
These entries apply to the rawfile command, and plot data output in general.

The rspice Page
This page contains entries which apply to the rspice command, which initiates WRspice runs on
a remote system.

The source Page
This page contains entries which apply to the source command, which is used (perhaps implicitly)
to load circuit files for simulation.

The write Page
These entries apply to the write command, which is used to save simulation data to a file.

3.10.12 The Runops Tool

This panel is available from the Runops button in the Tools menu of the Tool Control window. It
provides a listing of the “runops” (i.e., traces, breakpoints, interactive plots) currently in effect. These
runops are set with the save, trace, iplot, measure, and stop commands.

A runop can be made inactive by clicking on the text in the list, in which case an ‘I’ appears in the
first column. Click on the text a second time to restore activation. Inactive runops are ignored during
simulation. The following buttons are available:

Help
Bring up help on this panel.

Delete Inactive
Delete the runops selected as inactive, i.e., those listed with “I” in the first column.

Dismiss
Remove the Runops Tool from the screen.

3.10.13 Debug Options

The Debug Options panel is obtained from the Debug button in the Tools menu of the Tool Control
window. The panel can control the values of internal variables used to enable extra printing and tracing,
used when trying to diagnose problems. These variables can also be set with the set command, though
the panel may provide a more convenient interface.

188 CHAPTER 3. THE WRSPICE USER INTERFACE

Pressing the Help button pops up a window containing a listing of the variables which can be set
with the panel. Clicking on a word in the listing will bring up the help viewer with a description of that
variable.

Each variable has its own “box” in the panel. This box contains a Set button, and optionally a Def
button and a text input area. The text input area can take several forms, depending on the type of
variable: string, integer, or real. Boolean variables have only the Set button. Text can be entered into
the area, or in some cases the up/down arrows to the right of the text area can be clicked to adjust the
text.

When the Set button is active, the variable is set to the value shown in the text area (if any), and the
text area is frozen, i.e., can’t be edited. The text area can be changed only with the Set button inactive,
in which case the value in the text area is arbitrary. The value is only known to WRspice when the Set
button is active, in which case the variable should appear in the listing brought up by the Variables
button in the Tools menu in the Tool Control window.

The Def button will enter the default value for the variable into the text area. This button becomes
active if the text area is modified.

3.11 The Plot Panel

This panel displays and controls aspects of plots generated from a simulation with the plot command.
The plot window contains a row of buttons on the right side. The button presence is determined by the
nature of the data plotted, as not all data support all features. The buttons that may be present are
listed below.

Dismiss
Remove the plot from the screen.

Help
Bring up the help viewer with pertinent information.

Redraw
Redraw the graph. This would be necessary to see new colors if the colors are changed, with the
Colors pop-up from the Tools menu of the Tool Control window.

Print
Bring up the printer control panel which controls hardcopy generation. The resulting hardcopy
data from the plot can be sent to a printer or saved in a file.

Save Plot
The will save the plot data in a rawfile or Common Simulation Data Format (CSDF) file. Either
file format can be read in with the load command to regenerate the plot. See the description of
the write command (4.5.12) for information about the formats, and how they can be specified.
The user is prompted for a name for the file.

Save Print
This will save the plot data in a file, in the same format as output from the print command. The
user is prompted for a name for the file.

Points
If this button is active, the data points are marked with a glyph. This is mutually exclusive with
the Comb button.

3.11. THE PLOT PANEL 189

Comb
If this button, which is mutually exclusive with the Points button, is active, the data will be
presented as a histogram. If neither of Points or Comb is selected, a (possibly interpolated) line
drawing connecting the points will be presented.

Log X
If the data are consistent with a logarithmic scale of the x-axis, this button will appear. When
active, a log scale will be used on the x-axis.

Log Y
If the data are consistent with a logarithmic scale of the y-axis, this button will appear. When
active, a log scale will be used on the y-axis. Note that all traces must be consistent with a log
scale, and all traces will use a log scale if this button is active.

Marker
When active, a marker will be attached to the cursor, and the scale factors of the plot will be
replaced with the current position of the marker relative to the data. This is useful for actually
obtaining numerical data from the plot. If button 1 is clicked, a reference mark will be left behind,
and the readout will be relative to the values at the reference. Clicking with button 2 will remove
the reference.

When using the marker in a polar or Smith plot, the display indicates the real, imaginary, radius,
and angle in degrees of the current marker position. The radius and angle are shown in the lower
left corner of the plot window. In Smith plots, a family of real and imaginary values are shown,
corresponding to a set of values usually displayed along the x axis. For the imaginary contours, the
values correspond to the values printed in left to right order. If mouse button three is used to zoom
into a section of the Smith plot such that the x axis is invisible, the values corresponding to the
displayed real contours are listed along the top of the plot window. These numbers correspond to
the displayed real contours in left to right order. They also correspond to the imaginary contours,
however depending on the location in the Smith chart, not all imaginary contours, or additional
contours, may be visible. Ambiguity can be resolved through use of the marker.

Separate
When active, each trace will be assigned a portion of the overall vertical plot area, and a separate
scale. The traces will be scaled so as to not overlap. Otherwise, the entire vertical area is used for
each trace. The button will appear if there is more than one trace in the plot.

Single, Group
In the most general case, two buttons in a “radio group” control the y-axis scales of the traces.
These buttons are labeled Single and Group. If neither button is active, each trace will have
an independent “best fit” y scale. If Single is active, all traces will be plotted on the same “best
fit” y scale. If Group is active, the traces are scaled according to their data type. The types are
voltage, current, and other. Each group will have a separate “best fit” scale. If the trace is from a
node voltage, then it will have type voltage, however functions of voltages will probably have type
other. This is similarly true for currents.

The Single and Group buttons are prevented from being active at the same time. If there is only
one trace, or the traces are all of the same type, the Group button will not appear. If there is
only one trace, then the Single button will also not appear.

3.11.1 Zooming in

If button 3 is pressed and held while pointing at the graph, an outline box is shown, which follows the
cursor, anchored at the location pointed to. Releasing button 3 will create a new plot of the area in the

190 CHAPTER 3. THE WRSPICE USER INTERFACE

box. Pressing Ctrl-button 1 is equivalent to button 3 for this operation.

3.11.2 Text String Selection

Text that appears in plots will use a font that can be changed from the font selection panel obtained
from the Fonts button in the Tools menu of the Tool Control window. This is the Fixed Pitch
Drawing Window Font in the menu. This font can also be changed with the setfont command.

Most of the text strings in plot windows can be edited, and persistent text labels can be added. The
possible manipulations are described below.

A string must be selected before it can be edited or otherwise altered. A string can be selected by
clicking on it with the left mouse button (button 1). The selection is indicated by the appearance of a
thick color1 (default black) bar to the left of the string, and a thin bar to the right of the string. At
most one string can be selected at a time.

A string can be deselected by clicking in the plot window away from any string. Clicking on another
string will change the current selection to that string.

A drag can be initiated by pressing and holding button 1 over the selected string, and moving the
mouse pointer. A ghost outline of the string will be attached to the mouse pointer. When the button
is released, the string will be moved to the release location. If the Shift key is pressed while the mouse
button is released, the string will be copied to the new location. Strings can be copied to other plot
windows using this drag and drop technique, but the Shift key is ignored in this case.

GTK release only
While dragging the string, the left and right arrow keys cycle through left, center, and right justification
of the string. The string outline box attached to the mouse pointer will shift to indicate the justification.

Strings have a termination property. When selected, the color of the right side indicator bar will be
color1 (default black) if terminated, color2 (default red) if not terminated. When the selected string
is not terminated, it can be edited. Pressing the Backspace key (Delete key in Apple) will cause a
selected terminated string to become non-terminated. Pressing the Enter key will terminate a selected
non-terminated string.

When the selected string is terminated, as indicated by a color1 (default black) vertical bar on the
right side:

• Pressing the Delete key will erase the string. There is no undo/redo so be careful.

• The left and right arrow keys will cycle the current selection to other strings in the plot that can
be modified.

• The up and down arrow keys cycle through the various available colors, recoloring the selected
string. These are the same colorN colors used for plot traces. To change the color of the title, for
example, one would click on the title string, then press the up or down arrow keys until the title
color is satisfactory.

• The selected string can be dragged to a new location, or copied to a new location or to a different
plot window.

With the selected string not terminated, an editing mode is active. A vertical line cursor may be
visible within the word. This is rendered as color2 (default limegreen). If not visible, it is logically off
the right side of the string. Pressing Backspace removes the character to the left of the cursor, and

3.11. THE PLOT PANEL 191

moves the cursor left by one character. With the cursor invisible, Backspace removes the rightmost
character in the string. The cursor is moved with the left and right arrow keys. Characters typed on the
keyboard are inserted into the string to the right of the cursor, advancing the cursor. The Delete key
will delete the character to the right of the cursor. It will have no effect in editing mode if the cursor is
not visible.

QT release only
When the cursor is at the beginning or end of the selected string, the left and right arrow keys in the
direction of impeded cursor movement will instead cycle the justification used when the string is moved
or copied between left, center, and right. This will be seen in the text image used during drag/drop.
The present justification is shown by the marks that appear just below the selected text.

If all of the characters are deleted, then the string is deleted. When all characters have been entered,
pressing Enter terminates the string and exits the editing mode. Note that presently there is no
undo/redo capability.

With no selection, or if the selection is terminated, typing characters into the plot window will start
a new string at the mouse cursor location, which becomes the new selection. Terminate the new string
by pressing Enter.

The strings, as modified or added, will appear in hard-copies generated from the Print button in the
plot window. If a new plot is created by using button 3 to zoom in, the child plot will inherit the text
strings of the parent plot. However, if the plot is saved to disk with the Save Plot button, the saved
strings will revert to the original strings.

3.11.3 Trace Drag and Drop

In plots, the traces can be moved by dragging with mouse button 1, either within a plot or between plot
windows. Thus, the order of the traces can be changed. Traces can be “grabbed” by pressing button
1 near the trace legend, but not over the legend text itself. A square wave marker is attached to the
pointer when a trace is being dragged.

Traces can be dropped within the legend area of another trace, in which case the dragged trace
occupies the drop trace location, and the drop trace and below are shifted down. Traces can be dropped
in the legend area but below all existing legends to move a trace to the end.

Traces can also be dropped on the file cabinet icon in the upper left corner of the plot window. This
will remove the dragged trace from the display, if the trace is from the same plot window as the icon. If
the trace is from a different plot window, a copy of the trace is added to the icon storage. Traces that
have been dragged into the file cabinet can be dragged out again in first-in last-out order, and can be
dropped among the existing trace legends to make them visible again.

Dragging trace data between plots is an an easy way to see differences between simulation runs. The
trace data are copied and interpolated to the new scale. If the new scale is not compatible, the operation
will fail.

3.11.4 Multidimensional Traces

When a plot window is displaying multidimensional data, the dimension map icon will appear in the
upper left corner of the plot window. Clicking on this icon will toggle display of the dimension map.
The dimension map allows the user to display only chosen dimensions of the traces.

Consider the plot produced by

192 CHAPTER 3. THE WRSPICE USER INTERFACE

set value1 = temp

loop -50 125 25 dc vds 0.0 1.2 0.02 vgs 0.2 1.2 0.2

The loop command produces a three dimensional plot, with dimensions { 8, 6, 61 }. When plotting
i(vds), the display would contain 48 traces, representing id vs. vds for each vgs and temperature value.

The visibility of these traces is set by the columns of clickable dimension selector indices shown in the
dimension map. Initially, the traces for all dimensions are shown. Clicking anywhere in the dimension
list with the center mouse button, or equivalently with the left (or only) mouse button while pressing
Shift, will hide the traces for all dimensions. Clicking anywhere in the dimension list with the right
mouse button, or equivalently with the left (or only) mouse button while pressing Ctrl, will show the
traces for all dimensions. Clicking or dragging over the entries with the left mouse button will toggle
display of the corresponding traces.

In the present case the dimension map contains two columns: the left column contains eight numbers
0–7, and the right columns contains six numbers 0–5. Clicking on these numbers controls the visibility
per dimension, i.e., clicking in the left column would display/suppress all traces for a given temperature,
clicking in the right column will display/suppress traces corresponding to a vgs value. Multiple entries
in the same column can be toggled by dragging the mouse pointer over them.

This dimensional partitioning would apply for any number of dimensions. If a column contains too
many dimensions to list completely, a label “more” will exist at the bottom of the listing. Clicking on
this label will cycle through all of the dimensions, in the columns that require it.

If the plot is displaying a single multidimensional variable, then each least dimension is displayed in
a separate color. The numbers in the rightmost column of the dimension map will use the same colors.
In other columns, and in the rightmost column if more than one variable is being plotted, the indices
use a uniform color to indicate that the dimension is shown, and in all cases black indicates a dimension
that is not being shown.

The dimensions shown can also be controlled by mplot windows from the mplot command. These
are the windows generally used to display results from operating range and Monte Carlo analysis. The
mplot display consists of an array of pass/fail indication cells, one for each trial. These can be selected
or deselected by clicking on them.

An mplot window is always associated with an internal plot structure, as listed with the Plots tool.
The plot structure may also contain multidimensional vectors, for example if one uses the “-k”” option
to the check command, all trial data will be saved.

If an mplot window with selections is present, and the plot command is used to plot a multidimen-
sional vector from the same internal plot structure as the mplot, then only the dimensions corresponding
to the selected trials will be shown on the plot window.

In this plot window, a “flat” dimension map will be used. This is a single column, with length equal
to the product of the “real” dimensions. The visibility of each flat dimension can be toggled with the
map entries as usual. The mplot selections have no effect on a plot window once it is displayed, but
will initialize new plot windows to 1) enforce a flat dimension mapping, and 2) set the initial states of
the flat map. After changing the mplot selections, one must use the plot command again to see the
revised dimensions, or alternatively one can note the numbers of the mplot cells, and manipulate the
same numbers in the dimensions map of the first plot, to see the new data.

If one has a plot structure containing multidimensional vectors from any source, such as from the
loop commnd, one can still use the mplot capability. Giving the command

mplot vector

3.12. THE MPLOT PANEL 193

for any multidimensional vector will produce an mplot window. The number of mplot cells will equal
the number of flat dimensions in the vector. The pass/fail indication means nothing in this case, all cells
display “fail”. One can select the dimension cells in the mplot, which will affect subsequent plots from
the plot command of any vector in the same internal plot structure, as described above. The vector
given to the mplot command can be any vector from the plot, it is used for dimension counting only.

In older WRspice releases, the upper dimensions were represented as “flat”, so that in the plot there
would be a single column of numbers (0–47 in our original example above, six vgs values times eight
temperatures), and clicking on these numbers would display/suppress the corresponding trace.

3.11.5 Scale Icons

The plot windows contain icons for changing the scales. These are triangles; the x-axis icons are in the
lower left corner, and the y-axis icons are arrayed along the right edge. Clicking on one of these icons
has the following effects:

right or up
button 1 move the scale interval to the right or up
button 2 or Shift–button 1 extend the right or top scale factor to the right or up
button 3 or Ctrl–button 1 contract the right or top scale factor to the left or down

left or down
button 1 move the scale interval to the left or down
button 2 or Shift–button 1 extend the left or bottom scale factor to the left or down
button 3 or Ctrl–button 1 contract the left or bottom scale factor to the right or up

3.11.6 Field Width Icons

When a plot is displaying multiple data traces with different scales, a pair of triangular marks similar in
appearance to the scale icons appear near the top-left corner of the plot grid frame. Clicking on these
marks will move the plot grid frame to the left or right, shrinking or expanding the left margin area used
for the trace label text. This can improve the appearance of the plot when trace labels are unusually
long or short.

3.12 The Mplot Panel

This panel appears when plotting results from operating range or Monte Carlo analysis, and is brought
up by the mplot command. The display consists of an array of cells, each of which represent the results
of a single trial. As the results become available, the cells indicate a pass or fail, In operating range
analysis, the cells indicate a particular bias condition according to the axes. In Monte Carlo analysis, the
position of the cells has no significance. In this case the display indicates the number of trials completed.

The panel includes a Help button which brings up a help message, a Redraw button to redraw
the plot if, for example, the plotting colors are redefined, and a Print button for generating hard copy
output of the plot.

Text entered while the pointer is in the mplot window will appear in the plot, and hardcopies. This
text, and other text which appears in the plot, can be edited in the manner of text in plot windows.

The cells in an mplot can be selected/deselected by clicking on them. Clicking with button 1 will
select/deselect that cell. Using button 2, the row containing the cell will be selected or deselected, and

194 CHAPTER 3. THE WRSPICE USER INTERFACE

with button 3 the column will be selected or deselected. A selected cell will be shown with a colored
background, with an index number printed.

Only one mplot window can have selections. Clicking in a new window will deselect all selections in
other mplot windows. See the description of the mplot command in 4.8.5 for information about use of
the selections.

3.13 The Print Control Panel

The Print button in the plot and mplot panels brings up a panel which provides an interface to the
hardcopy drivers. The panel is a highly configurable multi-purpose printer interface used in many parts
of Xic and WRspice. This section describes all of the available features, however many of these features
may not be available, depending upon the context when the panel was invoked. For example, a modified
version of this panel is used for printing text files. In that case, only the Dismiss, To File, and Print
buttons are included.

Under Windows, the Printer field contains the name of a connected printer, initially the system
default printer. The up/down control to the right can be pressed to cycle through the list of available
printers.

Under Unix/Linux, the operating system command used to generate the plot is entered into the
Print Command text area of the Print Control panel. In this string, the characters “%s” will be
replaced with the name of the (temporary) file being printed. If there is no “%s”, the file name will be
added to the end of the string. The string is sent to the operating system to generate the plot.

The temporary file used to hold plot data before it is sent to the printer is not deleted, so it is
recommended that the print command include the option to delete the file when plotting is finished. In
WRspice, the hcopyrmdelay variable can be set to an integer to enable automatic delayed deletion of the
temporary file.

If the To File button is active, then this same field contains the name of the file to receive the plot
data, and nothing is sent to the printer. The user must enter a name or path to the file, which will be
created.

The size and location of the plot on the page can be specified with the Width, Height, Left, and
Top/Bottom text areas. The dimensions are in inches, unless the Metric button is set, in which case
the dimensions are in millimeters. The Width, Height, and offsets are always relative to the page in
portrait orientation (even in landscape mode). The vertical offset is relative to either the top of the
page, or the bottom of the page, depending on the details of the coordinate system used by the driver.
The label is changed from Top to Bottom in the latter case. Thus, different sized pages are supported,
without the driver having to know the exact page size.

The labels for the image height and width in the Print pop-up are actually buttons. When pressed,
the entry area for height/width is grayed, and the auto-height or auto-width feature is activated. Only
one of these modes can be active. In auto-height, the printed height is determined by the given width,
and the aspect ratio of the area printed. Similarly, in auto-width, the width is determined by the given
height and the aspect ratio of the area to print. In auto-height mode, the height will be the minimum
corresponding to the given width. This is particularly useful for printers with roll paper.

The full-page values for many standard paper sizes are selectable in the drop-down Media menu
below the text areas. Selecting a paper size will load the appropriate values into the text areas to produce
a full page image. Under Windows, the “Windows Native” driver requires that the actual paper type
be selected. Otherwise, this merely specifies the default size of the image.

3.13. THE PRINT CONTROL PANEL 195

Portrait or landscape orientation is selectable by the drop-down menu. In portrait mode, the plot
is in the same orientation as seen on-screen, and in landscape mode, the image is rotated 90 degrees.
However, if the Best Fit check box is checked, the image can have either orientation.

When the Best Fit button is active, the driver is allowed to rotate the image 90 degrees if this
improves the fit to the aspect ratio of the plotting area. This supersedes the Portrait/Landscape setting
for the image.

The available output formats are listed in a drop-down menu. Printer resolutions are selectable in
the adjacent resolution menu. Not all drivers support multiple resolutions. Higher resolutions generate
larger files which take more time to process.

When a PostScript line-draw driver is selected, a Line Width numeric entry area appears, which
can be used to set the width of the lines used for drawing. The value given is in points, a point being
1/72 of an inch. Different printers may respond to the specified width in different ways, depending on
physical characteristics. The default, when the line width is set to 0, is to use the narrowest line provided
by the printer. At times, using fatter lines improves visibility for presentation graphics and similar.

Pressing the Print button actually generates the plot or creates the output file. This should be
pressed once the appropriate parameters have been set. A pop-up message appears indicating success
or failure of the operation.

The Dismiss button retires the Print Control panel.

3.13.1 Print Drivers

The printing system for Xic and WRspice provides a number of built-in drivers for producing output
in various file formats. In Windows, an additional “Windows Native” driver uses the operating system
to provide formatting, thus providing support for any graphical printer known to Windows. The data
formats are selected from a drop-down menu available in the Print panel. The name of the currently
selected format is displayed on the panel.

Except for the “Windows Native” driver all formatting is done in the Xic/WRspice printer drivers,
and the result is sent to the printer as ”raw” data. This means that the selected printer must understand
the format. In practice, this means that the printer selected must be a PostScript printer, and one of
the PostScript formats used, or the printer can be an HP Laserjet, and the PCL format used, etc. The
available formats are listed below.

PostScript bitmap
The output is a two-color PostScript bitmap of the plotted area.

PostScript bitmap, encoded
This also produces a two color PostScript bitmap, but uses compression to reduce file size. Some
elderly printers may not support the compression feature.

PostScript bitmap color
This produces a PostScript RGB bitmap of the plotted area. These files can grow quite large, as
three bytes per pixel must be stored.

PostScript bitmap color, encoded
This generates a compressed PostScript RGB bitmap of the plotted area. Due to the file size, this
format should be used in preference to the non-compressing format, unless the local printer does
not support PostScript run length decoding.

196 CHAPTER 3. THE WRSPICE USER INTERFACE

Postscript line draw, mono
This driver produces a two color PostScript graphics list representing the plotted area.

PostScript line draw, color
This produces an RGB color PostScript graphics list representing the plotted area.

HP laser PCL
This driver roduces monochrome output suitable for HP and compatible printers. This typically
processes more quickly than PostScript on these printers.

HPGL line draw, color
This driver produces output in Hewlett-Packard Graphics Language, suitable for a variety of
printers and plotters.

Windows Native (Microsoft Windows versions only)
This selection bypasses the drivers in Xic or WRspice and uses the driver supplied by Windows.
Thus, any graphics printer supported by Windows should work with this driver.

The Windows Native driver should be used when there is no other choice. If the printer has an
oddball or proprietary interface, then the Windows Native driver is the one to use. However, for a
PostScript printer, better results will probably be obtained with one of the built-in drivers. The
same is true if the printer understands PCL, as do most laser printers. This may vary between
printers, so one should experiment and use whatever works best.

In the Unix/Linux versions, selecting a page size from the Media menu will load that size into the
entry areas that control printed image size. This is the only effect, and there is no communication
of actual page size to the printer. This is true as well under Windows, except in the Windows
Native driver. Microsoft’s driver will clip the image to the page size before sending it to the printer,
and will send a message to the printer giving the selected paper size. The printer may not print if
the given paper size is not what is in the machine. Thus, when using this driver, it is necessary to
select the actual paper size in use.

Xfig line draw, color
Xfig is a free (and very nice) drafting program available over the Internet. Through the transfig
program, which should be available from the same place, output can be further converted to a
dozen or so different formats.

Image: jpeg, tiff, png, etc
This driver converts into a multitude of bitmap file formats. This supports file generation only.
The type of file is determined by the extension of the file name provided (the file name should
have one!). The driver can convert to several formats internally, and can convert to many more by
making use of “helper” programs that may be on your system.

Internal formats:

Extension Format

ppm, pnm, pgm Portable Bitmap (netpbm)
ps PostScript
jpg, jpeg JPEG
png PNG
tif, tiff TIFF

Under Microsoft Windows, an additional feature is available. If the word “clipboard” is entered
in the File Name text box, the image will be composed in the Windows clipboard, from where it
can be pasted into other Windows applications. There is no file generated in this case.

On Unix/Linux systems, if you have the open-source ImageMagick or netpbm packages installed
then many more formats are available, including GIF and PDF. These programs are standard

3.14. THE WRSPICE HELP SYSTEM 197

on most Linux distributions. The imsave system, which is used to implement this driver and
otherwise generate image files, employs a special search path to find helper functions (convert
from ImageMagick, the netpbm functions, cjpeg and djpeg). The search path (a colon-delimited
list of directories) can be provided in the environment variable IMSAVE PATH. If not set, the
internal path is “/usr/bin:/usr/local/bin:/usr/X11R6/bin”. The helper function capability is
not available under Microsoft Windows.

The choice between PostScript line draw and bitmap formats is somewhat arbitrary. Although the
data format is radically different, the plots should look substantially the same. A bitmap format typically
takes about the same amount of time to process, independent of the data shown, whereas a line draw
format takes longer with more objects to render. For very simple layouts and all schematics and WRspice

plots, the line draw formats are the better choice, but for most layouts the bitmap format will be more
efficient.

The necessary preamble for Encapsulated Postscript (EPSF-3.0) is included in all PostScript files, so
that they may be included in other documents without modification.

3.14 The WRspice Help System

The WRspice help system provides a cross-referenced rich-text (HTML) database on the commands and
features of the program. The system is entered at the top level by pressing the Help button in the Help
menu of the Tool Control window, or by giving the help command without arguments. If a command
name or other known keyword is given as an argument to the help command, the help system will start
by displaying the help for that topic.

When graphics is not available, the help text will be presented in a text-only format in the console
window. The HTML to ASCII text converter only handles the most common HTML tags, so some
descriptions may look a little strange. The figures (and all images) are not shown, and clickable links
will not be available, other than the “references” and “seealso” topics.

Clicking on a colored HTML reference will bring up the text of the selected topic. If button 1 is
used to click, the text will appear in the same window. If button 2 is used to click, a new help window
containing the selected topic will appear.

Text shown in the viewer that is not part of an image can be selected by dragging with button 1,
and can be pasted into other windows in the usual way.

The viewer can be used to display any text file or URL. In Xic and its derivatives, pressing the
question mark key (“?”) will prompt the user for text to display. The !help command has the same
effect. In WRspice, the text to display can follow the “help” command keyword on the command line.
The name given to the command, or to to the Open command in the viewer’s File menu, can be

• A keyword for an entry in the help database.

• A path to a file on the local machine. The file can be an image in any standard format, or HTML
or plain text.

• An arbitrary URL accessible through the Internet.

If the given name can be resolved, the resulting page will be displayed in the viewer. Also, the HTML
viewer is sensitive as a drop receiver. If a file name or URL is dragged into the viewer and dropped, that
file or URL is read into the viewer, after confirmation.

198 CHAPTER 3. THE WRSPICE USER INTERFACE

The ability to access general URLs should be convenient for accessing information from the Internet
while using Xic and WRspice. The prefix “http://” must be provided with the URL. Thus, for example,

help http://wrcad.com

will bring up the Whiteley Research web page. The links can be followed by clicking in the usual way.
Of course, the computer must have Internet access for web pages to be accessible.

Be advised, however, that the “mozy” HTML viewer used in Unix/Linux releases is HTML-3.2
compliant with only a few HTML-4.0 features implemented, and has no JavaScript, Java or Flash
capabilities. A few years ago, this was sufficient for viewing most web sites, but this is no longer true.
Most sites now rely on css styles, JavaScript, and other features not available in mozy. Most sites are
still readable, to varying degrees, but without correct formatting.

The given URL is not relative to the current page, however if a ‘+’ is given before the URL, it will be
treated as relative. For example, if the viewer is currently displaying http://www.foo.bar, if one enters
“/dir/file.html”, the display will be updated to /dir/file.html on the local machine. If instead
one enters “+/dir/file.html”, the display will be loaded with http://www.foo.bar/dir/file.html.

The HTTP capability imposes some obvious limitations on the string tokens which can be used in
the help database. These keywords should not use the ‘/’ character, or begin with a protocol specifier
such as “http:”.

HTML files on a local machine can be loaded by giving the full path name to the file. Relative
references will be found. HTML files will also be found if they are located in the help path, however
relative references will be found only if the referenced file is also in the help path. If a directory is
referenced rather than a file, a formatted list of the files in the directory is shown.

If a filename passed to the viewer has one of the following extensions, the text is shown verbatim.
The (case insensitive) extensions for plain-text files are “.txt”, “.log”, “.scr”, “.sh”, “.csh”, “.c”,
“.cc”, “.cpp”, “.h”, “.py”, “.tcl”, and “.tk”.

In the WRspice help system, link references to files with a “.cir” extension will be sourced into
WRspice when the link is clicked on. Thus, if one has a circuit file named “mycircuit.cir”, and the
HTML text in the help window contains a reference like

click here

then clicking on the “click here” tag will source mycircuit.cir into WRspice. Similarly, link references
to files with a “.raw” extension will be loaded into WRspice (as a rawfile, i.e. a plot data file) when the
anchor is clicked.

This feature may solve a big problem. How many WRspice users have directories full of old simulation
files, the details about which are long forgotton or buried in some notebook somewhere? Now the
documentation task may be somewhat simpler. While doing simulations, one can maintain a text file
containing notes about the circuit and results, with HTML anchor tags to the actual circuit and data files.
Then, one can load the text file into the WRspice help system (if the notes are in a file “notes.html”,
one just types “help notes.html”), and browse the notes and have one-click access to the original files
and plot data. The notes file need not contain any other HTML constructs besides the anchor references.

Holding Shift while clicking on an anchor that points to a URL which specifies a file on a remote
system will download the file. Downloading makes use of the httpget utility program available in the
Accessories distribution. Installation of the accessories is required for downloading to be available under
Unix/Linux. References to files with extensions “.rpm”, “.gz”, and other common binary file suffixes

3.14. THE WRSPICE HELP SYSTEM 199

will automatically cause downloading rather than viewing. When downloading, the file selection pop-up
will appear, pre-loaded with the file name (or “http return” if the name is not known) in the current
directory. One can change the saved name and the directory of the file to be downloaded. Pressing the
Download button will start downloading. A pop-up will appear that monitors the transfer, which can
be aborted with the Cancel button.

3.14.1 XicTools Update

The help system provides package management capability for the XicTools programs. Giving the keyword

:xt pkgs

(note that the keyword starts with a colon) brings up a page listing the installed and available XicTools

packages, for the current architecture. This requires internet access and http connectivity to wrcad.com.

One can select packages to download and optionally install by clicking on the check boxes. There are
separate buttons to initiate downloading only, and downloading and installation. Package files, and the
latest wr install script if downloading, are downloaded to the current directory. Once installed, these
files can be deleted.

The XicTools package management capability is available from the the internal help system in Xic

and WRspice, and from the stand-alone mozy help browser.

3.14.2 The HTML Viewer

‘ There are three colored buttons in the menu bar of the viewer. The left-facing arrow button (back)
will return to the previous topic shown in the window. The right-facing arrow button (forward) will
advance to the next topic, if the back button has been used. The Stop button will stop HTTP transfers
in progress.

There are four drop-down menus in the menu bar: File, which contains basic commands for loading
and printing, Options, which contains commands for setting display attributes, Bookmarks, which
allows saving frequently used references, and Help which provides documentation.

The File menu contains the following command buttons.

Open
The Open button in the File menu pops up a dialog into which a new keyword, URL, or file name
can be entered.

Open File
The Open File button brings up the File Selection panel. The Ok button (green octagon) on
the File Selection panel will load the selected file into the viewer (the file should be a viewable
file). The file can also be dragged into the viewer from the File Selection panel.

Save
The Save button in the File menu allows the text of the current window to be saved in a file.
This functionality is also provided by the Print button. The saved text is pure ASCII.

Print
The Print button brings up a pop-up which allows the user to send the help text to a printer, or
to a file. The format of the text is set by the drop-down menu, with the current setting indicated

200 CHAPTER 3. THE WRSPICE USER INTERFACE

on the menu button. The choices are PostScript in four fonts (Times, Helvetica, New Century
Schoolbook, and Lucida Bright), HTML, or plain text. If the To File button is active, output
goes to that file, otherwise the command string is executed to send output to a printer. If the
characters “%s” appear in the command string, they are replaced with the temporary print file
name, otherwise the temporary file name is appended to the string.

Reload
The Reload button in the File menu will re-read the input file and redisplay the contents. This
can be useful when writing new help text or HTML files, as it will show changes made to the input
file. However, if you edit a “.hlp” file, the internally cached offsets for the topics below the editing
point will be wrong, and will not display correctly. When developing a help text topic, placing it
in a separate file will avoid this problem. If the displayed object is a web page, the page will be
redisplayed from the disk cache if it is enabled, rather than being downloaded again.

Old Charset
The help viewer uses the UTF-8 character set, which is the current standard international character
set. However, older input sources may assume another character set, such as ISO-8859, that wll
display some characters incorrectly. If the user observes that some characters are missing or wrong
in the display, setting this mode might help.

¡b¿Make FIFO
This controls an obscure but unique feature. When the button is pressed, a named pipe, or FIFO, is
created in the user’s home directory. The name is “mozyfifo”, or if this name is in use, an integer
suffix is added to make the name unique. This is a special type of file, that has the property in
this case that text written to this “file” will be parsed and displayed on the viewer screen.

The feature was developed for use in the stand-alone mozy program, for use as a HTML viewer
for the mutt mail client. If an HTML MIME attachment is “saved” to the FIFO file, it will be
displayed in the viewer.

The FIFO will be destroyed if this toggle button is pressed a second time, or when the help window
exist normally. If the program crashes, the FIFO may be left behind and require manual removal.

Quit
The Quit button in the File menu removes the help window.

The Options menu presents a number of configuration and visual attribute choices to the user.
These are described below.

Save Config
The Save Config button in the Options will save a configuration file in the user’s home direc-
tory, named “.mozyrc”. This file is read whenever a new help window appears, and sets various
parameters, defaults, etc. This provides persistence of the options selected in the Options menu.
Without an existing .mozyrc file, changes are discarded. If the file exists, it will be updated
whenever a help window is dismissed.

Set Proxy
This button will create or manipulate a .wrproxy file in the user’s home directory, which will
provide a transport proxy url for internet access. The proxy will apply in all XicTools programs
when connecting to the internet.

The $HOME/.wrproxy file contains a single line giving the internet url of the proxy server. The
proxy server will be used to relay internet transactions such as checking for program updates,
obtaining data or input files via http or ftp transport, and general internet access.

One can create a .wrproxy file by hand with a text editor. The general form is

3.14. THE WRSPICE HELP SYSTEM 201

http://username:password@proxy.mydomain.com:port

The format must be http, https is not supported at present. The username and password if
needed are specified as shown, using the colon ‘:’ and at-sign ‘@’ as separators. The address can
be a numeric ip quad, or a standard internet address. The port number is appended following a
colon. No white space is allowed within the text.

When the menu button is pressed, a pop-up appears that solicits the proxy address. Here, the
address is the complete token, as described above, but possibly without the port. The port number
can be passed as a trailing number separated by white space, if it is not already given (separated
by a colon). If no port number is given, the system will assume use of port number 80.

If the entry area is empty, any existing .wrproxy file will be moved to “.wrproxy.bak” in the
user’s home directory, effectively disabling use of a proxy. The behavior will be identical if the
address consists of a hyphen ‘-’. An existing .wrproxy.bak file will be overwritten. If the hyphen
is followed by some non-space characters, the .wrproxy file will be moved to a new file where the
given characters serve as a suffix following a period. For example, if -ZZ is given, the new file would
be “.wrproxy.ZZ” in the user’s home directory. An existing file of that name will be overwritten.

If the argument consists of only a plus sign ‘+’, if a file named “,wrproxy.bak” exists in the user’s
home directory, it will be moved to .wrproxy. An existing .wrproxy will be overwritten. If the
‘+’ is followed by some non-space characters, the command will look for a file where the characters
are used as a suffix, as above, and if found the file will be moved to .wrproxy.

Only the .wrproxy file will provide a proxy url, the other files are ignored. The renamed files
provide convenient storage, for quickly switching between proxys, or no proxy.

Otherwise, if an address is given, the first argument must start with “http:” or an error will
result.

Search Database
The Search Database button in the Options menu brings up a dialog which solicits a regular
expression to use as a search key into the help database. The regular expression syntax follows
POSIX 1003.2 extended format (roughly that used by the Unix egrep command). The search is
case-insensitive. When the search is complete, a new display appears, with the database entries
which contained a match listed in the “References” field. The library functions which implement
the regular expression evaluation differ slightly between systems. Further information can be found
in the Unix manual pages for “regex”.

Find Text
The Find Text command enables searching for text in the window. A dialog window appears, into
which a regular expression is entered. Text matching the regular expression, if any, is selected and
scrolled into view, on pressing one of the blue up/down arrow buttons. The down arrow searches
from the text shown at the top of the window to the end of the document, and will highlight the
first match found, and bring it into view if necessary. The up button will search the text starting
with that shown at the bottom of the window to the start of the document, in reverse order.
Similarly, it will highlight and possibly scroll to the first match found. The buttons can be pressed
repeatedly to visit all matches.

Default Colors
The Default Colors button in the Options menu brings up the Default Colors panel, from
which the default colors used in the display may be set. The entries provide defaults which are
used when the document being displayed does not provide alternative values (in a <body> tag).
The defaults apply in general to help text.

The color entries can take a color name, as listed in the listing brought up with the Colors button,
or a numerical RGB entry in any common format. The entries are the following:

202 CHAPTER 3. THE WRSPICE USER INTERFACE

Background color
Set the default background color used.

Background image
If set to a path to an image file in any standard image format, the image is used to tile the
background.

Text color
The default color to use for text.

Link color
The default color to use for un-visited links.

Visited link color
The default color to use for visited links.

Activated link color
The default color to use for a link over which the user presses a mouse button.

Select color
The color to use as the background of selected text. This color can not be set from the
document.

Imagemap border color
The color to use for the border drawn around imagemaps. This color can not be set from the
document.

The Colors button brings up a panel which lists available named colors. Clicking on a name in
this panel selects it, and enters the name into the system clipboard. The “paste” operation can
then be used to enter the color name into an entry area. This may vary between systems, typically
clicking on an entry area with the middle mouse button will paste text from the clipboard.

Pressing the Apply button will apply the new colors to the viewer window. Pressing Dismiss or
otherwise retiring the panel without pressing Apply will discard changes. Changes made will not
be persistent unless the Save Config button has been used to create a .mozyrc file, as mentioned
above.

Set Font
The Set Font button in the Options menu will bring up a font selection pop-up. One can choose
a typeface from among those listed in the left panel. The base size can be selected in the right
panel. There are two separate font families used by the viewer: the normal, proportional-spaced
font, and a fixed-pitch font for preformatted and “typewriter” text. Pressing Apply will set the
currently selected font. The display will be redrawn using the new font.

Cache group
A disk cache of downloaded pages and images is maintained. The cache is located in the user’s
home directory under a subdirectory named “.wr cache”. The cache files are named “wr cacheN””
where N is an integer. A file named “directory” in this directory contains a human-readable listing
of the cache files and the original URLs. The listing consists of a line with internal data, followed
by data for the cache files. Each such line has three columns. The first column indicates the file
number N. The second column is 0 if the wr cacheN file exists and is complete, 1 otherwise. The
third column is the source URL for the file. The number of files saved is limited, defaulting to 64.
The cache only pertains to files obtained through HTTP transfer. This directory may also contain
a file named “cookies” which contains a list of cookies received from web sites.

A page will not be downloaded if it exists in the cache, unless the modification time of the page is
newer than the modification time of the cache file.

3.14. THE WRSPICE HELP SYSTEM 203

The Don’t Cache button in the Options menu will disable caching of downloaded pages and
images.

The Clear Cache button in the Options menu will clear the internal references to the cache.
The files, however, are not cleared.

TheReload Cache button in theOptionsmenu will clear and reload the internal cache references
from the files that presently exist in the cache directory.

The Show Cache button in the Options menu brings up a listing of the URLs in the internal
cache. Clicking on one of the URLs in the listing will load that page or image into the viewer.
This is particularly useful on a system that is not continuously on-line. One can access the pages
while on-line, then read them later, from cache, without being on-line.

No Cookies
Support is provided for Netscape-style cookies. Cookies are small fragments if information stored
by the browser and transmitted to or received from the web site. The No Cookies button in
the Options menu will disable sending and receiving cookies. With cookies, it is possible to
view certain web sites that require registration (for example). It is also possible to view some
commerce sites that require cookies. There is no encryption, so it is not a good idea to send
sensitive information such as credit card numbers.

Images group
Image support is provided for gif, jpeg, png, tiff, xbm, and xpm. Animated gifs are supported as
well. Images found on the local file system are always displayed immediately (unless debugging
options are set in the startup file). The treatment of images that must be downloaded is set by
this button group in the Options menu. One and only one of these choices is active. If No
Images is chosen, images that aren’t local will not be displayed at all. If Sync Images is chosen,
images are downloaded as they are encountered. All downloading will be complete before the page
is displayed. If Delayed Images is chosen, images are downloaded after the page is displayed.
The display will be updated as the images are received. If Progressive Images is chosen, images
are downloaded after the page is displayed, and images are displayed in sections as downloading
progresses.

Anchor group
There are choices as to how anchors (the clickable references) are displayed. If the Anchor Plain
button in the Options menu is selected, anchors will be displayed with standard blue text. If
Anchor Buttons is selected, a button metaphor will be used to display the anchors. If Anchor
Underline is selected, the anchor will consist of underlined blue text. The underlining style can
be changed in the “mozyrc” startup file. One and only one of these three choices is active. In
addition, if Anchor Highlight is selected, the anchors are highlighted when the pointer passes
over them.

Bad HTML Warnings
If the Bad HTML Warnings button in the Options menu is active, messages about incorrect
HTML format are emitted to standard output.

Freeze Animations
If the Freeze Animations button in the Options menu is active, active animations are frozen at
the current frame. New animations will stop after the first frame is shown. This is for users who
find animations distracting.

Log Transactions
If the Log Transactions button in the Options menu is active, the header text emitted and
received during HTTP transactions is printed on the terminal screen. This is for debugging and
hacking.

204 CHAPTER 3. THE WRSPICE USER INTERFACE

The Bookmarks menu contains entries to add and delete entries, plus a list of entries. The entries,
previously added by the user, are help keywords, file names, or URLs that can be accessed by selecting
the entry. Thus, frequently accessed pages can be saved for convenient access. Pressing the Add button
will add the page currently displayed in the viewer to the list. The next time the Bookmarks menu is
displayed, the topic should appear in the menu. To remove a topic, the Delete button is pressed. Then,
the menu is brought up again, and the item to delete is selected. This will remove the item from the
menu. Selecting any of the other items in the menu will display the item in the viewer. The bookmark
entries are saved in a file named “bookmarks” which is located in the same directory containing the
cache files.

3.14.3 The Help Database

The help system uses a fast hashed lookup table containing cached file offsets to the entry text. A
modular database provides flexibility and portability. The files are located by default in the directories
named “help” under the library tree, which is usually rooted at /usr/local/xictools. Xic andWRspice

allow the user to specify the help search path through environment variables and/or startup files. All
of the files with suffix “.hlp” in the directories along the help search path are parsed, and reference
pointers added to the internal list, the first time the help command is issued in the application. In
addition, other types of files, such as image files, which are referenced in the HTML help text may be
present as well.

The “.hlp” files have a simple format allowing users to create and modify them. Each help item is
indexed by a keyword which should be unique in the database. The help text may be in HTML or plain
text format. The format is described in A.2.

3.14.4 Help System Forms Processing

Support is provided for HTML forms. When the form “Submit” button is pressed, a temporary file
is created which contains the form output data. The file consists of key/value pairs in the following
formats:

name=single token
name=”any text”

There is no white space around ‘=’, and text containing white space is double-quoted. Each assignment
is on a separate line.

The action string from the “<form ...>” tag determines how this file is used. The file is a temporary
file, and is deleted immediately after use. If the action string is in the form “action local xxxx”, then
the form data are processed internally.

If the full path for the action string begins with “http://” or “ftp://”, then the form data are
encoded into a query string and sent to the location (though it is likely an error for ftp). Otherwise, the
file will processed locally. This enables the output from the form to be processed by a local shell script
or program, which can be very useful. The command given as the action string is given the file contents
as standard input. The command standard output will appear in the HTML viewer window. Thus, one
can create HTML form front-ends for favorite shell commands and programs.

3.15. THE WRSPICE SHELL 205

3.14.5 Help System Initialization File

When a help window pops up, an initialization file is read, if it exists. This file is named “.mozyrc” and
is sought in the user’s home directory. This file is not created automatically, but is created or overwritten
with the Save Config button in the Options menu of a help window. This need be done once only. It
should be done if a .mozyrc file exists, but it is from a release breanch earlier than 3.3. Once a .mozyrc

file exists, it will be updated when leaving help, reflecting any setting changes.

Incidently “mozy” is the name of the stand-alone version of the HTML viewer/web browser available
on the Whiteley Research web site.

3.15 The WRspice Shell

The command line interpreter inWRspice provides many of the features of a UNIX shell. The interpreter,
in addition to parsing and responding to command text input, is used as an interpreter for control scripts
which control WRspice operation. In addition, circuit descriptions have all shell variables expanded
during the sourcing process. Thus, shell variables can be used to set circuit parameters.

Various features are available in the WRspice shell which are similar to the user interface of the
C-Shell. These include IO redirection, history substitution, aliases, global substitution, and command
completion.

3.15.1 Command Line Editing

The WRspice shell contains a line editor system similar to that found in some UNIX shells. The left
and right arrow keys can be used to move the cursor within the line of text, so that text can be entered
or modified at any point. Pressing the Enter key sends the line of text to WRspice, regardless of where
the cursor is at the time. The up arrow key will load the line of text with the previously entered line
progressively. The down arrow key cycles back through the history text. Ctrl-E places the cursor at the
end of text, Ctrl-A places the cursor at the beginning of the line. Bsp (backspace) erases the character
to the left of the cursor, Delete deletes the character at the cursor, and Ctrl-K will delete from the
cursor to the end of the line. Ctrl-U will delete the entire line.

The following keys perform editing functions:

Ctrl-A Move cursor to beginning of line
Ctrl-D List possible completion matches
Tab Insert completion match, if any
Ctrl-E Move cursor to end of line
Ctrl-H or Bsp Erase character to left of cursor
Ctrl-K Delete to end of line
Ctri-U Delete line
Ctrl-V Insert following character verbatim
Delete Delete character at cursor
Left arrow Move cursor left
Right arrow Move cursor right
Up arrow Back through history list
Down arrow Forward through history list

By default, command line editing is enabled in interactive mode, which means that WRspice takes

206 CHAPTER 3. THE WRSPICE USER INTERFACE

control of the low level functions of the terminal window. Command line editing can be disabled by
setting the noedit variable (with the set command). If the terminal window doesn’t work with the editor,
it may be necessary that “set noedit” appear in theWRspice startup (.wrspiceinit) file. When noedit
is set, the command completion character is Esc, rather than Tab.

Some terminals may not send the expected character or sequence when one of these keys is pressed,
consequently there is a limited key mapping facility available. This mapping is manipulated with the
mapkey command, which allows most of the keys and combinations listed above to be remapped.

Unless WRspice can read the system terminfo/termcap data it needs, it will not allow command
line editing, and a warning message will be issued. This may mean that the TERM or TERMINFO
environment variables are not set or bogus, or the system terminal info database is incomplete or bad.
One can enter alternative terminal names with the -t command line option to potentially fix this
problem. The non-editing mode is like a standard terminal line, where backspace is available, but the
arrow keys and others that move the cursor have no special significance. This is the mode used when
“set noedit” is given.

3.15.2 Command Completion

Tenex-style command, filename, and keyword completion is available. If Ctrl-D (EOF) is typed, a list
of the commands or possible arguments is printed. If Tab (or instead, Esc if command line editing is
disabled) is typed, thenWRspice will try to complete the word being typed based on the choices available,
or if there is more than one possibility, it will complete as much as it can. Command completion knows
about commands, most keywords, variable and vector names, file names, and several other types of
arguments. To get a list of all commands, the user can type Ctrl-D at the WRspice prompt. Note that
for keyboard input, the EOF character, Ctrl-D, does not exit the shell.

Command completion is disabled if the -q option is given on the WRspice command line, or if the
nocc variable is set.

3.15.3 History Substitution

History substitutions, similar to C-shell history substitutions, are also available. History substitutions
are prefixed by the character !, or at the beginning of a line, the character ^. Briefly, the string !!

is replaced by the previous command, the string !prefix is replaced by the last command with that
prefix, the string !?pattern is replaced by the last command containing that pattern, the string !number
is replaced by the event with that number, and ^oldpattern^newpattern is replaced by the previous
command with newpattern substituted for oldpattern.

Additionally, a !string sequence may be followed by a modifier prefixed with a :. This modifier may
select one or more words from the event — :1 selects the first word, :2-5 selects the second through
the fifth word, :$ selects the last word, and :$-0 selects all of the words but reverses their order.

Two other : modifiers are supported: :p will cause the command to be printed but not executed, and
:s^old^new will replace the pattern old with the pattern new . The sequence ^old^new is synonymous
with !!:s^old^new .

All the commands typed by the user are saved on the history list. This may be examined with the
history command, and its maximum length changed by changing the value of the history variable.

3.15. THE WRSPICE SHELL 207

3.15.4 Alias Substitution

Aliases are defined with the alias command, and may be removed with the unalias command.

After history expansion, if the first word on the command line has been defined as an alias, the text
for which it is an alias for is substituted. The alias may contain references to the arguments provided
on the command line, in which case the appropriate arguments are substituted in. If there are no such
references, any arguments given are appended to the end of the alias text.

If a command line starts with a backslash ‘\’ any alias substitution is inhibited.

3.15.5 Global Substitution

The characters ~, {, } have the same effects as they do in the C-Shell, i.e., home directory and alternative
expansion. In alternative expansion, if a token contains a form like “{foo,bar,baz}”, the token is
replicated with each replication containing one of the list items from the curly braces replacing the curly
brace construct. For example, the string “stuff{string1,string2,...stringN}morestuff” is replaced
by the list of words “stuffstring1morestuff stuffstring2morestuff ... stuffstringNmorestuff”.
Curly braces may be nested. A particularly useful example is

plot v({4,5,7})

which is equivalent to

plot v(4) v(5) V(7)

The string ~user (tilde at the beginning of a word) is replaced by the given user’s home directory, or
if the first component of the pathname is simply “~”, the current user’s home directory is understood.

It is possible to use the wildcard characters *, ?, [, and] to match file names, where * denotes 0
or more characters, ? denotes one character, and [...] denotes one of the specified characters, but
these substitutions are performed only if the variable noglob is unset. The pattern [^abc] will match all
characters except a, b, and c. The noglob variable is normally set so that the symbols have their usual
meanings in algebraic expressions. This can be unset with the unset command if command “globbing”
is desired.

3.15.6 Quoting

3.15.6.1 Single and Double Quoting

Words may be quoted with the characters (") (double quote), and (’) (single quote). A word enclosed
by either of these quotes may contain white space. A string enclosed by double quotes may have further
special-character substitutions done on it, but it will be considered a single token by the shell. A number
so quoted is considered a string. A string enclosed by single quotes also has all its special characters
protected. Thus no global expansion (*, ?, etc), variable expansion ($), or history substitution (^, !)
will be done.

208 CHAPTER 3. THE WRSPICE USER INTERFACE

3.15.6.2 Single-Character Quoting

The backslash character performs the usual single character quoting function, i.e., it suppresses the
special-character interpretation of the character that follows, forcing the shell to interpret it literally. In
addition, Ctrl-V also provides a single character quoting function from the keyboard.

3.15.6.3 Back-Quoting, Command Evaluation

A string enclosed by backquotes (‘) is considered a command and is executed, and the output of the
command replaces the text.

In releases 4.1.7 and earlier, the command was simply sent to the operating system, and evaluated
by whatever shell is supervising the user’s login. In release 4.1.8 and later, back-quoted text is evaluated
by the WRspice shell itself, unless the text begins with the keyword “shell” in which case the rest of it
is sent to the operating system for evaluation.

The new approach makes it possible to get the output of internal WRspice commands and functions
into strings, which was not easy (or even possible?) before. However, this may require updating legacy
scripts. For example, lines like

set datestring="‘date‘"

must be changed to

set datestring="‘shell date‘"

3.15.7 I/O Redirection

The input to or output from commands may be changed from the terminal to a file by including IO
redirection on the command line. The possible redirections are:

> file
Send the output of the command into the file. The file is created if it doesn’t exist.

>> file
Append output to the file. The file is created if it doesn’t exist.

>& file
Send both the output and the error messages to the file. The file is created if it doesn’t exist.

>>& file
Append both the output and the error messages to the file. The file is created if it doesn’t exist.

< file
Read input from the file.

Both an input redirection and an output redirection may be present on a command line. No more
than one of each may be present, however. IO redirections must be at the end of the command line.

3.15. THE WRSPICE SHELL 209

3.15.8 Semicolon Termination

More than one command may be put on one line, separated by semicolons ‘;’. The semicolons must be
isolated by white space, however. Thus a multi-command alias might be written

alias word ’command1 ; command2 ; ...’

3.15.9 Variables and Variable Substitution

Shell variables can be set with the set command, or graphically with some of the tools available in the
Tools menu of the Tool Control window. In particular, the Shell button in the Tools menu brings up
a panel which allows those variables which control shell behavior to be set. Both methods of setting and
unsetting the shell variables are equivalent. The Variables tool in the Tools menu provides a listing
of the variables currently set, and is updated dynamically when variables are set and unset. A variable
with any alphanumeric name can be set, though there are quite a number of predefined variable names
which have significance to WRspice.

Shell variables have boolean type if they are defined without assigning any text to them. Otherwise,
the variables take a single text token as their defining value, or a list of text tokens if the assigned value
consists of a list of tokens surrounded by space-separated parentheses. See 4.4.9 for details of the syntax
of the set command.

The values of variables previously set can be accessed in commands, circuit descriptions, or elsewhere
by writing $varname where the value of the variable is to appear. However, if a backslash (\) precedes
$, the variable substitution is not performed. The special variable references $$ and $< are replaced by
the process ID of the program and a line of input which is read from the terminal when the variable is
evaluated, respectively. Also, the notation $?foo evaluates to 1 if the variable foo is defined, 0 otherwise,
and $#foo evaluates to the number of elements in foo if it is a list, 1 if it is a number or string, and 0 if
it is a boolean variable. If foo is a valid variable, and is of type list, then the expression $foo[low -high]
represents a range of elements. The values in the range specification [...] can also be shell variable
references. Either the upper index or the lower may be left out, and the reverse of a list may be obtained
with $foo[len-0].

In releases 4.2.12 and later, the independent token $? is replaced by the current value of the “global
return value”. The global return value is an internal constant accessible from all scripts, and can be
used to pass data between scripts and return data from scripts. It is a global variable so one must make
sure that its value can not be changed unexpectedly before use. The initial value is zero, and it retains
its most recent value indefinitely.

The global return value is set by the string comparison commands strcmp and friends, and can be
set directly with the retval command. This can be called within a script to set a value that the caller
can access after the script returns.

If a variable reference has the form $&word , then word is assumed to be a vector, and its value is
used to satisfy the reference. Vectors consist of one or more real or complex numbers, and are produced,
among other ways, during simulation, in which case they represent simulation output. The shell variable
substitution mechanism allows reference to all of the vectors in scope. The reference can be followed by
range specifiers in square brackets, consistent with the dimensionality and size of the vector. The range
specifier can itself contain shell variable references. The complete information on vectors and vector
expressions is presented in 3.16.

The sequences $?&vector and $#&vector are accepted. The first expands to 1 if vector is defined
with the let command or otherwise, 0 if not. The second expands to the vector length or 0 if vector is

210 CHAPTER 3. THE WRSPICE USER INTERFACE

undefined. This is analogous to $?variable and $#variable for shell variables.

The notation $&(expression) is replaced by the value of the vector expression. A range specification
can be added, for example

echo $&(a+1)[2]

prints the third entry in vector a+1, or 0 if out of range.

When a real number is converted into text during expansion, up to 14 significant figures may be used
to avoid loss of precision. Trailing zeroes are omitted. However, in releases 4.2.4 and earlier, and Spice3,
only six significant digits were used.

When a circuit file is sourced intoWRspice, each line of the circuit description has variable substitution
performed by the shell. Thus, shell variables can be used to define circuit parameters, if within the circuit
description the parameter is specified in the form of a variable reference. The variable substitution in a
SPICE deck allows a concatenation character ‘%’. This is used between a variable and other text, which
would otherwise mask the variable. For example

set value = 10

v1 1 0 pulse(0 $value%m 5p 10p)

expands to

v1 1 0 pulse(0 10m 5p 10p).

Without the %, the pattern match would fail.

3.15.10 Commands and Scripts

Command files are files containing circuit descriptions and/or shell commands. The first line of a
command file is ignored, so must be blank or a comment. This is a result of the source command being
used for both circuit input and command file execution.

A pure script file, i.e., one which does not include a circuit description, consists of an unread “title”
line, followed by a control block. The control block begins with a “.control” line, continues with one
or more executable statements, and terminates with a “.endc” line. In WRspice, an “.exec” line can be
used rather than the .control line, though for backward compatibility with SPICE3, it is recommended
that the traditional .control be used. The executable statements are any statements understandable
to the WRspice shell. Typically, such statements appear just as they would be entered on the command
line if given as text input. A script may be executed by entering its file name (there is an implicit
¡tt¿source¡/tt¿ command) followed by any arguments. Scripts can call other scripts to any depth.

In script text, the ‘#’ character is used to designate a comment. If the ‘#’ is the first character in
a line, or follows white space, the ‘#’, and the preceding white space, and any trailing text, is ignored.
If the ‘#’ is preceded by a backslash, the comment interpretation is explicitly suppressed. The in-line
comment interpretation of ‘#’ applies only in scripts, not from the command line.

Before a script is read, the variables argc and argv are set to the number of words on the command
line, and a list of those words respectively. Their previous values (if any) are pushed onto a stack, and
popped back in place when the script terminates. Thus, within a command script, these predefined
variables are available for use in the script. Otherwise, command files may not be reentrant since there
are no local variables, however, the procedures may explicitly manipulate a stack.

3.15. THE WRSPICE SHELL 211

If a command file contains a circuit discription, then there is a subtle difference between .control

and .exec blocks, either or both of which can be contained in the file. By “file” we actually mean the
totality of text after expanding all .include, .lib and similar statements. The .exec block is executed
before the circuit lines are parsed, and thus before the lines are shell and parameter expanded. Thus,
shell variables set in the .exec block will be used when expanding the circuit. The .control block is
executed after the circuit is parsed, and is therefor the correct place to put analysis and post-processing
commands.

There may be various command scripts installed in the default scripts directory, and the default
sourcepath includes this directory, so one can use these command files (almost) like built-in commands.
In addition to scripts, there is an executable data structure called a “codeblock”. Codeblocks are derived
from scripts, but store the command text internally, so are somewhat more efficient. A codeblock has
the same name (in general) as the script file from which it was derived. See the description of the
codeblock command (in 4.5.1) for more information.

When a line of input is given to WRspice, the first word on the line determines how the line is
processed. The following logic is used to make this determination.

1. If the word is an alias, the line is replaced with the result after alias substitution, and the line is
re-parsed.

2. If the word matches the name of a codeblock in memory, the codeblock is executed.

3. If the word matches the name of an internal command, that command is executed.

4. If the first word is a vector name and is followed by “=”, the line is taken to be an implicit let
command (an assignment), in which case the line is executed as if it were preceded by the word
“let”.

5. If the word matches the name of a file found in one of the directories of the current sourcepath
(search path), an implicit source command is assumed. The line is executed as if it were preceded
by the word “source”. Thus, typing the name of a circuit or script file will source or run the file.

6. If the variable unixcom is set, and the word matches the name of a command known to the operating
system, the line will be sent to the operating system for execution.

If the variable unixcom is set and the operating system is supportive, commands which are not built-
ins are considered shell commands and executed as if the program were a shell. However, using this
option increases the start-up time of the program. Probably WRspice should not be used as a login shell.

WRspice can be used as the “shell” in UNIX shell scripts. In these scripts, the wrspice executable
should be called, using the convention applicable to the user’s UNIX shell. This generally requires that
the first line of the script begin with the characters “#!” and be followed by a space-separated program
invocation string. The remainder of the file should consist of standard WRspice command file lines, the
first line of which (second line of the file) will be ignored.

For example, below is a script that can be saved in a file, which should be made executable (using
the UNIX command “chmod +x filename”). From the UNIX shell, typing the name of the file will run
WRspice on the example file mosamp2.cir and display the plot.

#! wrspice -J

#

.control

source /usr/local/xictools/wrspice/examples/mosamp2.cir

212 CHAPTER 3. THE WRSPICE USER INTERFACE

set noaskquit

echo Press Enter to quit

pause

quit

.endc

Typing the name of the file is the same as executing “wrspice -J file”. WRspice ignores the #!...

line, so that the next line is the “title” line and is also ignored. The -J (JSPICE3 compatibility) means
to not bring up the Tool Control window.

3.15.11 The FIFO

When WRspice starts, it creates a “named pipe”. For other than Windows, this looks to the user like
a file named “wrsfifo” in the user’s home directory, or wrsfifo1, wrsfifo2, etc., if there are multiple
copies of WRspice running. In Windows, the file will instead have a name like “\\.\pipe\wrsfifo”,
which will again vary if there are multiple WRspice processes running.

If a variable named WRSPICE FIFO is found in the environment, the text of this variable is taken as
the base name for the fifo, instead of “wrsfifo”. In Unix/Linux, this name can have a full path. All
components of the path except for the file name must exist. If there is a conflict with an existing entity,
an integer suffix will be added to make the name unique. In Windows, any path given is stripped and
ignored.

A named pipe, or “fifo” has the property that text written to this “file” will be sourced into WRspice,
as if the source command was used on a regular file containing the data written. In particular, if you
are editing a SPICE file with your favorite text editor, you can “save” the text to this file name, and it
gets sourced into WRspice. One should also save to a regular file, or changes may be lost!

When WRspice terminates normally, the fifo will be deleted. However, if WRspice crashes, or is killed
by a signal, the fifo may be left behind, in which case it can be, and should be, deleted by the user. The
fifo can be deleted using the same command as a regular file.

As WRspice is a single-threaded program, it will only be “listening” to the fifo when idle. Exactly
what happens when WRspice is busy when data are written to the fifo is operating system dependent.
Likely, the write will hang until WRspice goes into idle mode, i.e., the simulation or other operation
completes.

3.16 Plots, Vectors and Expressions

3.16.1 Plots and Vectors

WRspice data are in the form of vectors, which are lists of numbers that may represent, e.g., time,
voltage, or any typed or untyped set of values. Vectors of length one are termed “scalars”. During a
simulation, each of the circuit variables, plus a scale vector, are filled with data from the simulation.
For example, in transient analysis, the scale vector (named “time”) will contain the time values where
output is generated, and each node and other circuit variables will have a corresponding vector of the
same length as the scale, containing the values for the scale points.

For each simulation, the resulting vectors are contained in a “plot”, which is a container data structure
for vectors. The plot is given a name (such as “tran2”), and appended to a list containing other

3.16. PLOTS, VECTORS AND EXPRESSIONS 213

previously-generated plots. If an input file contains an .exec block in which vectors are created, a
special “exec” plot will be created to hold these. There is also an internally generated plot named
“constants” which contains various scalars set to constant values. The constants plot can not be
deleted, thus the internal plot list is never empty.

When a plot data file is read into WRspice with the load command, a plot containing vectors is
produced, as if an anaylsis had been run. The new plot becomes the current plot.

When a new plot is created by an analysis or with the load command, it becomes the “current plot”.
The current plot represents a context, where the existing vectors can be accessed by their name, and
new vectors created, for example with the let command, will (by default) be added to the current plot.

The current plot is usually the last plot produced by an analysis run, or the constants plot if no
analyses have been run or rawfiles loaded. The current plot can be changed with the setplot command,
or with the Plots panel from the Tools menu. A vector from the current plot or the constants plot
can be referenced by name. A vector from any plot can be referenced with the notation

plotname.vecname

where plotname is the name of the plot or an alias, and vecname is the vector name.

The default separation character is a period, however this can be changed by setting the variable
plot catchar. If this variable is set to a string consisting of a single punctuation character, that character
becomes the separator. We will continue to use a period in the examples, but be aware that other options
exist.

The plotname can also be a numerical index. Plots are saved in the order created, and as listed
by the setplot command without arguments, and in the Plots tool. The numerical forms below are
equivalent to the Berkeley SPICE3 syntax. These cause trouble in WRspice, however, since they are often
misinterpreted as numbers, and typically require double quoting when used as arguments to commands.
WRspice has an equivalent set of alias keywords which do not require special treatment.

Below is a list of the special alias keywords and constructs which can be given as the plotname, in
addition to the actual name of the plot to reference. Below, N is an unsigned integer.

curplot

This is an alias for the name of the current plot. Use of this keyword may seem redundant, but it
has an important use to be explained below.

-N
Use the N ’th plot back from the current plot. N must be 1 or larger. For example, “-1.v(1)”
will reference v(1) in the previous plot. It is likely that this form must be double-quoted to avoid
misinterpretation as a number.

prev[N]
This is very similar functionally to the form above, but does not cause parse errors. The square
brackets above are not literal, but indicate that the integer is optional. If missing, N=1 is implied.
With N=0, the current plot is indicated (equivalent to curplot).

+N
This goes in the reverse direction, indicating a plot later in the list than the current plot. It is
likely that this form must be double-quoted to avoid misinterpretation as a number.

next[N]
This is very similar functionally to the form above, but does not cause parse errors. The square

214 CHAPTER 3. THE WRSPICE USER INTERFACE

brackets above are not literal, but indicate that the integer is optional. If missing, N=1 is implied.
With N=0, the current plot is indicated (equivalent to curplot).

N
An integer without + or - indicates an absolute index into the plot list, zero-based. The value 0
will always indicate the “constants” plot, which is the first plot created (on program startup). It
is likely that this form must be double-quoted to avoid misinterpretation as a number.

plot[N]
This is very similar functionally to the form above, but does not cause parse errors. The square
brackets above are not literal, but indicate that the integer is optional. If missing, N=0 is implied,
which will specify the constants plot.

When using the plotname.vecname construct, internally the vector and its scale are copied into the
current plot as temporary vectors. If you do “plot -1.v(1)” (for example) it may be surprising to find
that the plot title, etc. are from the current plot, and not the source plot.

When a script is run, the current plot when the script starts is taken as the “context plot” which
will be used to resolve references to vectors in the script, after searching the current plot (if different).
Suppose that we have a script that defines a loop counter vector, then runs a loop that performs an
analysis. If we didn’t save and search the context plot, the loop counter vector would not be accessible
after the analysis is run, since the analysis will set a new current plot.

One should keep this behavior in mind, as it can sometimes cause surprises. For example, consider
the script fragment

run

let foo = i(vds)

plot foo

Now suppose that the context plot contains a vector named “foo”. Instead of creating a new vector
in the current plot, the “foo” vector in the context plot will be used, probably meaning that the scale
in the displayed plot is incorrect.

To enforce the desired behavior, the second line above should be changed to

let curplot.foo = i(vds)

Script authors should be in the habit of using this form when creating vectors, when there is any
possibility of a name clash with the context plot.

3.16.1.1 The constants Plot

The following values are defined in a plot named “constants”. This is the default plot if no rawfile has
been loaded and no simulation has been run. These constants are visible no matter what the current
plot is, but they are overridden by a vector with the same name in the current plot. The constants

plot can not be deleted, and its vectors are read-only. The values are in MKS units.

3.16. PLOTS, VECTORS AND EXPRESSIONS 215

boltz Boltzmann’s constant (1.38062e-23 joules/degree kelvin)
const c The speed of light (2.997925e8 meters/second)
const e The base of natural logarithms (2.71828182844590452353)
echarge The charge on an electron (1.60219e-19 coulombs)
false False value (0)
const j The square root of -1, can be expressed as (0,1)
kelvin Absolute 0 in Centigrade (-273.15 degrees)
no False value (0)
phi0 The flux quantum (Planck’s constant over twice echarge)
phi0 2pi Value of the flux quantum normalized to 2π
pi π (3.14159265358979323846)
planck Planck’s constant (6.62620e-34 joule-seconds)
true Truth value (1)
yes Truth value (1)

3.16.2 Vector Characteristics

Vectors posses a dimensionality. A scalar is a vector of the lowest dimensionality. Most vectors are
one-dimensional lists of numbers. Certain types of analysis produce multidimensional vectors, which
are analogous to arrays. This dimensionality is indicated when the vectors are listed with the display
command or the let command without arguments. Plotting a multidimensional vector will produce a
family of traces. Elements and sub-dimensional vectors are specified with multiple square brackets, with
the bracket on the right having the lowest dimensionality.

For example, one might issue the following command:

.ac dec 10 1Hz 1Mhz dc v1 0 2 .1 v2 4.5 5.5 .25

which will perform an ac analysis with the dc sources v1 and v2 stepped through the ranges 0–2 step .1
for v1, 4.5–5.5 step .25 for v2. The resulting output vectors will have dimensions [5,21,61], i.e., 5 values
for v2, 21 for v1, and 61 for the ac analysis. Typing “plot v(1)” (for example) would plot all 21*5
analyses on the same scale (this would not be too useful). However, one can plot subranges by entering,
for example, “plot v(1)[1]” which would plot the results for v2 = 4.75, or “plot v(1)[1][2]” for v2
= 4.75, v1 = .2, etc. Range specifications also work, for example “plot v(1)[2][0,2]” plots the values
for v2 = 5, v1 = 0, .1, .2. The memory space required to hold the multidimensional plot data can grow
quite large, so one should be reasonable.

Vectors have an indexing that begins with 0, and an index, or range of indices, can be specified
in square brackets following the vector name, for each dimension. The notation [lower,upper], where
lower and upper are integers, denotes the range of elements between lower and upper. The notation
[num] denotes the num’th element. If upper is less than lower, the order of the elements is reversed.

Vectors typically have defined units. The units are carried through a computation, and simplified
when the result is generated. Presently, the system can not handle fractional powers. The units of a
vector can be set with the settype command.

3.16.3 Vector Creation and Assignment

Vectors can be created with the let and compose commands.

216 CHAPTER 3. THE WRSPICE USER INTERFACE

Using the let command, a vector may be assigned the values of a vector already defined, or a floating-
point number (a real scalar), or a comma separated pair of numbers (a complex scalar). A number may
be written in any format acceptable to SPICE2, such as 14.6MEG or -1.231e-4. Note that one can use
either scientific notation or one of the abbreviations like MEG or G (case insensitive), but not both. As
with SPICE2, a number may have trailing alphabetic characters after it, which can indicate the units.
If the vector being assigned to does not exist, it will be created.

The compose command can also be used to create vectors, and is useful for creating vectors with
multiple points that follow some relationship, such as linear or logarithmic.

Newly-created vectors are added to the current plot, unless a plotname field is specified as part of
the vector reference name. For example, entering

let constants.myvec = 2

will assign a vector myvec in the constants plot the value 2.0. Entering

let myvec = constants.const e

will assign a vector myvec in the current plot the values of the vector const e in the constants plot.
The let command without arguments will print a listing of vectors in the current plot.

Recent WRspice releases also allow vectors to be assigned a value with the set command. The syntax
in this case is

set &vector = value

which is equivalent to

let vector = value

When entering this form from the WRspice command line, the ‘&’ character must be hidden from the
shell, perhaps most conveniently be preceding it with a backslash. The value must be numeric, and a
value must be given, unlike normal usage of the set command which can set a variable as a boolean by
omitting the right side of the assignment.

3.16.4 Analysis Vectors and Access Mapping

The vectors actually produced depend on the type of analysis, but the most common output is the
node voltage. Node voltages are denoted by vectors of the form v(N), where N is a name representing
the node. Although the notation looks like a function call, the construct actually refers to a vector,
and may be used in expressions whenever a vector is syntactically expected. Another common form
is name#branch, which represents the “branch” current through voltage sources and inductors. The
SPICE algorithm adds a term to the matrix for these elements, which represents the current flowing
through the device. As there is a specific matrix element for the current for these devices, the value is
available as an output variable. The name is the name of the voltage source or inductor.

For compatibility with SPICE2, several mappings and equivalences are provided. When referencing
node voltages, one can reference a node by name (e.g. v(6) or v(input)). These are string names of the
produced vectors. In addition, one can use the SPICE2 form for the argument inside the parentheses

3.16. PLOTS, VECTORS AND EXPRESSIONS 217

of the node voltage construct. This is (node1 [,node2]), where if both node1 and node2 are given,
the vector represents the voltage difference between nodes node1 and node2. For example, v(1,2) is
equivalent to v(1) - v(2). The v() construct in the case of two arguments is like a function.

Additionally, the construct i(name) is internally mapped to name#branch, and the two notations
can be used interchangeably. The name is the name of a voltage source or inductor.

Additional mappings familiar from SPICE2 are also recognized in WRspice. In addition to v and i,
the following are recognized for node voltages. These are most useful for complex vectors as are produced
in ac analysis.

vm

This computes the magnitude, by mapping to the mag vector function. The following forms are
equivalent:

vm(a) = mag(v(a))

vm(a,b) = mag(v(a) - v(b))

vp

This computes the phase, by mapping to the ph vector function. The following forms are equivalent:

vp(a) = ph(v(a))

vp(a,b) = ph(v(a) - v(b))

vr

This computes the real part, by mapping to the re vector function. The following forms are
equivalent:

vr(a) = re(v(a))

vr(a,b) = re(v(a) - v(b))

vi

This computes the imaginary part, by mapping to the im vector function. The following forms are
equivalent:

vi(a) = im(v(a))

vi(a,b) = im(v(a) - v(b))

vdb

This computes the decibel value (20*log10), by mapping to the db vector function. The following
forms are equivalent:

vdb(a) = db(v(a))

vdb(a,b) = db(v(a) - v(b))

Similar constructs are available for the current vectors of voltage sources and inductors. In these
constructs, the single argument is always the name of a “branch” device, either a voltage source or
inductor.

img

This computes the magnitude, by mapping to the mag vector function. The following forms are
equivalent:

img(vx) = mag(vx#branch)

218 CHAPTER 3. THE WRSPICE USER INTERFACE

Note that this name differs from the SPICE2 “im” to avoid a clash with the im() vector function
in WRspice.

ip

This computes the phase, by mapping to the ph vector function. The following forms are equivalent:

ip(vx) = ph(vx#branch)

ir

This computes the real part, by mapping to the re vector function. The following forms are
equivalent:

ir(vx) = re(vx#branch)

ii

This computes the imaginary part, by mapping to the im vector function. The following forms are
equivalent:

ii(vx) = im(vx#branch)

idb

This computes the decibel value (20*log10), by mapping to the db vector function. The following
forms are equivalent:

vdb(vx) = db(vx#branch)

There is one additional mapping available, p(devname), which returns the instantaneous power of a
device devname. This can be applied to any device that has a readable “p” parameter defined, which
is true for most devices. The show command can be used to list available device parameters. This
is particularly useful for sources, as it returns the power supplied to the circuit. For non-dissipative
elements, it represents the stored power.

This is a mapping to the special vector @devname[p] (see below). Thus, the special vector data
must be available for this form to be used successfully, meaning that in analysis, as with other special
vectors representing device parameters, the vector must be explicitly saved with the save command
or in a .save line. However, if this form is used in a .measure line, the needed vector will be saved
automatically. This is also true if the form is used in one of the “runops” as listed with the status
command.

3.16.5 Special Vectors

Most simply, vector names can be any alphanumeric word that starts with an alpha character. Vector
names may also be of the form string(something), if the string is not the name of a built-in or user-defined
function.

There is one vector named “temper” that is always available, though not saved in any plot. This is
the current temperature assumed by the program, in Celsius.

In WRspice, a vector name beginning with the ‘@’ symbol is a “special” vector, and is considered a
reference to an internal device or model parameter, or a circuit parameter. If the variable spec catchar
is set to a string consisting of a single punctuation character, then that character will identify a special
vector, instead of ‘@’. The descriptions below use ‘@’, but in actuality this character can be respecified
by the user.

3.16. PLOTS, VECTORS AND EXPRESSIONS 219

If the vector name is of the form @name[param], this denotes the parameter param of the device or
model named name. Of course, there must be a device or model with that name defined for the current
circuit and param must be a valid parameter name for that device or model type. See the documentation
or use the show command for a listing of the parameters available.

Special vectors should be saved with the save command or on a .save line during analysis if a value
is required at each analysis point. Otherwise, only the current value is available, which is the value used
at the final analysis point after analysis completes.

The special vectors that correspond to device and model parameters in the current circuit can be
assigned. When a special vector is assigned, the effect is similar to the alter command. Actual assign-
ment is deferred until the next analysis run of the current circuit, and assignment applies to that run
only. The assignment must be repeated if needed for additional runs.

Other special vectors are read-only.

If the vector name is of the form @param, this refers to a parameter of the circuit with the name
param.

These are resolved in the following way. First, a match to one of the “official” options is sought.
These are the options listed in the table in the options description (2.4.4.1). Any of these will match,
with the exceptions in the sub-tables listing batch mode and obsolete options.

If this fails, parameters defined in the current circuit are searched for a matching name. These are
defined in .param lines.

Finally, the rusage command (see 4.9.6) keywords are searched. Any of these keywords will match.

3.16.6 Vector Expressions

An expression is an algebraic combination of already defined vectors, scalars (a scalar is a vector of
length 1), constants, operators and functions. Some examples of expressions are:

cos(time) + db(v(3))

sin(cos(log(10)))

TIME*rnd(v(9)) - 15*cos(vin#branch)^7.9e5

not ((ac3.freq[32] & tran1.time[10]) gt 3)

One should note that there are two math subsystems in WRspice, the vector system described here,
and a second system for processing equations found in device descriptions during simulation (see 2.15.1).
Although the expressions are syntactically similar, there are important differences that must be taken
into account, and one should refer to the appropriate documentation for the type of expression.

Vector expressions can also contain calls to the built-in “tran” functions ordinarily used in volt-
age/current source specifications in transient analysis. These are the pulse, pwl, etc. functions de-
scribed in 2.15.3. If assigned to a vector, the vector will have a length equal to the current scale (e.g.,
the time values of the last transient analysis plot), and be filled in with values just as if the analysis was
run with the given source specification. For example

(run transient analysis: tran .1n 10n)
let a = pulse(0 1 1n 1n)

Vector a will have length 101 and contain the pulse values.

220 CHAPTER 3. THE WRSPICE USER INTERFACE

There are three such functions, sin, exp, and gauss, that have the same names as math functions.
The math functions always return data of the same length as the argument(s), and take 1 argument for
sin, exp and 2 for gauss. When one of these names is encountered in an expression, WRspice counts
the arguments. If the number of arguments is 1 for sin/exp or 1 or 2 for gauss, the math function is
called, otherwise the tran function is called. It may be necessary to give the gauss function a phony
additional argument to force calling the tran function.

Vectors can be evaluated by the shell parser by adding the prefix $& to the vector’s name. This is
useful, for example, when the value of a vector needs to be passed to the shell’s echo command, or
in circuit description files where vectors are to be evaluated by the shell as the file is read. Similar
to the shell constructs, $?&word expands to 1 if word is a defined vector, 0 otherwise. Also $#&word
expands to the length of word if word is a defined vector, or 0 if not found. Additionally, the notation
$&(vector expression) is replaced by the value of the vector expression. A range specification can be
added, for example echo $&(a+1)[2] prints the third entry in a+1, or 0 if out of range. If white space
exists in the $&(...) construct, it probably should be quoted. Finally, the shell recognizes the construct
$&v($something) as a reference to a SPICE node voltage, so that one can index node voltages as echo
$&v($&i), for example. A range specification can be added, which can contain shell variables. This is
true for both vectors ($& prefix) and variables.

There is a special case when $& is used with a special vector (see 3.16.5) that is referencing a string-
type parameter. Since one can have

.param foo="hello there"

$&@foo will expand to “hello there” in this case. Other references to @foo will return 0.0.

3.16.7 Operators in Expressions

The operations available in vector expressions are listed below. They all take two operands, except for
unary minus and logical negation.

addition operator: +
Add the two operands.

subtraction amd negation operator: −
Evaluates to the first argument minus the second, and also may be used as unary minus.

multiply operator: ∗
Multiply the two operands.

divide operator: /
The first operand divided by the second.

modulo operator: %
This operates in the manner of the C fmod function, returning the remainder. That is, for x%y,
the value of x−i∗y is returned for some integer i such that the result has the same sign of x and
magnitude less than the magnitude of y. An error is indicated if y is zero. If x or y is complex,
the magnitudes are used in the division.

power operator: ˆ or ∗∗
Evaluates to the first operand raised to the power of the second.

3.16. PLOTS, VECTORS AND EXPRESSIONS 221

and operator: & or && or and
Evaluates to 1 if both operands are non-zero, 0 otherwise.

or operator: | or || or or
Evaluates to 1 if either of the two operands is nonzero, 0 otherwise.

not operator: ˜ or ! or not
Evaluates to 1 if the operand is 0, 0 otherwise.

greater-than operator: > or gt
Evaluates to 1 if the first operand is greater than the second, 0 otherwise.

greater-than-or-equal operator: >= or ge
Evaluates to 1 if the first operand is greater than or equal to the second, 0 otherwise.

less-than operator: < or lt
Evaluates to 1 if the first argument is less than the second, 0 otherwise.

less-than-or-equal operator: <= or le
Evaluates to 1 if the first argument is less than or equal to the second, 0 otherwise.

not-equal operator: <> or ! = or ne
Evaluates to 1 if the two operands are not equal, 0 otherwise.

equal operator: = or == or eq
Evaluates to 1 if both operands are equal, 0 otherwise.

ternary conditional operator: expr ? expr1 : expr2
If expr evaluates nonzeor (true), the result of the evaluation of expr1 is returned. Otherwise, the
result of evaluating expr2 is returned. For Example:

let v = (a == 2) ? v(1) : v(2)

This will set v to v(1) if vector a is equal to 2, v to v(2) otherwise.

comma operator: ,
The notation a,b refers to the complex number with real part a and imaginary part b. Such a
construction may not be used in the argument list to a macro function, however, since commas
are used to separate the arguments and parentheses may be ignored. The expression a + j(b) is
equivalent. The comma does not behave as an operation (return a value) as it does in C.

The logical operations are & (and), | (or), ˜ (not), and their synonyms. A nonzero operand is
considered “true”. The relational operations are <, >, <=, >=, =, and <> (not equal), and their
synonyms. If used in an algebraic expression they work like they would in C, producing values of 0 or 1.
The synonyms are useful when < and > might be confused with IO redirection (which is almost always).

expression terminator: ;
The expression parser will terminate an expression at a semicolon. This can be used to enforce
tokenization of expression lists, however it will also terminate command parsing if surrounded by
white space.

Vectors may be indexed by value[index] or value[low,high].

The first notation refers to the index ’th element of value. The second notation refers to all of the
elements of value which fall between the high’th and the low ’th element, inclusive. If high is less than

222 CHAPTER 3. THE WRSPICE USER INTERFACE

low, the order of the elements in the result is reversed. Note that a complex index will have the same
effect as using the real part for the lower value and the imaginary part for the upper, since this is the way
the parser reads this expression. Multi-dimensional vectors are referenced as Vec[indN][indN-1]...[ind0],
where each of the indI can be a range, or single value. The range must be within the vector’s spanning
space. If fewer than the vector’s dimensions are specified, the resulting object is a sub-dimensional
vector.

Finally, there is the ran operator: value1 [[value2]] or value[[low,high]].

The first notation refers to all the elements of value1 for which the element of the corresponding scale
equals value2. The second notation refers to all of the elements of value for which the corresponding
elements of the scale fall between high and low, inclusive. If high is less than low, the order of the
elements in the result is reversed.

3.16.8 Math Functions

There are a number of built-in math functions which take and return vectors. Generally, these functions
operate on the supplied vector term-by-term, returning a vector of the same length as that given.

The pre-defined functions available are listed below. In general, all operations and functions will
work on either real or complex values, providing complex data output when necessary.

In addition, there are statistical random number sources, as well as measurement functions exported
by the measure command, and a number of compatibility functions to support HSPICE extensions
available. These are described in sections that follow.

It should be noted that the mathematics subsystem used to evaluate expressions in voltage/current
sources is completely different. In that subsystem, functions take real valued scalars as input. Although
many of the same functions are available in both systems, the correspondence is not absolute.

abs(vector)
Each point of the returned vector is the absolute value of the corresponding point of vector . This
is the same as the mag function.

acos(vector)
Each point of the returned vector is the arc-cosine of the corresponding point of vector . This and
all trig functions operate with radians unless the units variable is set to degrees.

acosh(vector)
Each point of the returned vector is the arc-hyperbolic cosine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

asin(vector)
Each point of the returned vector is the arc-sine of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

asinh(vector)
Each point of the returned vector is the arc-hyperbolic sine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

atan(vector)
Each point of the returned vector is the arc-tangent of the corresponding point of vector . This
and all trig functions operate with radians unless the units variable is set to degrees.

3.16. PLOTS, VECTORS AND EXPRESSIONS 223

atanh(vector)
Each point of the returned vector is the arc-hyperbolic tangent of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

cbrt(vector)
Each point of the returned vector is a cube root of the corresponding point of vector .

ceil(vector)
This function returns the smallest integer greater than or equal to the argument, in the manner
of the C function of the same name. If the argument is complex, the operation is performed on
both components, with the result being complex. This operation is performed at each point in the
given vector.

cos(vector)
Each point of the returned vector is the cosine of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

cosh(vector)
Each point of the returned vector is the hyperbolic cosine of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

db(vector)
Each point of the returned vector is the decibel value (20 * log10(mag)) of the corresponding
point of vector.

deriv(vector)
This calculates the derivative of the given vector, using numeric differentiation by interpolating a
polynomial. However, it may be prone to numerical errors, particularly with iterated differentia-
tion. The implementation only calculates the derivative with respect to the real component of that
vector’s scale. The polynomial degree used for differentiation can be specified with the dpolydegree
variable. If dpolydegree is unset, the value taken is 2 (quadratic). The valid range is 0–7.

erf(vector)
Each point of the real returned vector is the error function of the corresponding real point of vector.
Unlike most of the functions, this function operates only on the real part of a complex argument,
and always returns a real valued result.

erfc(vector)
Each point of the real returned vector is the complementary error function of the corresponding
real point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

exp(vector)
Each point of the returned vector is the exponentiation (ex) of the corresponding point of vector .

fft(vector)
The fft function returns the Fourier transform of vector , using the present scale of vector. The
scale should be linear and monotonic. The length is zero-padded to the next binary power. Only the
real values are considered in the transform, so that the negative frequency terms are the complex
conjugates of the positive frequency terms. The negative frequency terms are not included in the
(complex) vector returned. A scale for the returned vector is also generated and linked to the
returned vector.

floor(vector)
This function returns the largest integer less than or equal to the argument, in the manner of

224 CHAPTER 3. THE WRSPICE USER INTERFACE

the C function of the same name. If the argument is complex, the operation is performed on
both components, with the result being complex. The operation is performed at each point of the
argument.

gamma(vector)
This function returns the gamma value of the real argument (or the real part of a complex argu-
ment), returning real data.

ifft(vector)
The ifft function returns the inverse Fourier transform of vector , using the present scale of vector .
The scale should be linear and monotonically increasing, starting at 0. Negative frequency terms
are assumed to be complex conjugates of the positive frequency terms. The length is zero-padded
to the next binary power. A scale for the returned vector is also generated and linked to the
returned vector. The returned vector is always real.

im(vector)
Each point of the real returned vector is the imaginary part of the corresponding point of the given
vector . This function can also be calld as “imag”.

int(vector)
The returned value is the nearest integer to the argument, in the manner of the C rint function.
If the argument is complex, the operation is performed on each component with the result being
complex. The operation is performed at each point in the argument.

integ(vector)
The returned vector is the (trapezoidal) integral of vector with respect to the vector ’s scale (which
must exist).

interpolate(vector)
This function takes its data and interpolates it onto a grid which is determined by the default
scale of the currently active plot. The degree is determined by the polydegree variable. This is
useful if the argument belongs to a plot which is not the current one. Some restrictions are that
the current scale, the vector ’s scale, and the argument must be real, and that either both scales
must be strictly increasing or strictly decreasing if they differ.

This function is used when operating on vectors from different plots, where the scale may differ.
For example, the x-increment may be different, or the points may correspond to internal time
points from transient analysis rather than the user time points. Without interpolation, operations
are generally term-by-term, padding when necessary. This result is probably not useful if the scales
are different.

For example, the correct way to print the difference between a vector in the current plot and a
vector from another plot with a different scale would be

print v(2) - interpolate(tran2.v(2))

j(vector)
Each point of the returned vector is the corresponding point of vector multiplied by the square
root of -1.

j0(vector)
Each point of the real returned vector is the Bessel order 0 function of the corresponding real point
of vector. Unlike most of the functions, this function operates only on the real part of a complex
argument, and always returns a real valued result.

3.16. PLOTS, VECTORS AND EXPRESSIONS 225

j1(vector)
Each point of the real returned vector is the Bessel order 1 function of the corresponding real point
of vector. Unlike most of the functions, this function operates only on the real part of a complex
argument, and always returns a real valued result.

jn(n, vector)
Each point of the real returned vector is the Bessel order n function of the corresponding real point
of vector, with n the truncated integer value of the imaginary part of vector.

Recall that for most math function, comma argument separators are interpreted as the comma
operator

a,b = (a + j*b)

which resolves to a single complex value. Thus, since scalars are extended to vectors by replicating
the value, on calling this function as, for example, “jn(v,3)” where v is a real vector, the return
will be j3(v) for each element of v.

If vector is real, the effective value of n is 0.

length(vector)
This function returns the scalar length of vector .

ln(vector)
Each point of the returned vector is the natural logarithm of the corresponding point of vector.

log(vector)
Each point of the returned vector is the base-10 logarithm of the corresponding point of vector.

log10(vector)
Each point of the returned vector is the natural logarithm of the corresponding point of vector
(same as ln).

Warning: in releases prior to 3.2.15, the log function returned the base-10 logarithm (as in
Berkeley SPICE3). This was changed in 3.2.15 for compatibility with device simulation models
intended for HSPICE.

mag(vector)
Each point of the real returned vector is the magnitude of the corresponding point of vector.

mean(vector)
This function returns the (scalar) mean value of the elements in the argument.

norm(vector)
Each point of the returned vector is the corresponding point of the given vector multiplied by the
magnitude of the inverse of the largest value in the given vector. The returned vector is therefor
normalized to 1 (i. e, the largest magnitude of any component will be 1).

ph(vector)
Each point of the real returned vector is the phase of the corresponding point of vector, expressed
in radians.

pos(vector)
This function returns a real vector which is 1 if the corresponding element of the argument has a
non-zero real part, and 0 otherwise.

226 CHAPTER 3. THE WRSPICE USER INTERFACE

re(vector)
Each point of the real returned vector is the real part of the corresponding point of vector. The
function can also be called as “real”.

rms(vector)
This function integrates the magnitude-squared of vector over the vector ’s scale (using trapezoidal
integration), divides by the scale range, and returns the square root of this result. If the vector
has no scale, the square root of the sum of the squares of the elements is returned.

sgn(vector)
Each value of the output vector is 1, 0, or -1 according to whether the corresponding value of the
input vector is larger than 0, equal to zero, or less than 0. The vector can be complex or real.

sin(vector)
Each point of the returned vector is the sine of the corresponding point of vector . This and all trig
functions operate with radians unless the units variable is set to degrees.

sinh(vector)
Each point of the returned vector is the hyperbolic sine of the corresponding point of vector . This
and all trig functions operate with radians unless the units variable is set to degrees.

sqrt(vector)
Each point of the returned vector is the square root of the corresponding point of vector.

sum(vector)
This function returns the (scalar) sum of the elements of vector.

tan(vector)
Each point of the returned vector is the tangent of the corresponding point of vector . This and all
trig functions operate with radians unless the units variable is set to degrees.

tanh(vector)
Each point of the returned vector is the hyperbolic tangent of the corresponding point of vector .
This and all trig functions operate with radians unless the units variable is set to degrees.

unitvec(vector)
This function returns a real vector consisting of all 1’s, with length equal to the magnitude of the
first element of the argument.

vector(vector)
This function returns a vector consisting of the integers from 0 up to the magnitude of the first
element of its argument.

y0(vector)
Each point of the real returned vector is the Neumann order 0 function of the corresponding real
point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

y1(vector)
Each point of the real returned vector is the Neumann order 1 function of the corresponding real
point of vector. Unlike most of the functions, this function operates only on the real part of a
complex argument, and always returns a real valued result.

yn(n, vector)
Each point of the real returned vector is the Neumann order n function of the corresponding real
point of vector, with n the truncated integer value of the imaginary part.

3.16. PLOTS, VECTORS AND EXPRESSIONS 227

Recall that for most math function, comma argument separators are interpreted as the comma
operator

a,b = (a + j*b)

which resolves to a single complex value. Thus, since scalars are extended to vectors by replicating
the value, on calling this function as, for example, “yn(v,3)” where v is a real vector, the return
will be y3(v) for each element of v.

If vector is real, the effective value of n is 0.

3.16.9 Statistical Functions

These functions generate random values, in accord with different statistical distribution properties.
Each relies on the seed command to seed the internal random number generator which is common to
all random sources. Each distribution is defined by one or two parameters. For distributions that take
a single parameter, if passed a complex vector, the result will be a complex vector, using separately the
distribution parameters in the real and imaginary parts. For distributions that require two parameters,
the return vector is always real, and the complex vector given will supply the two parameters as the real
and imaginary parts. If a real vector is given, a default value will be used for the second parameter.

Note that it is not likely that one would use different values for different indices of the given vector.
If all indices have the same value, then the return would contain a number of samples from the same
distribution, which is what is almost always needed.

Perhaps most of the time the functions will be called with scalar values. With these and other
functions, bear in mind that the syntactic element expected as an argument is a “single” number, which
can be real or complex. When complex, it has the form “a, b” which looks like two numbers. The
take-away is that any of these functions can be called as func(a), or func(a, b) where a and b are scalars.
The return depends on the function.

The user is expected to know the properties of these distributions and when to apply them. There
is much information about these distributions available on-line, and in Knuth.

beta(vector)
The beta distribution is defined by two positive real values a and b. These are taken term by term
as the real and imaginary parts of vector when complex. When real, the b will use the default
value 1.0.

binomial(vector)
The binomial distribution is defined by a positive real value p and positive integer n. These are
taken term by term as the real and imaginary parts of vector when complex. The imaginary value
is truncated to form the integer. When vector is real, the n will use the default value 1.

chisq(vector)
The chi-square distribution is defined by a positive real degrees-of-freedom value. This is taken
from vector term-by-term. If vector is real, the return is also real. If vector is complex, the return
is also complex, with separate results for the real and imaginary parts, obtained using the real and
imaginary parts of vector.

erlang(vector)
The Erlang distribution is defined by two positive real values k and mean. These are taken term
by term as the real and imaginary parts of vector when complex. When real, the mean will use the
default value 10.0. The return is a real vector of the same length as vector.

228 CHAPTER 3. THE WRSPICE USER INTERFACE

exponential(vector)
The exponential distribution is defined by a positive real mean value. This is taken from vector
term-by-term. If vector is real, the return is also real. If vector is complex, the return is also
complex, with separate results for the real and imaginary parts, obtained using the real and
imaginary parts of vector.

ogauss(vector)
This function returns a real vector which contains normally distributed random values. The stan-
dard deviation and mean are set by the corresponding real and imaginary coefficients of vector
term-by-term, and the mean is zero if vector is real.

poisson(vector)
The Poisson distribution is defined by a positive real mean value. This is taken from vector term-
by-term. If vector is real, the return is also real. If vector is complex, the return is also complex,
with separate results for the real and imaginary parts, obtained using the real and imaginary parts
of vector.

rnd(vector)
This function returns a vector which contains uniformly distributed random values between 0 and
the corresponding element of vector . If vector is complex then the return is also complex, with the
real and imaginary values within the range set by the corresponding entries in vector.

tdist(vector)
The student’s T distribution is defined by a positive real degrees-of-freedom value. This is taken
from vector term-by-term. If vector is real, the return is also real. If vector is complex, the return
is also complex, with separate results for the real and imaginary parts, obtained using the real and
imaginary parts of vector.

3.16.10 Measurement Functions

These functions are exported from the measure command and provide the same measurement capability
in post-processing.

Each function takes three arguments. The first argument is a simulation result vector. The second
two arguments are scalar values of the vector’s scale that define the measurement range (effectively the
trigger and target points). These are clipped to the actual vector scale if out of range. The return value
is a real scalar.

mavg(vec, start , end)
Compute the average value of vec over the range start to end .

mmax(vec, start , end)
Find the maximum value of vec over the range start to end .

mmin(vec, start , end)
Find the minimum value of vec over the range start to end .

mpp(vec, start , end)
Find the peak to peak (maximum minus minimum) value of vec over the range start to end .

mpw(vec, start , end)
Find the full-width half-maximum pulse width of vec over the range start to end . The start and
end are assumed to frame a single pulse. The maximum and minimum values are found, and the
first two crossings of the average of these values provide the result.

3.16. PLOTS, VECTORS AND EXPRESSIONS 229

mrft(vec, start , end)
Find the 10% to 90% rise or fall duration for an edge assumed to be framed by start and end .

mrft2(vec, start , end , firstval , secondval)
This is identical to mrft, except that two additional real valued variables provide the measurement
thresholds rather than being fixed an 0.1 and 0.9. This will find the rise or fall duration (time
between threshold crossings) for an edge assumed to be framed by start and end .

mrms(vec, start , end)
Compute the root mean square (RMS) value of vec over the range start to end .

3.16.11 HSPICE Compatibility Functions

The following functions are available, for compatibility with HSPICE.

These functions differ from other math functions in that they take multiple comma-separated ar-
guments, Other math functions internally accept a single argument, but if there are multiple comma-
separated terms, they will be collapsed into a single argument through evaluation of the comma operator

a,b = (a + j*b)

which yields a complex value. This will not be true in the functions listed below – the comma really
means separate arguments in this case.

The first group of functions are equivalent to the HSPICE Monte Carlo functions that are called in
.param lines in HSPICE. In WRspice, these are regular math functions.

These functions will return mean values unless enabled. They are enabled while in Monte Carlo
analysis, or if the random variable is set, either from the command line or from a .options line in a
circuit file.

unif(nom, rvar)
Uniform relative random value function.

This returns a vector the same length as nom, complex or real as nom. If the length of rvar is less
than the length of nom, rvar is extended by replicating the highest index value of rvar.

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector is
the same as nom (no random values are generated). Otherwise the return vector contains uniformly
distributed random values, each in the range [nom - nom*rvar , nom + nom*rvar] term-by-term.

Below, random is a pseudo-function that returns a random number between -1 and 1.

If nom is complex and var is complex:
out[i].real = nom[i].real*(1 + random()*rvar[i].real)

out[i].imag = nom[i].imag*(1 + random()*rvar[i].imag)

If nom is complex and var is real:
out[i].real = nom[i].real*(1 + random()*rvar[i])

out[i].imag = nom[i].imag*(1 + random()*rvar[i])

If nom is real and var is complex:
out[i] = nom[i].real*(1 + random()*rvar[i].real)

If nom is real and var is real:
out[i] = nom[i]*(1 + random()*rvar[i])

230 CHAPTER 3. THE WRSPICE USER INTERFACE

aunif(nom, var)
Uniform absolute random value function.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var .

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise The return vector contains
uniformly distributed random values, each in the range [nom - var , nom + var] term-by-term.

Below, random is a pseudo-function that returns a random number between -1 and 1.

If nom is complex and var is complex:
out[i].real = nom[i].real + random()*var[i].real

out[i].imag = nom[i].imag + random()*var[i].imag

If nom is complex and var is real:
out[i].real = nom[i].real + random()*var[i]

out[i].imag = nom[i].imag + random()*var[i]

If nom is real and var is complex:
out[i] = nom[i].real + random()*var[i].real

If nom is real and var is real:
out[i] = nom[i] + random()*var[i]

gauss(nom, rvar , sigma)
Gaussian relative random number generator.

This returns a vector the same length as nom, complex or real as nom. If the length of rvar is less
than the length of nom, rvar is extended by replicating the highest index value of rvar . Only the
zero’th (real) component of sigma is used.

If fewer than three arguments are given, this reverts to the original WRspice gauss function (now
called ogauss).

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector is
the same as nom (no random values are generated). Otherwise the return vector contains gaussian-
distributed random values. The (scalar) sigma value gives the specified sigma of the rvar data,
generally 1 or 3.

Below, the pseudo-function gauss returns a gaussian random number with zero mean and unit
standard deviation.

If nom is complex and var is complex:
out[i].real = nom[i].real*(1 + gauss()*rvar[i].real/sigma)

out[i].imag = nom[i].imag*(1 + gauss()*rvar[i].imag/sigma)

If nom is complex and var is real:
out[i].real = nom[i].real*(1 + gauss()*rvar[i]/sigma)

out[i].imag = nom[i].imag*(1 + gauss()*rvar[i]/sigma)

If nom is real and var is complex:
out[i] = nom[i].real*(1 + gauss()*rvar[i].real/sigma)

If nom is real and var is real:
out[i] = nom[i]*(1 + gauss()*rvar[i]/sigma)

3.16. PLOTS, VECTORS AND EXPRESSIONS 231

agauss(nom, var , sigma)
Gaussian absolute random number generator.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var . Only the
zero’th (real) component of sigma is used.

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise the return vector contains
gaussian-distributed random values. The (scalar) sigma value gives the specified sigma of the var
data, generally 1 or 3.

Below, the pseudo-function gauss returns a gaussian random number with zero mean and unit
standard deviation.

If nom is complex and var is complex:
out[i].real = nom[i].real + gauss()*var[i].real/sigma

out[i].imag = nom[i].imag + gauss()*var[i].imag/sigma

If nom is complex and var is real:
out[i].real = nom[i].real + gauss()*var[i]/sigma

out[i].imag = nom[i].imag + gauss()*var[i]/sigma

If nom is real and var is complex:
out[i] = nom[i].real + gauss()*var[i].real/sigma

If nom is real and var is real:
out[i] = nom[i] + gauss()*var[i]/sigma

limit(nom, var)
Random limit function.

This returns a vector the same length as nom, complex or real as nom. If the length of var is less
than the length of nom, var is extended by replicating the highest index value of var .

If we are not running Monte Carlo analysis, and the random variable is not set, the return vector
is the same as nom (no random values are generated). Otherwise the return vector contains either
nom + var or nom - var determined randomly, term-by-term.

If nom is complex and var is complex:
out[i].real = nom[i].real +/- var[i].real randomly
out[i].imag = nom[i].imag +/- var[i].imag randomly

If nom is complex and var is real:
out[i].real = nom[i].real +/- var[i] randomly
out[i].imag = nom[i].imag +/- var[i] randomly

If nom is real and var is complex:
out[i] = nom[i].real +/- var[i].real randomly

If nom is real and var is real:
out[i] = nom[i] +/- var[i] randomly

The remaining functions are for HSPICE compatibility, but are not exclusive to the HSPICE Monte
Carlo analysis. These also have multiple arguments.

pow(x , y)
This returns a real or complex vector the same length as x . If the length of y is less than the
length of x , y is extended by replicating the highest index value of y .

232 CHAPTER 3. THE WRSPICE USER INTERFACE

This returns a vector containing xy computed using complex values, term-by-term, however if y is
real, is is truncated to an integer value.

If x is complex and y is complex:
out = xy (same as ˆ operator)

If x is complex and y is real:
out = x(int)y (same as ˆ operator, but y is truncated to integer)

If x is real and y is complex:
out = xy (same as ˆ operator)

If x is real and y is real:
out = x(int)y (same as ˆ operator, but y is truncated to integer)

pwr(x , y)
This returns a real vector the same length as x . If the length of y is less than the length of x , y is
extended by replicating the highest index value of y .

If x is complex and y is complex:
out[i] = (sign of x[i].real)(mag(x[i]) ˆ y[i].real)

If x is complex and y is real:
out[i] = (sign of x[i].real)(mag(x[i]) ˆ y[i])

If x is real and y is complex:
out[i] = (sign of x[i].real)(abs(x[i]) ˆ y[i].real)

If x is real and y is real:
out[i] = (sign of x[i])(abs(x[i]) ˆ y[i])

sign(x , y)
This returns a vector the same length as x , complex or real as x . If the length of y is less than the
length of x , y is extended by replicating the highest index value of y .

If x is complex and y is complex:
out[i].real = (sign of y[i].real)abs(x[i].real)
out[i].imag = (sign of y[i].imag)abs(x[i].imag)

If x is complex and y is real:
out[i].real = (sign of y[i])abs(x[i].real)
out[i].imag = (sign of y[i])abs(x[i].imag)

If x is real and y is complex:
out[i] = (sign of y[i].real)abs(x[i])

If x is real and y is real:
out[i] = (sign of y[i])abs(x[i])

3.16.12 Expression Lists

Some commands, such as print and plot, take expression lists as arguments. In the simplest form, an
expression list is a space-separated list of vectors. In the general form, an expression list is a sequence
of expressions involving vectors. The parsing is context dependent, i.e., white space does not necessarily
terminate an expression. This leads to ambiguities. For example, the command

plot v(2) -v(3)

3.16. PLOTS, VECTORS AND EXPRESSIONS 233

can be interpreted as two vectors, or as a single vector representing the difference. WRspice will assume
the latter.

There are several ways to ensure that the former interpretation prevails. Double quotes may be used
to separate the tokens, but white space must precede the leading quote mark:

plot v(2) "-v(3)"

Parentheses can also be used to enforce precedence, with white space ahead of the opening paren, as:

plot v(2) (-v(3))

In addition, the expression termination character, a semicolon, can be used. This must be hidden from
the shell, for example with a backslash:

plot v(2)\; -v(3)

There are situations where the name of a vector is so strange that it can’t be accessed in the usual
way. For example, if a list-type special variable is saved with the save command, the plot may contain
a vector with a name like “@b1[ic,0]”. To access this vector, one can’t simply type the name, since
the name is an expression which will actually lead to an evaluation error. One has to fool the expression
parser into taking the name as a string. This will happen if the name is not the lead in a token and the
name is double quoted. If the name is the leading part of a token, it should be backslash-double-double
quoted.

To use the double quotes to enforce string interpretation, one should have, for example,

plot v(2) \""@b1[ic,0]"\"

The extra set of quotes is needed only if the string is at the start of a token, thus

plot 2*"@b1[ic,0]"

is ok. This may be a bit confusing, but this feature is seldom used, and a bit of experimentation will
illustrate the behavior.

These commands can accept the plotname.vecname notation, where either field may be the wildcard
“all”. If the plotname is all, matching vectors from all plots are specified, and if the vector name is
all, all vectors in the specified plots are referenced. The constants plot is never matched by a plot
wildcard. Note that you may not use binary operations on expressions involving wildcards - it is not
obvious what “all + all” should denote, for instance.

3.16.13 Set and Let

Novice WRspice users may be confused by the different interpretations of shell variables and vectors.
Any variable can be defined with the set command, and undefined with unset. If defined, the value of
the variable is the string, if given. For example, if

set a = 10*2

234 CHAPTER 3. THE WRSPICE USER INTERFACE

is entered, the value of a (obtained as $a) is the string “10*2” and not the integer 20.

Some internally used variables have boolean values, such as

set unixcom

which if set causes certain modes or functions to be active.

Vectors, however, always have numeric values, and can be created with let and compose, and deleted
with unlet. If one enters

let a = 10*2, or more simply
a = 10*2

the value of the vector a is 20. Note that the “let” is generally optional when assigning vectors.

At the risk of adding confusion, it should be noted that in recent WRspice releases, the set command
can also be used to assign values to vectors. The syntax

set &vector = value

is equivalent to

let vector = value

Vectors can be set to shell variables, in which case they take on the interpreted numerical values.
For example,

set a=10*2

b = $a

would assign the string 10*2 to the shell variable a, but the vector b would contain the value 20.

The inputs to most commands are vectors, however some commands, such as echo, substitute for
shell variables. For example,

set a = "foo"

set b = "bar"

echo ab

would print “foobar”.

Shell variables are expanded by echo, and in WRspice input when sourced. If the value of a vector
is needed in shell expansion, then the special prefix $& should be added. This tells the shell interpreter
that the following symbol is a vector, to be replaced by its value. For example,

let a = 2.0e-2

echo $&a

will print 2.00000e-2. However

3.16. PLOTS, VECTORS AND EXPRESSIONS 235

let a = 2.0e-2

echo $a

would give an error message (unless a is also a shell variable), and

let a = 2.0e-2

echo a

would print “a”.

Double quotes will cause multiple tokens to be taken as one, for example

set a = "a string"

will set a accordingly, whereas

set a = a string

will set shell variable a to “a” and shell variable string to boolean true.

Single quotes do about the same thing, but suppress shell variable expansion. For example:

set a = foo

set b = bar

echo $a $b

and

set a = foo

set b = bar

echo "$a $b"

would print “foo bar”, whereas

set a = foo

set b = bar

echo ’$a $b’

would print “$a $b”.

In the present version, $ can not be nested. For example,

set a = foo

set b = bar

set c = ’ab’

echo $c

prints “ab”, not “foobar”. However,

set a = foo

set b = bar

set c = ab

echo $c

236 CHAPTER 3. THE WRSPICE USER INTERFACE

does print “foobar” (the value of c).

Shell variables that are lists are referenced with zero-based index, for example

set a = (aa bb cc)

echo $a[1]

prints “bb”.

Actually, what can be in the brackets is [lo-hi], where lo defaults to 0 and hi defaults to the length
- 1. If lo > hi , the list is reversed.

If the reference is to a vector, as in

compose a values .1 .2 .3

echo $&a[1]

the index is also zero-based, so “2.0000e-1” is printed.

The [] subscripting is interpreted a little differently by the shell and by the vector parser. If a
variable starts with $, as in $&value[], the [] is interpreted by the shell parser. In this case, the
terms inside [] must be interpreted as shell variables, with the (optional) low -high notation. In a vector
expression, i. e. , one using value[], the terms inside [] will be interpreted as vector expressions, with
the optional low ,high notation. Thus,

if (value[index] = 0)

is perfectly legal for vectors value and index. Also, equivalently,

if ($&value[$&index] = 0)

is also ok, though not as efficient. However

if ($&value1[index] = 0)

is an error, as the shell parser does not know that index is a vector.

Shell variables can be used freely in vector expressions, however one must keep in mind how the
variables are interpreted. During parsing, the shell variables are evaluated, and their values put back
into the expression as constants. Then the expression is evaluated as a vector expression.

3.17 Batch Mode

AlthoughWRspice is intended to be an interactive program, batch mode, similar to SPICE2, is supported.
If WRspice is invoked with the -b command line option, it will process the input circuit files in batch
mode. The files are input on the command line, and if no files are listed, the standard input is read.
Most of the control lines recognized by SPICE2 will be handled, including .plot, .print, and .four.
These lines are more or less ignored in interactive mode, but provide the traditional SPICE2 behavior
in batch mode.

For normal analysis, output is sent to the standard output, in the form of ASCII plots and print
output as directed by .plot/.print lines, plus additional information about the run, somewhat similar

3.17. BATCH MODE 237

to SPICE2 but less verbose by default. The batch mode output format and content can be controlled
with the option keywords described in 4.10.6. If the input file is a margin or operating range analysis
file, a result file will be produced (as in interactive mode), however there will be little or no standard
output other than printing from echo commands within the analysis scripts.

If the -r command line option is used (-r filename), a plot data file will be produced. This will also
be true if specified with the post option in the circuit description.

Batch node is non-graphical, and plots produced from .plot lines use the line printer format of
ancient times. Saving output in a rawfile or CSDF file for later viewing with graphical WRspice or
another viewing program is recommended.

The input files provided may have .newjob lines, which logically divide the input into two or more
separate circuit decks. Each circuit deck is processed in order. This is one way to run multiple simulations
in a single batch job.

There is also a “server” mode which is similar to batch mode, which is invoked with the -s command
line option. This is intended for use in remote SPICE runs. Input is taken only from the standard input,
and output is exclusively to the standard output. The output is either in rawfile or margin analysis
format, and inappropriate command line options such as -r, -b are ignored. There is probably no
reason for a user to invoke this mode directly.

3.17.1 Scripts and Batch Mode

Scripts can be written to automate a large number of runs on a circuit, saving the output in a sequence
of rawfiles. Typically this may be done in the background, using WRspice in batch mode. This section
addresses some of the subtleties of using scripts in batch mode.

Any script, or circuit file containing a script, can be sourced by WRspice when started in batch mode
(-b option given). However, the batch mode behavior will not be evident unless 1) the sourced file
(and any inclusions) contains a circuit description, and 2) no analysis command is run on the circuit
from a .control block in the same file (plus inclusions). That is, after executing the .control lines,
if WRspice finds that an analysis has already been run, such as from a tran command in the .control
block, WRspice will simply exit rather than run the circuit again in batch mode. Here, by “batch mode”,
we mean the usual plots, prints, and other data output that would occur for a pure circuit file. When
the circuit was run from the .control block, all of this output is absent, and .plot, .print and similar
lines are ignored as in interactive mode.

If the input file contains a circuit description, recall that an .exec block in the same (logical) file
will be executed before the circuit is parsed, and therefor can be used to set shell variables which can
affect the circuit. For example:

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.plot tran v(1)

.tran 10n 1u

.exec

set cval="1n"

.endc

238 CHAPTER 3. THE WRSPICE USER INTERFACE

The circuit will run in batch mode, with the capacitance value provided from the .exec script. This
example is trivial, but conceptually the .exec script can be far more elaborate, configuring the circuit
according to an external data file, for example.

Often, it is more convenient to provide our own analysis control in the input file. For example, add
a trivial .control block to the example above.

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.plot tran v(1)

.tran 10n 1u

.exec

set cval="1n"

.endc

.control

run

.endc

When run with the -b option, there is no “batch mode” output. Further, if the -r option was used
to generate a plot data file, the file would not be created. The presence of an analysis command (“run”)
in the .control block inhibits the “batch mode” behavior. The analysis was run, but we forgot to save
any data. One must add an explicit write command to save vectors to a file for later review. One
could also add print and plot commands. Since there is no graphics, the plot command reverts to the
asciiplot as used in batch mode output, so is not of much value. Note that the plot command and
.plot control line have similar but different syntax, one should avoid confusing the two.

Again, our example is trivial, but the .control block can implement complex procedures and run
sequences, provide post-simulation data manipulation, and perform other tasks.

At the start of every analysis command execution, the circuit is reset, meaning that the input is
re-parsed. This will not happen with the first analysis command found in a .control block, as the
circuit is already effectively in the reset state. However, on subsequent analysis commands, the .exec

block will be re-executed, and the circuit will be re-parsed. Chances are, if we are running more than
one simulation, we would like to change the parameter value. Consider the example:

* RC Test

R1 1 0 1k

c1 1 0 $cval

i1 0 1 pulse 0 1m 10p 10p

.tran 10n 1u

.exec

if $?cval = 0

set cval="1n"

endif

.endc

.control

3.18. LOADABLE DEVICE MODULES 239

run

write out1n.csdf

set cval="2n"

run

write out2n.csdf

.endc

We are now running two transient analyses, with different capacitance values. The first change is
within the .exec block. The set command will be applied only if the cval variable is unset, i.e., it will
be set once only, when the file is first read. Instead, ahead of the second run command in the .control
block, we use the set command to provide a new value for cval. This will update the circuit as the
circuit is re-parsed in the second run command. Without the change to the .exec block, the evaluation
of the .exec block in the second run command would override our new cval value.

3.18 Loadable Device Modules

It is possible to load device models into WRspice at run time, through use of “loadable device modules”.
These are dynamically loaded libraries containing the device model description in a form which can be
read into a running WRspice process. This capability opens up some interesting possibilities for future
versions of WRspice in how new device models are distributed. It also gives the user, at least in principle,
the ability to generate and use custom device models in WRspice. Support for this important new feature
is available in all releases.

Loadable device modules are most often created by translating and compiling Verilog-A compact
model descriptions, though it is also possible to write C/C++ code directly.

Loadable device modules are specific to a particular release number of WRspice, and to the operating
system. Since the interface may change, user-created loadable modules need to be rebuilt for new releases
of WRspice. This may be relaxed in future releases, when the interface stabilizes.

Loadable device modules can be loaded into WRspice in two ways.

1. On startup, WRspice will look for loadable modules in the directories listed in the modpath vari-
able, or, if that variable is not set, in the devices directory under the startup directory (i.e.,
/usr/local/xictools/wrspice/startup/devices if installed in the default location). Modules
found will be loaded automatically by default.

If either of the -m or -mnone command line options is given, or if the nomodload variable is set in
the .wrspiceinit file, the automatic device loading will not be done.

2. The devload command can be used to load a module from the command prompt or from a script.
The syntax is

devload [path to loadable module]

The argument can also be a directory containing loadable modules, all of which would be loaded
by the command.

The “devload all” command will load all known modules, as when WRspice starts.

If no argument is given, a list of the presently loaded modules is printed.

Once a module is loaded, it can’t presently be unloaded. The file can be re-loaded, however, so if a
module is modified and rebuilt, it can be loaded again to update the running WRspice.

240 CHAPTER 3. THE WRSPICE USER INTERFACE

There are two ways to reference a loaded device model.

1. By traditional SPICE model level and name.
There are traditional model names in SPICE, which often provide differentiation of device polarity.
These are names like “npn” and “pnp” for a BJT device, and “nmos” and “pmos” for MOSFETs.
Other devices will use the key character as the model name. The SPICE input file will include
lines like

.model mynpn npn level=100 ...

.model nch nmos level=101 ...

.model sxx s level=2 ...

Every device model must have a unique level value (an integer) for its type. If a module is loaded
that has a conflicting level, a warning is issued. If the conflict is with a built-in model, the built-in
model will always have precedence, and the loaded model will not be accessible.

2. By model name.
Every loadable module has a given model name. Further, device models of dual-polarity devices
have a parameter that sets the device polarity. This is defined in the model code, but most models
have standardized on a parameter named “type” which is set to 1 for n-type and -1 for p-type.

The model can be referenced by name, for example

.model mynpn hicum2 type=1 level=8 ...

.model nch bsim6 type=1 level=80 ...

If the device has a level value different from 1, a matching level parameter must be defined in the
.model line. WRspice does not check for a unique name, as the level parameter should enforce
uniqueness.

The devkit directory in the WRspice installation location (/usr/local/xictools/wrspice is the
default) will provide the tools needed to build loadable device modules.

3.18.1 Creating Loadable Modules from Veriolog-A

WRspice provides support for building loadable modules from Verilog-A model source. Many new com-
pact device models have been released in this format, as it is (theoretically) portable to all simulators.
Most commercial simulators now have this capability.

To build modules from Verilog-A source, the Whiteley Research version of the open-source adms-2.3.x
package must be installed on the system. This is included in the XicTools packages and source. The
XicTools version of adms contains the latest enhancements and bug fixes for use with WRspice, and should
be used in preference to other versions of this software.

The devkit/README file provides instructions on how to build a module, and there are several ex-
amples. Pre-built modules are provided. These can be loaded into WRspice and used.

3.18.1.1 Requirements

In order to build loadable device modules from Verilog-A, the following requirements must be met.

3.18. LOADABLE DEVICE MODULES 241

1. The user’s computer must contain the Gnu C/C++ compiler and the regular set of program
development tools. Apple users are advised to install Apple’s XCode program development envi-
ronment, which is a free (but huge) download from Apple. It is recommended that you set up a
build environment as described in the README file at the top level of the ¡i¿XicTools¡/i¿ source tree.

2. The compiler version used to build modules must be compatible with the version used to build
WRspice. Incompatibility may be manifested in various ways:

• The module fails to load, with an error message.

• The module loads, but with warnings.

• The module loads, but causes program instability when used.

That being said, I haven’t noticed any problems, even in the case of using different major versions
to compile the module and to compile the program, but this can not be counted on. The safest
approach is to build WRspice from source, which should not be hard since the build environment
is already set up.

3. The XicTools version of the ADMS translator must be installed. This is available as a package and
as part of the source code for XicTools.

4. The procedure to build the example modules is simple. However, to successfully build an arbitrary
module will probably require expertise in C++ coding/program building, Verilog-A syntax, and
possibly the ADMS language, if the module does not build or work properly initially.

3.18.1.2 How It Works

The ADMS program reads the Verilog-A file, and builds a representation of the file logic in memory. A
set of XML scripts access this tree and generate the C++ code to describe the device functionality. The
C++ files are then compiled into a loadable module (shared library) which can be loaded into WRspice.

WRspice can load device modules in two ways. On program startup, any device modules found in the
devices sub-directory in the startup directory (e.g. /usr/local/xictools/wrspice/startup/devices)
will be loaded. While running, the WRspice devload command can be used to load a module, with the
command argument being the path to the module. If no argument is given, a list of the modules currently
loaded is printed.

3.18.1.3 The ADMS Scripts

The scripts which control the interpretation of the Verilog-A source during translation into C++ reside
in the admst directory. There is a fairly steep learning curve in gaining proficiency with the language and
logic of these scripts, but they can in theory be modified by the user. In fact, the wrspiceVersion.xml
file provides some user-customization switches.

Some of the features provided by the WRspice script set, that are not available in the script sets
available for many/most/all other simulators, are the following:

1. Rigorous automatic partitioning of static and dynamic contribution terms, as well as noise terms.

2. Support for potential nature contributions (V() <+ ...), and automatic node collapsing when pos-
sible.

3. Support for optional ports and the $port connected call.

242 CHAPTER 3. THE WRSPICE USER INTERFACE

4. Support for the idt (time integration) operator, and most other system functions.

5. Does not require adms-specific format extensions, but will use them if found.

6. Full computation of second-derivative terms.

7. Full support for noise analysis in WRspice.

8. A new and more efficient math package.

9. No “built in” fixes for common public Verilog-A models, scripts are intended to be completely
generic.

10. Produces C++ code that is indented and humanly-readable.

3.18.1.4 How to Build a Module

If all goes according to plan, this is easy.

1. Create a fresh directory somewhere.

2. Copy the Makefile from the devkit directory (typically /usr/local/xictools/wrspice/devkit)
into the new directory.

3. This is optional, but you may want to copy the Verilog-A source file (or files) into this directory
as well, for convenience.

4. Edit the top of the Makefile with a text editor. The Makfile contains comments explaining what
needs setting. Basically, you need to set the device key letter and model level (as will be used
in WRspice), a short name for the module, and the path to the XML scripts provided under the
devkit.

5. Type “make” at the shell prompt. The processing may take a few minutes. Some compiler warnings
may appear.

There may be a lot of messages like:

warning: declaration of T10 shadows a previous local

These appear when the module code defines a variable in a block, and also in a lower-level block.
These should be harmless, but some models (bsimsoi) generate a lot of these messages.

Messages like

warning: unused variable vd

appear if a variable is declared in a block but never used. Once again, these are harmless, but may
represent declarations in the Verilog-A source that could be omitted.

6. If all goes well, a loadable module will be created. This is a file with a “.so” extension (“.dylib”
under OS X, or “.dll” in Windows) with the base name the same as the module name that was
supplied in the Makefile. One should be able to load this module into WRspice, and access the
device description in simulation files.

3.18. LOADABLE DEVICE MODULES 243

3.18.1.5 Building the Examples

The examples subdirectory contains several publicly-available Verilog-A models for testing and illus-
trating the procedure. The README files provide more information. You should copy the directories and
their contents to your local directory to build the modules. In each model directory, follow the procedure
above.

Test the new loadable module. First, verify that the loadable module file exists, i.e., the compile
succeeded. Then, change to the “tests” subdirectory, and start WRspice. At the WRspice prompt, give
the command

devload ../module.so

where module.so is the actual name of the module file. WRspice will print a “Loading device ...”
message, and no error messages should appear.

Next, bring up the File Selection panel with the File Select button in the File menu. There will
be at least one file listed with a “.sp” or “.cir” extension, these are the SPICE input source files. Click
on one of these to select, and click on the green octagon button. The simulation will run and a plot will
appear.

Have fun!

3.18.1.6 What if it Doesn’t Work?

There are many things that can go wrong, and it is likely that something will. Most likely, the Verilog-A
file contains a construct that either ADMS or the scripts can’t handle. The author of ADMS describes
the translator as “alpha”, but that being said, it seems fairly complete and stable. The problem most
likely resides with the XML scripts. These were adapted to WRspice using scripts for other simulators as
a starting point. They will evolve to provide more complete and error-free translation. As a quick look
at the script text will show, they can be hideously complex. The language itself is not well documented,
though “experts” can figure it out from the configuration files in the ADMS installation.

3.18.2 Support for AMDS/Verilog-A

The ADMS package translates the Verilog-A model description into a set of C++ files, which are then
compiled into a loadable module (a shared library loaded on demand).

There may be some documentation of ADMS on the internet. Last I looked, there was very little,
but is included with the XicTools version of ADMS. One should also google-up a copy of the Verilog-A
manual, as this describes the official syntax.

This section is a catch-all for information about the WRspice ADMS implementation, with regard to
syntax and features.

3.18.2.1 The “insideADMS” define

The symbol insideADMS is defined (as if with ‘define insideADMS), and can be used to test for ADMS
in the Verilog-A code.

244 CHAPTER 3. THE WRSPICE USER INTERFACE

3.18.2.2 The ADMS “attributes”

This is a syntax extension to Verilog-A supported by ADMS. It allows additional information in param-
eter and variable declarations to be passed to the simulator.

Examples:
parameter real c10 = 2e-30 from [0:1] (* info="GICCR constant" unit="A^2s" *);

real outTheta (* info="Theta" *);

The attributes are delimited by (* ... *) just ahead of the line-terminating semicolon. The content
consists of keyword=value terms, separated by white space. The value is taken as a literal string, and
should be double-quoted if it contains white space. The keyword can be any token, but only certain
keywords are recognized by ADMS.

info=”string describing the parameter or variable”
The string will be used in the WRspice show command and perhaps elsewhere.

units=units token
This gives the units of the parameter or variable. (I’m not sure that this is actually used.)

type=model

This construct indicates that the parameter should be taken as a model parameter, i.e., a parameter
given in a .model line in SPICE.

type=instance

This construct indicates that the parameter should be taken as an instance parameter, i.e., a
parameter given in a device instance line.

Models may use the following code to hide this construct from non-ADMS parsers.

‘ifdef insideADMS

‘define ATTR(txt) (*txt*)

‘else

‘define ATTR(txt)

‘endif

...

parameter real c10 = 2e-30 from [0:1] ‘ATTR(info="GICCR constant" unit="A^2s");

real outTheta ‘ATTR(info="Theta");

3.18.2.3 Read-Only Parameters

The presence of any attribute on a normal variable magically transforms that variable into a parameter
which is read-only. This means that it can be used to pass data out of the model during simulation.

Such variables are initialized to the starting value at the beginning of the simulation only. Regular
variables are initialized on every pass through the equation set, which occurrs on every Newton iteration.
The read-only parameters can therefor retain history from the last iteration.

In WRspice, data from these (and all) parameters can be obtained from the @device[parmname]
special vector construct.

3.18. LOADABLE DEVICE MODULES 245

3.18.2.4 Initialization Blocks and Global Events

ADMS will handle the two standard global events, but only in the forms containing no arguments.

@(initial step) begin ... end

The block is executed while computing the initial analysis point, in accord with the Verilog-AMS
standard. The block will be called for the operating point analysis (if any), all iterations. Thus, it
will be called multiple times, which makes it unattractive for use as an initializer.

@(final step) begin ... end

The block is executed while computing the final analysis point, in accord with the Verilog-AMS
standard. The block will be called for all iterations. It will be called after initial step if both
are called.

@(initial model) begin ... end

This block is run once-only before any analysis. It can be used to initialize per-model parameters,
such as temperature dependence. This is not in the Verilog-AMS standard and may be particular
to ADMS.

@(initial instance) begin ... end

This block is run once-only before any analysis. It can be used to initialize per-instance parameters,
such as geometrical dependence. This is not in the Verilog-AMS standard and may be particular
to ADMS.

In ADMS, the ”global events” are equivalent to named blocks, for example:

begin : initial model @(initial model) begin

... ...
end end

Either form can be used for initial step, final step, initial model, and initial instance.

3.18.2.5 System Tasks

3.18.2.5.1 Input/Output Tasks

$display(format , variable list)
$strobe(format , variable list)
$monitor(format , variable list)
$write(format , variable list)

These commands have the same syntax, and display text on the screen during simulation. $display
and $strobe display once every time they are executed, whereas $monitor displays every time one
of its parameters changes. The difference between $display and $strobe is that $strobe displays
the parameters at the very end of the current simulation time unit rather than exactly when it is
executed. The format string is like that in C/C++, and may contain format characters. Format
characters include %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s (string) and %t

(time), %m (hierarchy level). Forms like %5d, %5b etc. would assign a field width of 5 when printing
the item.

$display and $write are the same except $display appends a newline if the string does not have
a trailing newline character, $write does not do this.

246 CHAPTER 3. THE WRSPICE USER INTERFACE

$error(format , ...)
$warning(format , ...)

Print a message starting with “Fatal:” or “Warning:”.

$fopen(filename)
$fclose(handle)
$fdisplay(handle, format , variable list)
$fstrobe(handle, format , variable list)
$fmonitor(handle, format , variable list)
$fwrite(handle, format , variable list)

These commands write more selectively to files.

$fopen opens an output file and gives the open file an integer handle for use by the other commands.

$fclose closes the file and lets other programs access it.

In WRspice, there are two special handles that are automatically open and can’t be closed.

0 Print to the pop-up error window.
1 or < 0 Print to the standard output (terminal window).

$fdisplay and $fwrite write formatted data to a file whenever they are executed. They are the
same except $fdisplay appends a newline if the string does not have a trailing newline character,
$fwrite does not do this.

$fstrobe also writes to a file when executed, but it waits until all other operations in the time
step are complete before writing. Thus

initial #1 a=1; b=0; $fstrobe(hand1, a,b); b=1;

will write write 1 1 for a and b.

$monitor writes to a file whenever any of its arguments changes.

3.18.2.5.2 Simulation Control

$bound step(max delta)
Limit the next time point to be max delta or less from the present time point in transient analysis.

$finish[(n[, type string])]
Halt the analysis. If integer n is given, it can be one of these values, which determine what if
anything is printed.

From the spec, this is not currently supported.

0 Prints nothing (the default if no argument)
1 Prints simulation time and location
2 Prints simulation time, location, and statistics about the memory

and CPU time used in simulation

Verilog-AMS allows an additional option string argument to be specified to $finish to indicate
the type of the finish. type string can take one of three values: “accepted”, “immediate” or
“current analysis”. “accepted is the default setting.

If the type string is set to “accepted” and $finish is called during an accepted iteration, then
the simulator will exit after the current solution is complete.

If the type string is set to “current analysis” and $finish is called during an accepted iteration,
then the simulator terminates the current analysis and will start the next analysis if one requested.

3.18. LOADABLE DEVICE MODULES 247

If the type string is set to “immediate” and $finish is called during an iteration, then the simula-
tion will exit immediately without the current solution being completed. This is not recommended
as it may leave the output files generated by the simulator in an undefined state.

$stop[(n)]
A call to $stop during an accepted iteration causes simulation to be suspended at a converged
timepoint. This task takes an optional integer expression argument (0, 1, or 2), which determines
what type of diagnostic message is printed. The amount of diagnostic message output increases
with the value of n, as shown for $finish.

3.18.2.5.3 Random Numbers

$random[(seed)]
$random generates a random integer every time it is called. If the sequence is to be repeatable,
the first time one invokes $random it is given a numerical argument (a seed). Otherwise the seed
is derived from the computer clock.

$rdist uniform(seed , start , end [, dt])
$rdist normal(seed , mean, stddev [, dt])
$rdist exponential(seed , mean[, dt])
$rdist poisson(seed , mean[, dt])
$rdist chi square(seed , dof [, dt])
$rdist t(seed , dof [, dt])
$rdist erlang(seed , k , mean[, dt])

In WRspice, the following functions are implemented in such a way that they are compatible with
Newton iterations and convergence testing. Logically, a separate random value is obtained at each
point of a grid in time that covers the simulation interval. The actual random number used is
interpolated from this grid at the present simulation time. Thus, the “random” function becomes
deterministic, and simulations that include output from the random generator will converge and
iterate normally. This can be used to model Johnson noise in the time domain, for example.

Each has an additional optional “dt” argument which if given is taken as the time period of the
random number grid. If not given, the TStep from the running transient analysis is assumed. This
value has significance only in transient analysis. During other types of analysis, calls to these
functions will return a single random value, generated on the first call.

Note that during transient analysis, the seed value should not change, or non-convergence can
result.

The following rules apply to these functions.

1. All arguments to the system functions are real values, except for seed (which is defined by
$random). For the $rdist exponential, $rdist poisson, $rdist chi square, $rdist t,
and $rdist erlang functions, the arguments mean, dof, and k shall be greater than zero (0).

2. Each of these functions returns a pseudo-random number whose characteristics are described
by the function name, e.g., $rdist uniform returns random numbers uniformly distributed
in the interval specified by its arguments.

3. For each system function, the seed argument shall be an integer. If it is an integer variable,
then it is an inout argument; that is, a value is passed to the function and a different value
is returned. The variable is initialized by the user and only updated by the system function.
This ensures the desired distribution is achieved upon successive calls to the system function.
If the seed argument is a parameter or constant, then the system function does not update the
value. This makes the system function useable for parameter initialization. WRspice doesn’t
handle this.

248 CHAPTER 3. THE WRSPICE USER INTERFACE

4. The system functions shall always return the same value given the same seed. This facilitates
debugging by making the operation of the system repeatable. In order to get different random
values when the seed argument is a parameter, the user can override the parameter.

The two paragraphs above are difficult to follow. In WRspice, if the same seed value is used
for all calls, the sequence of values is repeatable. A call with a different seed will reset the
internal random number generator and a different sequence would be returned. The system
functions never reset the seed. There is only one seed in WRspice, so if any function call
changes the seed, all subsequent random number calls are affected.

5. All functions return a real value.

6. In $rdist uniform, the start and end arguments are real inputs which bound the values
returned. The start value shall be smaller than the end value.

7. The mean argument used by $rdist normal, $rdist exponential, $rdist poisson, and
$rdist erlang is a real input which causes the average value returned by the function to
approach the value specified.

8. The standard deviation argument used by $rdist normal is a real input, which helps deter-
mine the shape of the density function. Using larger numbers for standard deviation spreads
the returned values over a wider range. Using a mean of zero (0) and a standard deviation of
one (1), $rdist normal generates Gaussian distribution.

9. The dof (degree of freedom) argument used by $rdist chi square and $rdist t is a real
input, which helps determine the shape of the density function. Using larger numbers for dof
spreads the returned values over a wider range.

3.18.2.5.4 Other System Functions Recognized in ADMS/WRspice

absdelay(arg1 , arg2)
delay(arg1 , arg2)

Recognized but not implemented.

$abstime

$realtime
Returns the simulation time, the names are equivalent.

analysis(keyword)
Return nonzero if the analysis type represented by the keyword is being performed. The keyword
is one of:

ac

True when running AC analysis.

dc

True when running DC sweep or operating point analysis.

noise

True when running noise analysis.

tran

True when running transient analysis.

ic

True in the initial-condition analysis that preceeds a transient analysis.

static

Any equilibrium point calculation, including a DC analysis as well as those that precede
another analysis, such as the DC analysis that precedes an AC or noise analysis, or the IC
analysis that precedes a transient analysis.

3.18. LOADABLE DEVICE MODULES 249

nodeset

The phase during an equilibrium point calculation where node voltages are forced.

ceil(x)
Return the integer value greater than or equal to the argument.

ddt(expression[, ignored])
Return the time derivative, any second argument is ignored.

ddx(variable, probe)
Return the partial derivative of the variable with respect to the probe.

flicker noise(a, b[, c])
Probably not implemented.

floor(x)
Return the integer value less than or equal to the argument.

$given(model or instance parameter)
Return nonzero if the parameter was given, same as $param given.

idt(expression, icval , reset [, ignored)
Return the time integral of expression using the initial value icval . If reset is nonzero, instead zero
the internal integration history.

$mfactor

Return the device M scale factor if the model was built for this support, otherwise 1.0.

$model

Expands to the name of the current device model.

$nominal temperature

Return the nominal temperature in Kelvin.

$instance

Expands to the name of the currenly scoped instance, or “???”.

$param given(model or instance parameter)
Return nonzero if the parameter was given, same as $given.

$port connected(port name)
Return nonzero if the named port is connected externally.

$realtime

$abstime
Return the simulation time, the names are equivalent.

$scale

Return 1.0, no scaling in WRspice.

$simparam(string [, expression])
This queries the simulator for a simulation parameter named in string . If string is known, its value
is returned. If string is not known, and the optional expression is not supplied, then an error is
generated. If the optional expression is supplied, its value is returned if string is not known and
no error is generated.

$simparam() shall always return a real value; simulation parameters that have integer values shall
be coerced to real. There is no fixed list of simulation parameters. However, simulators shall

250 CHAPTER 3. THE WRSPICE USER INTERFACE

accept the strings below to access commonly-known simulation parameters, if they support the
parameter. Simulators can also accept other strings to access the same parameters.

The first group below comes from the Verilog-AMS specification.

gdev

Additional conductance to be added to nonlinear branches for conductance homotopy con-
vergence algorithm. Returns the WRspice gmin parameter.

gmin

Minimum conductance placed in parallel with nonlinear branches, returns the WRspice gmin

parameter.

imax

Branch current threshold above which the constitutive relation of a nonlinear branch should
be linearized. Returns 1.0.

imelt

Branch current threshold indicating device failure. Returns 1.0.

iteration

Iteration number of the analog solver, returns an internal iteration count.

scale

Scale factor for device instance geometry parameters. Returns 1.0.

shrink

Optical linear shrink factor. Returns 1.0.

simulatorSubversion

The simulator sub-version. Returns, e.g., 5 for WRspice-4.3.5.

simulatorVersion

The simulator version. Retursn, e.g., 4.3 for WRspice-4.3.5.

sourceScaleFactor Multiplicative factor for independent sources for source stepping homotopy
convergence algorithm. WRspice returns the scaling value from source stepping.

tnom

Default value of temperature in Celsius at which model parameters were extracted (same as
$nominal temperature¿).

The following group has unknown origin.

checkjcap

Returns 1.0.

maxmosl

Returns 1.0.

maxmosw

Returns 1.0.

minmosl

Returns 1.0e-12.

minmosw

Returns 1.0e-12.

The final group is implemented in WRspice, perhaps uniquely.

tstep

The current transient analysis output time increment.

3.18. LOADABLE DEVICE MODULES 251

tstart

The current start time for transient analysis output.

tstop

The current final time point in transient analysis.

delta

The current internal time step in transient analysis.

delmin

The minimum allowable transient analysis time step.

delmax

The maximum allowable transient analysis time step.

abstol

The absolute tolerance parameter.

reltol

The relative tolerance parameter.

chgtol

The charge tolerance parameter.

vntol

The voltage tolerance parameter.

predictor

Nonzero when in the first iteration of a time point.

smallsig

Nonzero when loading small-signal values in AC analysis.

dcphasemode

Nonzero if using phase-mode DC analysis, may be true when Josephson junctions are present.

dphimax

Returns the maximum phase change for internal time point for sinusoidal sources and Joseph-
son junctions.

$temperature

Returns the circuit ambient temperature in Kelvin.

$vt[(temperature expression)]
Returns the thermal voltage KT/q using the argument for temerature, or the ambient temperature
if no argument is given.

3.18.2.5.5 WRspice C/C++ Bridge Function

cfunc(funcname, arg1 , ..., argN)
The cfunc pseudo-function allows arbitrary C/C++ function calls to be made from the model
code.

The return value can be used in an assignment. In the C++ files, the construct maps to func-
name(arg1 , ..., argN).

This can be used to, for example, make available special math functions callable from Verilog-A.
Be advised that this can be unsafe to use in model code, as the derivative is not included in the
Jacobian, which can lead to convergence problems. However, if such functions are used only for
initialization, use is safe.

252 CHAPTER 3. THE WRSPICE USER INTERFACE

To use this facility, the HEADER variable in the Makefile should be redefined to yes, and the user
should create an include file that contains (perhaps through another include) prototypes of the
functions called using cfunc. This file must be named MODULEextra.h, where MODULE is the
short name also provided from the Makefile.

The header file must also be modified to link the library containing the function implementations
to the loadable module. The user is expected to know how to do this.

3.19 The WRspice Daemon and Remote SPICE Runs

WRspice can be accessed and run from a remote system for asynchronous simulation runs, for assistance
in computationally intensive tasks such as Monte Carlo analysis, and as a simulator for the Xic graphical
editor. This is made possible through a daemon (background) process which controls WRspice on the
remote machine. The daemon has the executable name “wrspiced”, and should be run as a root process
on the remote machine. Typically, this can be initiated in the system startup script, or manually. Of
course, the remote machine must have a valid WRspice executable present.

The wrspiced program is described in B.6.

Chapter 4

WRspice Commands

When a line is entered, it is interpreted in one of several ways.

1. An alias
First, it may be an alias, in which case the line is replaced with the result after alias substitution,
and the line is re-parsed.

2. A codeblock
Second, it may be the name of a codeblock, which is a user-defined command obtained from a
script file, in which case the codeblock is executed.

3. A command
Third, it may be a pre-defined command, in which case it is executed.

4. An assignment, implivit let
Fourth, it may be an assignment statement, which consists of a vector name, an ‘=’ symbol, and
an expression, in which case it is executed as if it were preceded by the word “let”.

5. A circuit filename, implicit source
Fifth, it may be the name of a circuit file, in which case it is loaded as if with a source command,
or it may be the name of a command script – WRspice searches the current sourcepath (search
path) for the file and executes it when it is found. The effect of this is identical to the effect of
“source file”, except that the variables argc and argv are set.

6. An opeerating system command
Sixth, it may be a command known to the hosting operating system, in which case if the variable
unixcom is set, it is executed as though it were typed to the operating system shell.

7. An expression list
Finally, if the command line can be recognized as a list of expressions, the print command is
invoked on the line.

The following table lists all built-in commands understood by WRspice.

253

254 CHAPTER 4. WRSPICE COMMANDS

Control Structures
cdump Dump control structures for debugging

String Comparison and Global Return Value
strcmp Compare strings
strcicmp Compare strings, case insensitive
strprefix Check if string is prefix of another
strciprefix Check if string is prefix of another, case insensitive
retval Set the global return value

User Interface Setup Commands
mapkey Create keyboard mapping
setcase Check/set case sensitivity for name classes
setfont Set graphical interface fonts
setrdb Set X resources
tbupdate Save tool window configuration
wrupdate Download/install program updates

Shell Commands
alias Create alias
cd Change directory
echo Print string
echof Print string to file
history Print command history
pause Pause script execution
pwd Print the current working dirsctory
rehash Update command database
set Set a variable
shell Execute operating system commands
shift Shift argument list
unalias Destroy alias
unset Unset a variable
usrset Print list of internally used variables

Input and Output Commands
codeblock Manipulate codeblocks
dumpnodes Print node voltages and branch currents
edit Edit text file
listing List current circuit
load Read plot data from file
print Print vectors
printf Print vectors to logging file
return Return from script immediately, possibly with a value
sced Bring up Xic schematic editor
source Read circuit or script input file
sprint Print vectors to a string-type variable
write Write data to rawfile
xeditor Edit text file

Simulation Commands
ac Perform ac analysis
alter Change circuit parameter

255

alterf Dump alter list to Monte Carlo output file
aspice Initiate asynchronous run
cache Manipulate subcircuit/model cache
check Initiate range analysis
dc Initiate dc analysis
delete Delete watchpoint
destroy Delete plot
devcnt Print device counts
devload Load device module
devls List available devices
devmod Change device model levels
disto Initiate distortion analysis
dump Print circuit matrix
findlower Find lower edge of operating range
findrange Find edges of operating range
findupper Find upper edge of operating range
free Delete circuits and/or plots
jobs Check asynchronous jobs
loop Alias for sweep command
mctrial Run a Monte Carlo trial
measure Set up a measurement
noise Initiate noise analysis
op Compute operating point
pz Initiate pole-zero analysis
reset Reset simulator
resume Resume run in progress
rhost Identify remote SPICE host
rspice Initiate remote SPICE run
run Initiate simulation
save List vectors to save during run
sens Initiate sensitivity analysis
setcirc Set current circuit
show List parameters
state Print circuit state
status Print trace status
step Advance simulator
stop Specify stop condition
sweep Perform analysis over parameter range
tf Initiate transfer function analysis
trace Set trace
tran Initiate transient analysis
vastep Advance Verilog simulator
where Print nonconvergence information

Data Manipulation Commands
compose Create vector
cross Vector cross operation
define Define a macro function
deftype Define a data type

256 CHAPTER 4. WRSPICE COMMANDS

diff Compare plots and vectors
display Print vector list
fourier Perform spectral analysis
let Create or assign vectors
linearize Linearize vector data
pick Create vector from reduced data
seed Seed random number generator
setdim Set current plot dimensions
setplot Set current plot
setscale Assign scale to vector
settype Assign type to vector
spec Perform spectral analysis
undefine Undefine macro function
unlet Undefine vector

Graphical Output Commands
asciiplot Generate line printer plot
combine Combine plots
hardcopy Send plot to printer
iplot Plot during simulation
mplot Plot range analysis output
plot Plot simulation results
plotwin Pop down and destroy plot windows
xgraph Plot simulation results using xgraph

Miscellaneous Commands
bug Submit bug report
help Enter help system
helpreset Clear help system cache
qhelp Print command summaries
quit Exit program
rusage Print resource usage statistics
stats Print resource usage statistics
version Print program version

4.1 Control Structures

Control structures operate on expressions involving vectors, constants, and ($-substituted) shell vari-
ables. A non-zero result (of any element, if the length is greater than 1) indicates “true”. The following
control structures are available:

Although control structures are most commonly used in command scripts, they are also allowed from
the command line. While a block is active, the command prompt changes to one or more “>” characters,
the number of which represents the current depth into the control commands. As with a UNIX shell,
control structures can be used from the command line to repeat one or more commands.

repeat block

repeat [number]

4.1. CONTROL STRUCTURES 257

statement
...
end

Execute the statements in the block defined by the repeat line and the corresponding end statement
number times, or indefinitely if no number is given. The number must be a constant, or a shell
variable reference that evaluates to a constant, which may be a vector reference in the $& form. A
vector name is not valid.

while block

while condition
statement
...
end

The while line, together with a matching end statement, defines a block of commands that are
executed while the condition remains true. The condition is an expression which is considered true
if it evaluates to a nonzero value, or if a vector, any component is nonzero. The test is performed
at the top of the loop, so that if the condition is initially false, the statements are not executed.

dowhile block

dowhile condition
statement
...
end

The dowhile line, together with a matching end statement, defines a block of commands that are
executed while the condition remains true. The condition is an expression which is considered
true if it evaluates to a nonzero value, or if a vector, any component is nonzero. Unlike the while
statement, the test is performed at the bottom of the loop – so that the loop executes at least
once.

foreach block

foreach var value ...
statement
...
end

The foreach statement opens a block which will be executed once for each value given. Each time
through, the var will be set to successive values. After the loop is exited it will have the last value
that was assigned to it. The var can be accessed in the loop with the $var notation, i.e., it should
be treated as a shell variable, not a vector. This is set to each value as a text item.

if block

258 CHAPTER 4. WRSPICE COMMANDS

if condition
statement
...
else

statement
...
end

If the condition is non-zero then the first set of statements is executed, otherwise the second set.
The else and the second set of statements may be omitted.

label statement

label labelname

This defines a label which can be used as an argument to a goto statememt.

goto statement

goto label

If there is a label statement defining the label in the block or an enclosing block, control is transfered
there. If the goto is used outside of a block, the label must appear ahead of the goto (i.e., a forward
goto may occur only within a block). There is a begin macro pre-defined as “if 1” which may be
used if forward label references are required outside of a block construct.

continue statement

continue [number]

If there is a while, dowhile, foreach or repeat block enclosing this statement, the next iteration
begins immediately and control passes to the top of the block. Otherwise an error results. If a
number is given, that many surrounding blocks are continued. If there are not that many blocks,
an error results.

break statement

break [number]

If there is a while, dowhile, foreach, or repeat block enclosing this statement, control passes out
of the block. Otherwise an error results. If a number is given, that many surrounding blocks are
exited. If there are not that many blocks, an error results.

end statement

end

This statement terminates a block. It is an error for an end to appear without a matching if, while,
dowhile, foreach, or repeat statement. The keywords endif, endwhile, enddowhile, endforeach, and
endrepeat are internally aliased to end.

4.2. STRING COMPARISON AND GLOBAL RETURN VALUE 259

Control structures may be nested. When a block is entered and the input is from the keyboard, the
prompt becomes a number of >’s equalling the depth of blocks the user has entered. The current control
structures may be examined with the debugging command cdump.

4.1.1 The cdump Command

The cdump command prints out the contents of the currently active control structures. The command
takes no arguments. It is intended primarily for debugging.

4.2 String Comparison and Global Return Value

These commands are used for string comparison, and for setting the global return value. The global
return value is an internal global variable that can be set and queried from any script (with the $?

construct). This can be used to pass numeric data from a script, but one must take care that the
value is not overwritten before use, as its scope is global. The string comparison functions return their
comparison result in the global return value. There is no native string data type in the scripting language,
and the commands here provide basic string support.

strcmp Compare strings
strcicmp Compare strings, case insensitive
strprefix Check if string is prefix of another
strciprefix Check if string is prefix of another, case insensitive
retval Set the global return value

4.2.1 The strcmp Command

The strcmp command is used for string comparison in control structures.

strcmp [varname] string1 string2

This supports the original Spice3 strcmp which returns is value in a given variable, and the WRspice

convention where the comparison value is returned in the global return value (accessible with “$?”).

In either case, the comparison value is a number that is less than, equal to, or greater than zero
according to whether string1 is lexically before, equal to, or after string2 .

If three arguments are given, the first argument is taken as the name of a variable which is set to
the comparison value. This convention is supported for backwards compatibility, of this function only.
Otherwise, the global return value will be set to this value. The other arguments are literal strings.

Example

.control

set str1="abcd efgh"

set str2="bbcd efgh"

strcmp "$str1" "$str2"

if ($? < 0)

echo "$str1" ahead of "$str2"

else

260 CHAPTER 4. WRSPICE COMMANDS

if ($? = 0)

echo strings are the same

else

echo "$str1" after "$str2"

end

end

.endc

4.2.2 The strcicmp Command

The strcicmp command is used for string comparison in control structures.

strcicmp string1 string2

The strcicmp command is similar to strcmp, however the comparison result is case-insensitive, and
the Spice3 return convention is not supported. The global return value (accessible as “$?”) is set to the
comparison value. The comparison value is a number that is less than, equal to, or greater than zero
according to whether string1 is lexically before, equal to, or after string2. The two arguments are literal
strings.

4.2.3 The strprefix Command

The strprefix command will set the global return value to one if string1 is a prefix of string2 , or zero
if not.

strprefix string1 string2

4.2.4 The strciprefix Command

The strciprefix command will set the global return value to one if string1 is a case-insensitive prefix of
string2 , or zero if not.

strciprefix string1 string2

4.2.5 The retval Command

The retval command will set the global return value to the numeric value given.

retval value

This can be used to pass a value back from a script. The value is initialized to zero whenever a script is
executed, so that zero is the default return value. The global return value is a global value available in
any script and the command prompt line, and is accessed with the special variable name $?. The global
return value is set by this function and the string comparison functions, and optionally by the return
function.

4.3. USER INTERFACE SETUP COMMANDS 261

4.3 User Interface Setup Commands

These commands perform setup and control of aspects of the user interface, both graphical and non-
graphical.

Uset Interface Setup Commands
mapkey Create keyboard mapping
setcase Check/set case sensitivity for name classes
setfont Set graphical interface fonts
setrdb Set X resources
tbupdate Save tool window configuration
wrupdate Download/install program updates

4.3.1 The mapkey Command

The mapkey command provides limited keyboard mapping support.

mapkey [-r [filename] | -w [filename] | keyname data]

Only the keys that are used for command line editing are mappable. This is to account for “strange”
terminals that may not send the expected data when a key is pressed.

The following keys can be mapped:

Ctrl-A

Ctrl-D

Ctrl-E

Ctrl-K

Ctrl-U

Ctrl-V

Tab

Backspace

Delete

LeftArrow

RightArrow

UpArrow

DownArrow

Of these, the arrow keys and Delete are most likely to need remapping.

If no argument is given, the user is prompted to press each of these keys, and the internal map is
updated. After doing this, the keys should have their expected effect when pressed while entering a
WRspice command.

If “-w [filename]” is given, the present internal map will be saved in the named file, or “wrs keymap”
in the current directory if no filename is given.

If “-r [filename]” is given, the file will be read as a key mapping file, and the internal map will be
updated. The filename, if not given, defaults to “wrs keymap”. If no path is given, it will be found in
the current directory or the startup directory.

If “keyname data...” is given, a single key in the internal map can be updated. The format is the
same as the entries in the mapping file, i.e., one of the names above, followed by one or more hex bytes

262 CHAPTER 4. WRSPICE COMMANDS

of data. The bytes represent the stream sent when the named key is pressed, and will henceforth be
interpreted as the pressing of that key. The bytes should be in hex format, and the first byte of a
multi-byte sequence must be the Escape character (1b).

Example (from real life):

After installing the latest X-window system, suppose one finds that, when running WRspice in an
xterm window, the Delete key no longer deletes the character under the cursor in WRspice, but instead
injects some gibberish. There are three ways to fix this. The first two are specific to the xterm program,
and instruct the xterm to send the ASCII Del character when Delete is pressed, rather than use the
new default which is to send the VT-100 “delete character” string. The third method is to map this
string into the delete function in WRspice.

1. From the main xterm menu, find and click on the “Delete is DEL” entry. Usually, holding the
Ctrl key and clicking in the xterm with button 1 displays this menu.

2. Create a file named “XTerm” in your home directory, containing the line

*deleteIsDEL: true

3. In WRspice, type “mapkey” and follow the prompts. You can save the new map, and add a line to
a .wrspiceinit startup file to read it when WRspice starts.

4.3.2 The setcase Command

Syntax: setcase [flags]

This command sets or reports the case sensitivity of various name classes in WRspice. These classes
are:

Function names.
User-defined function names.
Vector names.
.PARAM names.
Codeblock names.
Node and device names.

The flags is a word consisting of letters, each letter corresponds to a class from the list above. If
lower-case, the class will be case-sensitive. If upper-case, the class will be case-insensitive.

The letters are f, u, v, p, c, and n corresponding to the classes listed above. By default, all WRspice

identifiers are case-insensitive, which corresponds to the string “FUVPCN”. Letters can appear in any
order, and unrecognized characters are ignored. Not all letters need be included, only those seen will be
used.

If given an argument string as described above, and called from a startup file, the case sensitivities
will be set. This can not be done from the WRspice prompt. Case sensitivity can also be set from the
command line by using the -c option.

If no argument, a report of the case sensitivity status is printed. This can be done from the WRspice

prompt.

4.3. USER INTERFACE SETUP COMMANDS 263

4.3.3 The setfont Command

Syntax: setfont font num font specifier

This command can be used to set the fonts employed in the graphical interface. Although this can
be given at a prompt, it is intended to be invoked in a startup script.

The first argument is an integer 1–6 (1–4 on Windows) which designates the font category. The index
corresponds to the entries in the drop-down menu of font categories found in the Font Selection panel.

The rest of the line is a font description string. This varies between graphics types.

Unix/Linux
For GTK1 releases, the name is the X Logical Font Descriptor name for a font available on the
user’s system, or an alias. For GTK2 releases, the name is a Pango font description name. There
is a very modest attempt to interpret a specification of the wrong type.

Windows The name is in one or the following formats:

New standard (WRspice release 2.3.58 and later)
face name pixel height

Example: Lucida Console 12

Old standard (deprecated)
(pixel height)face name

Example: (12)Lucida Console

The face name is the name of a font family installed on the system, and the pixel height is the
on-screen size.

You will probably never need to use the setfont command directly. All settable fonts are saved in
the .wrspiceinit startup file when the Update Tools menu command in the File menu is given, or
the tbupdate command is invoked.

4.3.4 The setrdb Command

The setrdb command adds resources to the X resource database.

setrdb resource: value

The user interface toolset currently used to implement the WRspice user interface is the GTK toolkit
(www.gtk.org) which does not use the X resource mechanism.

WRspice presently only recognizes resource strings which set the plotting colors for the plot command.
The names of these resources are “color0” through “color19”, which correspond directly to the shell
variables of the same name, and to the colors listed in the Colors tool of the Tools menu of the Tool
Control window. To set a color using the setrdb command, one can use forms like

“setrdb *color2: pink”

264 CHAPTER 4. WRSPICE COMMANDS

4.3.5 The tbupdate Command

This command will update the user’s .wrspiceinit file in the home directory to reflect the current tool
setup.

tbupdate

The window arrangement should be the same the next time the user starts WRspice. This command is
also performed when the user presses the Update Tools button in the File menu of the Tool Control
window.

4.3.6 The wrupdate Command

This command can be used to check for, download, and install updates to the program.

wrupdate

This command is equivalent to giving the special keyword “:xt pkgs” to the help system, which brings
up the XicTools package management page (see 3.14.1). The page lists installed and available packages
for each of the XicTools programs for the current operating system, and provides buttons to download
and install the packages.

Unlike in earlier WRspice releases, there is no provision for automatic checking for updates, so this
command or equivalent should be run periodically to check for updated packages. The computer must
have http access to the internet for successful use of this functionality.

4.4 Shell Commands

The commands listed below are built into the WRspice shell, or control shell operation.

Shell Commands
alias Create alias
cd Change directory
echo Print string
echof Print string to file
history Print command history
pause Pause script execution
pwd Print the current working dirsctory
rehash Update command database
set Set a variable
shell Execute operating system commands
shift Shift argument list
unalias Destroy alias
unset Unset a variable
usrset Print list of internally used variables

4.4. SHELL COMMANDS 265

4.4.1 The alias Command

The alias command is used to create aliases, as in the C-shell.

alias [word] [text]

The alias command causes word to be aliased to text. Whenever a command line beginning with word
is typed, text is substituted. Arguments are either appended to the end, or substituted in if history
characters are present in the text. With no argument, a list of the current aliases is displayed.

In the body of the alias text, any strings of the form !:number are replaced with the number ’th
argument of the actual command line. Note that when the alias is defined with the alias command,
these strings must be quoted to prevent history substitution from replacing the !’s before the alias
command can get to them. Thus the command

alias foo echo ’!:2’ ’!:1’

causes “foo bar baz"” to be replaced with “echo baz bar”. Other ! modifiers as described in the
section on history substitution may also be used, always referring to the actual command line arguments
given. If a command line starts with a backslash ‘\’ any alias substitution is inhibited.

4.4.2 The cd Command

The cd command is used to change the current working directory.

cd [directory]

The command will change the current working directory to directory , or to the user’s home directory if
none is given.

4.4.3 The echo Command

The echo command will print its arguments on the standard output.

echo [-n][stuff ...]

If the -n option is given, then the arguments are echoed without a trailing newline.

4.4.4 The echof Command

This command is only available from the control scripts which are active during Monte Carlo or operating
range analysis.

The echof command is used in the same manner as the echo command, however the text is directed
to the output file being generated as the analysis is run. If the file is not open, there is no action. This
command can be used in the scripts to insert text, such as the Monte Carlo trial values, into the output
file.

266 CHAPTER 4. WRSPICE COMMANDS

4.4.5 The history Command

The history command prints the last commands executed.

history [-r] [number]

The command will print out the last number commands typed by the user, or all the commands saved if
number is not given. The number of commands saved is determined by the value of the history variable.
If the -r flag is given, the list is printed in reverse order.

4.4.6 The pause Command

The pause command is used in scripts to cause the executing script to wait for a keypress. The function
takes no arguments, and the keypress is discarded.

4.4.7 The pwd Command

Print the current working directory.

4.4.8 The rehash Command

The rehash command rebuilds the command list from the files found along the user’s executable file
search path. The command will recalculate the internal hash tables used when looking up operating
system commands, and make all operating system commands in the user’s PATH available for command
completion. This command takes no arguments, and has effect only when the unixcom variable is set.

4.4.9 The set Command

The set command allows the user to examine and set shell variables. It is also possible to assign vectors
with the set command.

set [varname [= value] ...]

In addition, shell variables are set which correspond to definitions supplied on the .options line of the
current circuit, and there are additional shell variables which are set automatically in accord with the
current plot. The shell variables that are currently active can be listed with the set command given
without arguments, and are also listed within the Variables window brought up from the Tools menu
of the Tool Control window. In these listings, a ‘+’ symbol is prepended to variables defined from a
.options line in the current circuit, and a ‘*’ symbol is prepended to those variables defined for the
current plot. These variable definitions will change as the current circuit and current plot change. Some
variables are read-only and may not be changed by the user, though this is not indicated in the listing.

Before a simulation starts, the options from the .options line of the current circuit are merged with
any of the same name that have been set using the shell. The result of the merge is that options that
are booleans will be set if set in either case, and those that take values will assume the value set through
the shell if conflicting definitions are given. The merge will be suppressed if the shell variable noshellopts

4.4. SHELL COMMANDS 267

is set from the shell, in which case the only options used will be those from the .options line, and those
that are redefined using the set command will be ignored.

Above, the varname is the name of the shell variable to set, and value, if present, is a single token
to be assigned. Multiple variables can be assigned with a single set command. If value is missing
(along with the ‘=’), then varname is of boolean type and always taken as “true” when set. If value is
a pure number not double quoted, then varname will reference that number. Otherwise, varname will
reference value as a character string, unless value is a list. A list is a space-separated list of tokens in
space-separated parentheses, as in

set mylist = (abc def 1.2 xxdone)

which sets the variable mylist to the list of four tokens.

The unset command can be used to delete a variable.

The value of a variable word may be inserted into a command by writing $word. If a variable is set
to a list of values that are enclosed in parentheses (which must be separated from their values by white
space), the value of the variable is the list.

A list variable can be indexed, for example

> set list = (a s d f g)

> echo $list[2]

d

This does not work for non-list variables.

The syntax set var = "$list" will set the variable var to the text of the list variable, as a string
and not a list. Note that if the double quotes are not given, var is set to the first element of the list, and
remining elements of the list would be set by name as booleans, probably not what is wanted. To copy
the list to a new variable, the syntax set var = ($list) should be used. This same syntax can be
used the create a true list from the string representation as in the first example in this paragraph. Note
that the parentheses must be separated by white space.

The set command can also be used to assign values to vectors (vectors are described in 3.16). The
syntax in this case is

set &vector = value

which is equivalent to

let vector = value

When entering this form from the WRspice command line, the ‘&’ character must be hidden from the
shell, perhaps most conveniently be preceding it with a backslash. The value must be numeric, and a
value must be given, unlike for a variable which can be set as a boolean.

There are a number of variables with internal meaning to WRspice, and in fact this is the mechanism
by which most WRspice defaults are specified. Several of the other buttons in the Tools menu, including
Commands, Debug, Plot Opts, Shell, and Sim Opts bring up panels from which these special
variables can be modified.

268 CHAPTER 4. WRSPICE COMMANDS

The predefined variables which have meaning to WRspice (see 4.10) can be listed with the usrset
command. In general, variables set in the .options line are available for expansion in $varname refer-
ences, but do not otherwise affect the functionality of the shell.

4.4.10 The shell Command

The shell command will pass its arguments to the operating system shell.

shell [command]

The command will fork a shell if no command is given, or execute the arguments as a command to the
operating system.

4.4.11 The shift Command

The shift command facilitates handling of list variables in shell scripts.

shift [varname] [number]

If varname is the name of a list variable, it is shifted to the left by number elements, i.e., the number
leftmost elements are removed. The default varname is argv, and the default number is 1.

4.4.12 The unalias Command

The unalias command is used to remove aliases previously set with the alias command.

unalias [word ...]

The command removes any aliases associated with each of the words. The argument may be “*”, in
which case all aliases are deleted.

4.4.13 The unset Command

The unset command will remove the definitions of shell variables, previously defined with the set
command, passed as arguments.

unset [varname ...]

All of the named variables are unset (undefined). The argument may be “*”, in which case all variables
are unset (although this is usually not something that one would want to do).

4.4.14 The usrset Command

The usrset command prints a (long) list of all of the variables used internally by WRspice which can be
set with the set command.

4.5. INPUT AND OUTPUT COMMANDS 269

usrset [-c][-d][-p][-sh][-si] [keyword ...]

WRspice provides a substantial number of internal switches and variables which can be configured with
the set command. The usrset command prints a listing and brief description of each of the variables
with internal significance to WRspice. If no arguments are given, all of the variables which control
WRspice will be printed. The options print sets of keywords associated with certain functions, which are
in turn associated with a particular panel accessible from the Tool Control window.

Option Toolbar Button Description

-c Commands Variables which control WRspice commands
-d Debug Debugging variables
-p Plot Opts Variables which control plotting
-sh Shell Variables which control the shell
-si Sim Opts Simulation control and SPICE options

Other arguments are taken as variable names, which will result in a description of that variable being
printed.

4.5 Input and Output Commands

These commands manage input to WRspice, or allow WRspice output to be saved in files.

Input and Output Commands
codeblock Manipulate codeblocks
dumpnodes Print node voltages and branch currents
edit Edit text file
listing List current circuit
load Read plot data from file
print Print vectors
printf Print vectors to logging file
return Return from script immediately, possibly with a value
sced Bring up Xic schematic editor
source Read circuit or script input file
sprint Print vectors to a string-type variable
write Write data to rawfile
xeditor Edit text file

4.5.1 The codeblock Command

The codeblock command manipulates codeblocks.

codeblock [-options] [filename]

A codeblock is a stored executable structure derived from a script file. Being internal representations,
codeblocks execute more efficiently than script files. A codeblock generally has the same name as the
script file from which it was derived.

Option characters, which may be grouped or given as separate tokens, following a ’–’ character, are
listed below.

270 CHAPTER 4. WRSPICE COMMANDS

p print the text of a block (synonym t)
d delete the block (synonym f)
a add a block
b bind the block to the “controls” of the current circuit
be bind the block to the “execs” of the current circuit
c list bound codeblocks of the current circuit

If no filename is given, and neither of the bind options is given, all of the blocks in the internal list
are listed by name, and their commands are printed if p is given, and the blocks are deleted if d is given.
In the latter case, the current circuit codeblock references become empty.

If no filename is given and one of the bind options is given, the respective bound codeblock reference
in the current circuit is removed. Only one of b or be can be given.

In either case, if c is given, the bound codeblocks in the current circuit are listed, after other
operations. The a option is ignored if no filename is given.

The bound codeblocks for the current circuit are also listed in the listing command.

Otherwise, when a name is given, the named file/block is acted on. If no option is given, the add
option is assumed. Added blocks overwrite existing blocks of the same name. The options all apply if
given, and the operations are performed in the order

p (if a not given)
d

a

p (if a given)
b or be
c

When a command is entered in response to a prompt or in a script (or another codeblock), the blocks
are checked first, then the WRspice internal commands, then scripts, then vectors (for the implicit let
in vector = something) and finally operating system commands if unixcom is set.

Thus, once a codeblock has been added, it can be executed by simply entering its name, as if it were
a shell command. If a name conflicts with an internal command or script, the codeblock has precedence.

A codeblock can be “bound” to the current circuit with the b and be options. If be, the block is
bound as an “exec” codeblock, and if b is given, the block is bound as a “control” codeblock. Each
circuit has one of each type, which are by default derived from the .exec and .control statements from
the circuit file. Binding an external codeblock overrides the blocks obtained from the file. If no filename
was given, the existing binding is deleted from the current circuit, according to whether the b or be was
given. Separate calls are required to unbind both blocks.

Note: Bound codeblocks are parameter expanded, named codeblocks are not. In a named codeblock,
parameters are available through the @parmname (special vector) syntax.

Operating range and Monte Carlo analysis can make use of “bound” codeblocks. In both types of
analysis, the “controls” codeblock execution sets a variable indicating whether the circuit simulated prop-
erly according to user specified criteria. When a margin analysis file is input, the lines between .control

and .endc become the default controls codeblock. Similarly, the lines between .exec and .endc become
the default exec codeblock. A bound codeblock will always supersede the default codeblock.

4.5. INPUT AND OUTPUT COMMANDS 271

4.5.2 The dumpnodes Command

dumpnodes

This command prints, on the standard output, a table of the most recently computed node voltages
(and branch currents) for the current circuit.

4.5.3 The edit Command

The edit command allows the text of an input file to be edited.

edit [-n][-r] [filename]

The command will bring up a text editor loaded with the named file. If no file name is given, the file
associated with the current circuit will be edited. If no file is associated with the current circuit, the
current circuit will be printed into a temporary file which is opened for editing. If no circuits are present,
an empty file is opened for editing. Pressing the Text Editor button in the Edit menu of the Tool
Control window is equivalent to giving the edit command without arguments.

It should be noted that one can also provide input to WRspice¿ from an arbitrary text editor by
“saving” the file to the active fifo file (see 3.15.11) that WRspice creates in the user’s home directory.
This is a special file the contains a port into WRspice, whereby data written to the fifo appear in WRspice

as if sourced from a regular file (if WRspice is busy, the fifo write will block until WRspice is ready).

The editor used is named by the editor variable, the SPICE EDITOR environment variable, or the
EDITOR environment variable, in that order. If none of these is set, or the first one found is set to
“xeditor”, the internal editor is used, if graphics is available. If graphics is not available and no editor
is specified, WRspice will attempt to use the “vi” editor. The internal editor has the advantage of
asynchronous deck sources with the edit window displayed at all times, through the Source button in
the editor’s Options menu. The xeditor command is similar to the edit command, but will always
call the internal editor. See 4.5.13 for a description of the internal editor.

If an external editor is used, if graphics is available the default action is to start the editor in a new
xterm window. This can be suppressed if the noeditwin variable is set. This variable should be set if the
external editor creates its own window to avoid the unneeded xterm. It can also be set for an editor
such as vi, in which case the editing will take place in the same window used to interact with WRspice.

The -r and -n options are available only when the internal editor is not being used, and the editor is
a text-mode editor such as vi and noeditwin is set so that editing takes place in the console controlling
WRspice. If this is the case, after quitting the editor, the file will be sourced automatically if the text was
saved. The -n (no source) option prevents this, and should be given if the editor is used to browse files
that are not SPICE input files. The -r (reuse) option will reuse the existing circuit for the automatic
source, rather than creating a new one. This saves memory, but prevents revisiting earlier revisions of
the circuit. If the internal editor, or any editor that creates its own window is used, WRspice will pop
up the editor and resume command prompting. There is no automatic source in this case.

4.5.4 The listing Command

The listing command is used to generate a listing of the current circuit.

listing [l[ogical]] [p[hysical]] [d[eck]] [e[xpand]] [n[ocontinue]]

272 CHAPTER 4. WRSPICE COMMANDS

The command will print a listing of the current circuit to the standard output. The arguments control
the format of the listing. A logical listing is one in which comments are removed and continuation
lines are appended to the end of the continued line. A physical listing is one in which comments and
continuation lines are preserved. A deck listing is a physical listing without line numbers, so as to
be acceptable to the circuit parser — it recreates the input file verbatim. The last option, expand, is
orthogonal to the previous three — it requests that the circuit be printed after subcircuit expansion.
Note that only in an expanded listing are error messages associated with particular lines visible. When
using deck and expand, by default long lines are broken into continuation lines. If the nocontinue

option is also given, this will not be done. This option is ignored in other cases.

If no argument is given, logical is understood.

4.5.5 The load Command

The load command loads data from the files given.

load [filename] [-p printfile] [-cN [+[M]] [datafile] [...]

Several file formats are supported, as is discussed below.

The file data will be converted into internal plot structures containing vectors available for printing,
plotting, and other manipulation just as if the analysis had been run. The last plot read becomes the
current plot. Data files can also be loaded from the Load button in the Files menu of the Tool Control
window. A file name given without a path prefix is searched for in the source path.

The load command is internet aware, i.e., if a given filename has an http:// or ftp:// prefix, the
file will be downloaded from the internet and loaded. The file is transferred as a temporary file, so if a
permanent local copy is desired, the write command should be used to save a file to disk.

ASCII and binary rawfiles, and Common Simulation Data Format (CSDF) files can be listed without
options. These formats are auto-detected and the file data will be processed appropriately. The rawfile
format is the native format used in WRspice and Berkeley SPICE3. CSDF is one of the formats used by
HSPICE, and post-processing tools such as Synopsys WaveView.

In HSPICE, “.options csdf=1” and “.options post=csdf” will produce CSDF files. These files
can be loaded into WRspice for display and other purposes with the load command.

In WRspice rawfiles or CSDF files can be produced by the Save Plot button in plot windows, the
write and run commands, and may be generated in batch mode.

If no argument is given, WRspice will attempt to load a file with a default name. The default name is
the value of the rawfile variable if set, or the argument to the -r command line option if one was given,
or “rawspice.raw”.

If the option flag -p appears before a file name, the file that follows is assumed to be a file produced
with the WRspice print command. This works for the default columnar print format only. The format
is common to other SPICE programs. This can be useful on occasion, but the print format lacks to
expressiveness of the plot data file formats.

The -c option will allow parsing of general columnar numerical data, and is useful for extracting
data from output from other programs, or report text files. The option has several forms.

-cN
N is an integer greater than 0, representing the number of numerical columns. A plot with N

4.5. INPUT AND OUTPUT COMMANDS 273

vectors will be created, with names “column 0”, “column 1”, etc. The column 0 vector will be
taken as the scale vector. The file is read, amd all lines that start with N space or comma-separated
numbers will contribute to the vectors. Any additional text on the line following the numbers is
ignored. Lines that don’t provide N numbers are also ignored.

-cN +

As above, but lines must provide exactly N numbers or will be ignored. Parsing of a line stops if
a token is read that is not a number, so that any numbers following a non-number in the line will
always be ignored.

-cN +M
This assumes that there are N columns of numbers in a logical block, followed by a logical block
containing M columns of numbers. We assume that there are N + M vectors, and the lines have
been broken to avoid being too long, as is done in the SPICE printing if the number of columns
to be printed would exceed the page width. However, it is required that M be less than N, and
only one “wrap” can be accommodated. If for some reason the M vectors end up being a different
length than the N vectors, they will be truncated or zero-padded so that all vectors will have the
same length.

When reading columnar or print data, the scale vector is checked for cyclicity, and the plot dimen-
sions will be set if found. Only two-dimensional vectors are produced, higher dimensions can not be
determined.

4.5.6 The print Command

The print command is used to print vector data on-screen or to a file using output redirection.

print [/format] [col | line] expr [...]

The command prints the values of the given expressions to the standard output.

If command line input can be recognized as an expression list, the print command will be invoked
implicitly. In this case, the line cannot contain directives or a format string, This saves a bit of typing
when using the WRspice command line as a calculator, for example.

The default is to use exponential format for all values, with the number of digits given by the numdgt
variable. However this, and some other presentation attributes, can be specified in the format string,
if given. If given, the format string must be the first argument, and the string must start with a ’/’
(forward slash) character. The syntax is further described below.

All vectors listed will be printed in the same format, except for the scale vector, which is printed by
default in the col mode, which is printed with the default notation.

If line is specified, the value of each expression is printed on one line (or more if needed). If all
expressions have a length of 1, the default style is line, otherwise col is the default.

If col is specified, the values are printed in columns. This is the default if any of the vectors are
multi-valued. This mode makes use of the height and width variables to define the page size. By default,
per-page formatting is applied, with page eject characters between pages. With column formatting, by
default the scale vector (time, frequency) will be shown in the first column. If there are more vectors
that can be accommodated with the page width, the print will be repeated, with a new set of columns
(other than the scale) until all variables have been printed.

274 CHAPTER 4. WRSPICE COMMANDS

If the expression is “all”, all of the vectors in the current plot are printed. If no arguments are
given, the arguments to the last given print command are used. If only the format argument is given,
the arguments from the last given print command other than the format are used, with the new format.

If the argument list contains a token consisting of a single period (“.”), this is replaced with the
vector list found in the first .print line from the input file with the same analysis type as the current
plot. For example, if the input file contains

.tran .1u 10u

.print tran v(1) v(2)

then one can type “run” followed by “print .” to print v(1) and v(2).

The related syntax .@N is also recognized, where N is an integer representing the N ’th matching
.print line. The count is 1-based, but N=0 is equivalent to N=1. The token is effectively replaced by
the vector list from the specified .print line found in the circuit deck.

The print command is responsive to the following variables.

width, height
These option variables set the page size (in characters and lines) assumed for the output when
directed to a flie or device. If not set, a standard A-size page is assumed. When printing on-screen,
the actual screen or window size will be used.

nopage
This boolean option will suppress page breaks between pages when set. This is always true when
printing to a screen. Page breaks consist of a form-feed character, which may be followed by a
two-line page header.

The following variables are all booleans, and apply only to column mode of the print command.

printautowidth
When set, the window width or the setting of the width variable is ignored, and a line width
sufficient to include columns for all variables being printed is used, if possible. There is a hard
limit of 2048 characters in the lines. Variables that don’t fit are printed subsequently, as in the
case with printautowidth not set.

printnoheader
When set, don’t print the top header, which consists of the plot title, circuit name, data, and a
line of “-” characters (three lines). This is normally printed at the top of the first page of output.

printnoindex
When set, don’t print the vector indices, which are otherwise printed in the leftmost column of
each page.

printnopageheader
When set, don’t print the page header. The page header, which consists of the variable names at
the top of each column and a line of “-” characters, is otherwise printed at the top of each page
of output.

printnoscale
When set, don’t print the scale vector in the leftmost data column. This is otherwise done for each
set of variables printed. The Spice3 noprintscale variable is an alias, but deprecated.

4.5. INPUT AND OUTPUT COMMANDS 275

The syntax of the format string to the print command allows overriding the states of the switches
listed above while printing. The format string, if used, must be the first argument given to the print
command, and must begin with a ‘/’ (forward slash) character. It contains no space, and is a sequence
of the characters and forms shown below, all of which are optional. The format string syntax also applies
to the sprint command.

integer
The integer is the number of figures to the right of the decimal point to print. If not given, the
value of the numdgt variable is used if set, otherwise a default of 6 is used.

e

Use exponential print format. This is the default so this input is redundant.

f

If ‘f’ is found in the string, data values will be printed using a fixed-point format, rather than
the default exponential format. If the vector has assigned units, then the printing will use SPICE
scaling codes and the units abbreviation will be appended, e.g. 2.34mA.

g

Use a fixed-point format with SPICE scaling codes for all values, and do not print units abbrevi-
ations.

The remaining options apply/unapply the switches, whose defaults are set by the print... variables
described above. The format string always overrides the variables.

-

Negate the effect of options that follow.

+

Don’t negate effect of options that follow. This is redundant unless it follows ‘-’.

a

Take printautowidth as if set, or not set if negated.

b

Take nopage as if set, or not set if negated.

h

Take printnoheader as if set, or not set if negated.

i

Take printnoindex as if set, or not set if negated.

p

Take printnopageheader as if set, or not set if negated.

s

Take printnoscale as if set, or not set if negated.

n

Alias for “abhips”.

Examples

276 CHAPTER 4. WRSPICE COMMANDS

print /3f+ahi-ps ...

Print using a fixed three decimal place format, and as if printautowidth, printnoheader, and printnoindex
were set, and printnopageheader and printnoscale were unset.

print /n ...

Print the vectors listed, and nothing but the vectors listed. This is useful when one wants to feed a
simple list of numbers to another application.

print /n-s ...

As above, but print the scale in the first column. The ‘-’ can be used as shown to undo individual
implicit settings from ‘n’.

print /3f v(5)

This prints v(5) to three decimal places in fixed-point notation.

print /4f v(2) v(3) v(4) > myfile

This prints the vectors to four decimal places in the file ”myfile”.

print 2*v(2)+v(3) v(4)-v(1)

This prints the computed quantities using the default format.

4.5.7 The printf Command

The printf command is equivalent to the print command, however output goes to the logging file for
use in operating range and Monte Carlo analysis.

print [/format] [col | line] expr [...]

This is used in codeblocks evaluated while those processes are active.

4.5.8 The return Command

This will cause the currently executing script or codeblock to terminate immediately and return to the
caller.

return [expression]

If an expression follows, it will be evaluated and the global return value will be set to the result. The
global return value is an internal global variable that can be set and queried from any script or the
comand prompt as the special variable name $?. The retval command is used to set the global return
value without immediately returning.

4.5. INPUT AND OUTPUT COMMANDS 277

4.5.9 The sced Command

The sced command brings up the Xic graphical editor (if available) in electrical mode.

sced [filename ...]

This allows schematic capture, with most of the WRspice functionality directly available through the
Xic interface. If the Xic graphical editor is not available for execution, this command will exit with a
message indicating that Xic is not available. Otherwise, the sced command will bring up the schematic
capture front-end with file filename, which must be an Xic input file (not a standard WRspice circuit
file!). If the current circuit originated from Xic, that file will be loaded into Xic if no filename is given.

When Xic saves a native-mode top-level cell containing a schematic, the circuit SPICE listing is
appended to the file. WRspice is smart enough to ignore the geometric information in these files and
read only the circuit listing.

Xic can also be started from the Xic button in the Edit menu of the Tool Control window.

4.5.10 The source Command

The source command is used to load circuit files and command scripts.

source [-r] [-n] [-c] file [file ...]

If more than one file name is given, the files will be concatenated into a temporary file, which is read.
The command will read and process circuit descriptions and command text from the file(s). If .newjob
lines are found within the files, the input will be partitioned into two or more circuit decks, divided by
the .newjob lines. Each circuit deck is processed independently and in sequence.

If a file does not have a path prefix, it is searched for in the search path specified by the sourcepath
variable. If not in the search path or current directory, a full path name must be given.

The source command is internet aware, i.e., if a given filename has an “http://” or “ftp://” prefix,
the file will be downloaded from the internet and sourced. The file is transferred as a temporary file, so
if a permanent local copy is desired, the edit or listing commands should be used to save the circuit
description to disk.

When an input file or set of files is “sourced”, the following steps are performed for each circuit
deck found. The logic is rather complex, and the following steps illustrate but perhaps oversimplify the
process. In particular, the subcircuit/model cache substitution is omitted here.

1. The input is read into a “deck” in memory. Line continuation is applied.

2. In interactive mode, the title line from the circuit is printed on-screen, unless the noprtitle variable
is set, in which case this printing is suppressed. The variable can be set by checking the box in
the source page of the Command Options tool from the Tools menu.

3. The deck is scanned for .param lines which are outside of subcircuit definitions. These are shell
expanded, and used to evaluate .if, .elif and similar lines. Lines that are not in scope are
ignored.

4. Files referenced from .include and .lib lines are resolved and read. At each level, parameters
are scanned again, so that .if, etc. lines do the right thing at each level.

278 CHAPTER 4. WRSPICE COMMANDS

5. Verilog blocks, .exec blocks, and .control blocks are moved out of the main deck into separate
storage.

6. The .exec lines, if any, are executed by the shell.

7. The .options lines are extracted, shell expanded, and evaluated. During evaluation, the shell
receives the assignment definitions.

8. The remaining lines in the deck are shell expanded.

9. Subcircuit expansion is performed. This takes care of parameter expansion within subcircuit
definition blocks.

10. The circuit (if any) is parsed, and added to the internal circuits list.

11. The .control lines, if any, and executed by the shell.

After a source, the current circuit will be the last circuit parsed.

There are three option flags available, which modify the behavior outlined above. These can be
grouped or given as individual tokens, following a ‘–’ character. Note that if a file name starts with ‘–’,
it must be quoted with double-quote marks. The options are applied before files are read.

r

Reuse the current circuit. The current circuit is destroyed before the new circuit is created, which
becomes the current circuit. This option is ignored if -n is also given.

n

Ignore any circuit definition lines in input. Executable lines will still be executed, but no new
circuit will be produced.

c

Ignore any .control commands. However, .exec lines will still be executed.

n and c

If both of the n and c options are given, all lines of input except for the first “title” line are taken
to be executable, and are executed, as if for a startup file.

4.5.10.1 Implicit Source

In many cases, the “source” is optional. If the name of an existing file is given as a command, the
source is applied implicitly, provided that the file name does not clash with a WRspice command.

4.5.10.2 Input Format Notes

The first line in the input file (after concatenation of multiple input files), and the first line following
a /newjob line, is considered a title line and is not parsed but kept as the name of the circuit. The
exceptions to this rule are old format margin analysis input files and Xic files.

Command lines must be surrounded by the lines .exec or .control and .endc in the file, or prefixed
by “*@” or “*#” in order to be recognized as commands, except in startup files where all lines but the
title line are taken as executable. Commands found in .exec blocks or *@ lines are executed before the
circuit is parsed, thus can set variables used in the circuit. Commands found in .control blocks or *#

4.5. INPUT AND OUTPUT COMMANDS 279

lines are executed after the circuit is parsed, so a control line of “ac ...” will work the same as the
corresponding .ac line, for example. Use of the “comment” control prefixes *@ and *# makes it possible
to embed commands in WRspice input files that will be ignored by earlier versions of SPICE.

Shell variables found in the circuit deck (but not in the commands text) are evaluated during the
source. The reset command can be used to update these variables if they are later changed by the shell
after sourcing.

4.5.11 The sprint Command

The sprint command is used to print vector data to a string-type variable.

sprint vname [/format] [line] expr [...]

This is very similar to the print command, however by default output is created as a text string in
a variable whose name is given in the first argument. Variable substitution can then be used to poke
the string text into other commands or output. However, if the first argument is a hyphen (‘-’), then
the text is printed to the standard output, as for the print command.

The output consists of a single line of text, which may be formatted according to the format string,
which if given must be the second argument and is prefixed by a forward slash (‘/’) character. This
is identical to the format string as described for the print command, with inapplicable modes or flags
ignored. Only the ‘line’ mode of the print command is supported, if the explicit keyword is given it is
ignored, however if the ‘col’ keyword is given explicitly, an error results. The default format is line so
the keyword is never needed.

The values of vector results from expressions that follow are formatted and appear in the result
string. Each vector index value will appear so that the resulting string can be quite long. It is likely
that this function will be used only for single scalar values.

4.5.12 The write Command

The write command is used to save simulation data to a file.

write [file [expr ...]]

There are two data formats universally available, the “rawfile” format native to WRspice and other
simulators based on Berkeley SPICE3, and the Common Simulation Data Format (CSDF). The CSDF
is one of the formats generated by HSPICE, and is compatible with post-processors such as Synopsys
WaveView.

In the Red Hat 6 and 7 releases, a third output format is available: the Cadence PSF format. This
support is provided through third-party libraries which support only the indicated operating systems.
Unlike the other formats, PSF output can not be read back into WRspice. This format is used by the
waveform viewer component of the Cadence Analog Design Environment (ADE) product.

PSF output consists of files created in a specified directory. Presently, output is available only for
AC, DC, transient, and operating-point analysis. Only simple analysis is supported, no chained DC or
looping.

To specify PSF output, one gives a “filename”, for example to the write command or the rawfile

variable, in the form

280 CHAPTER 4. WRSPICE COMMANDS

psf[@path]

If this is simply “psf”, output goes to a directory named psf in the current directory. Otherwise, the
psf keyword can be followed by a ‘@’ character and a path to a directory, with no white space around
the @. Output will go to the indicated directory. In either case, the directory will be created if it doesn’t
exist, but in the second case and parent directories must currently exist, they won’t be created.

If the file name is given an extension from among those listed below, CSDF output will be generated.
Otherwise, rawfile format will be used.

.csdf

.trN

.acN

.swN

The N is an integer, and tr, ac, and sw correspond to transient, ac, and dc sweep results, respectively.
This is the same convention as used by HSPICE when generating files for post-processing.

If no expr is given, then all vectors in the current plot will be written, the same as giving the word
“all” as an expr. If, in addition, no file name is given, a default name will be used. The default name is
the value of the rawfile variable if set, or the argument to the -r command line option if one was given,
or “rawspice.raw”.

The command writes out the exprs to the file. First, vectors are grouped together by plots, and
written out as such. For example, if the expression list contained three vectors from one plot and two
from another, then two plots will be written, one with three vectors and one with two. Additionally, if
the scale for a vector isn’t present, it is automatically written out as well.

The default rawfile format is ASCII, but this may be changed with the filetype variable or the
SPICE ASCIIRAWFILE environment variable.

If the appendwrite variable is set, the data will be appended to an existing file.

Files that have been appended to, or have multiple plots, are concatenations of data for a single plot.
This is expected and perfectly legitimate for rawfiles, and for CSDF files used only by WRspice, but
concatenated CSDF files may not be portable to other applications.

4.5.13 The xeditor Command

The xeditor command invokes a text editing window for editing circuit and other text files. It is
available only when graphics is enabled.

xeditor [file]

This is similar to the edit command, however the internal editor is always used. The editor variable and
the environment variables used by the edit command are ignored by the xeditor command.

The xeditor command brings up a general-purpose text editor window. The same pop-up editor is
invoked in read-only mode by the Notes button of the Help menu in the Tool Control window for
use as a file viewer. In that mode, commands which modify the text are not available.

See 3.8 for more information about the text editor.

4.6. SIMULATION CONTROL COMMANDS 281

4.6 Simulation Control Commands

The commands described in this section initiate, control, and monitor WRspice simulations. One can
monitor the progress of a run in two ways, in addition to the percentage complete that is printed in
the Tool Control window. First, the iplot command can be used to plot one or more variables as the
simulation is progressing. To plot v(1), for example, one would type, before the run is started, “iplot
v(1)”. During the run, v(1) will be plotted on screen, with the plot rescaled as necessary. Second, one
can print variables. For example, the trace command can be used, by typing “trace time” before the
run starts, to cause the time value to be printed at each output point during transient analysis.

The iplot and trace commands are examples of what are called “runops”. Other runops include the
stop and measure commands. A runop remains in effect until deleted with the delete command, and
the runops in effect can be listed with the status command. The runops can also be listed, deleted, or
made inactive with the Trace tool from the Tools menu in the Tool Control window. All runops are
available as commands, which apply to any circuit while in force. Some runops can be specified from
within the WRspice input file, in which case the runop applies when simulating that file only. The table
below lists the runops that are presently available.

Runops
Command Input Keyword

save .save

trace -

iplot -

measure .measure

stop .stop

The run can be paused at any time by typing Ctrl-C in the controlling text window. The run can be
resumed with the resume command, or reset with the reset command.

It is possible to transparently execute simulations on a remote machine while in WRspice, if the
remote machine has a wrspiced daemon running. It is also possible to run simulations asynchronously
on the present machine. These jobs are not available for use with the iplot command, however. The
jobs command can be used to monitor their status.

Many of these commands operate on the “current circuit” which by default is the last circuit entered
into WRspice explicitly with the source command, or implicitly by typing the file name. The setcirc
command can be used to change the current circuit. The Circuits button in the Tools menu also allows
setting of the current circuit.

When a circuit file is read, any references to shell variables are expanded to their definitions. Shell
variables are referenced as $name, where name has been set with the set command or in the .options
line. This expansion occurs only when the file is sourced, or the reset command is given, so that if the
variable is changed, the circuit must be sourced or reset to make the change evident in the circuit. If a
variable is set in the shell and also in the .options line, the value from the shell is used.

282 CHAPTER 4. WRSPICE COMMANDS

Simulation Commands
ac Perform ac analysis
alter Change circuit parameter
alterf Dump alter list to Monte Carlo output file
aspice Initiate asynchronous run
cache Manipulate subcircuit/model cache
check Initiate range analysis
dc Initiate dc analysis
delete Delete watchpoint
destroy Delete plot
devcnt Print device counts
devload Load device module
devls List available devices
devmod Change device model levels
disto Initiate distortion analysis
dump Print circuit matrix
findlower Find lower edge of operating range
findrange Find edges of operating range
findupper Find upper edge of operating range
free Delete circuits and/or plots
jobs Check asynchronous jobs
loop Alias for sweep command
mctrial Run a Monte Carlo trial
measure Set up a measurement
noise Initiate noise analysis
op Compute operating point
pz Initiate pole-zero analysis
reset Reset simulator
resume Resume run in progress
rhost Identify remote SPICE host
rspice Initiate remote SPICE run
run Initiate simulation
save List vectors to save during run
sens Initiate sensitivity analysis
setcirc Set current circuit
show List parameters
state Print circuit state
status Print trace status
step Advance simulator
stop Specify stop condition
sweep Perform analysis over parameter range
tf Initiate transfer function analysis
trace Set trace
tran Initiate transient analysis
vastep Advance Verilog simulator
where Print nonconvergence information

4.6. SIMULATION CONTROL COMMANDS 283

4.6.1 The ac Command

The ac command initiates an ac analysis of the current circuit.

ac ac args [dc dc args]

The ac args are the same as appear in a .ac line (see 2.7.2). If a dc sweep specification follows, the ac
analysis is performed at each point of the dc analysis (see 2.7.3).

4.6.2 The alter Command

The alter command allows circuit parameters to be changed for the next simulation run.

alter [device list , param [=] value [param [=] value ...]]

The parameters will revert to original values on subsequent runs, unless the alter command is reissued.

If given without arguments, a list of previously entered alterations of the current circuit, to be applied
in the next analysis run, is printed. List entries may have come from previously given alter commands,
or from assignments to the @device[param] special vectors.

The device list is a list of one or more device or model names found in the circuit. The names are
separated by white space, and the list is terminated with a comma. Following the comma is one or more
name/value pairs, optionally an equal sign can appear between the two tokens. The name is a device or
model keyword, which should be applicable to all of the names listed in the device list. Note that this
probably means that the device list can contain device names or models, but not both. The device and
model keywords can be obtained from the show command.

The alter command can be issued multiple times, to set parameters of devices or models which can’t
be intermixed according to the rule above.

The device list can contain “globbing” (wild-card) characters with similar behavior to globbing (global
substitution) in the WRspice shell. Briefly, ‘?’ matches any character, ’*’ matches any set of characters
or no characters, “[abc]” matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and
“ade”.

When the next simulation run of the current circuit is started, the given parameters will be substi-
tuted. Thus, the show command, if given before the next run, will not show the altered values. The
internal set of altered values will be destroyed after the substitutions.

Examples:

alter R2, resistance=50

alter c{1,2,3}, capacitance 105p

4.6.3 The alterf Command

This will dump the alter list to the output file, for use in Monte Carlo analysis.

alterf

284 CHAPTER 4. WRSPICE COMMANDS

In this approach, the alter command, or equivalently forms like “let @device[param] = trial value”
are used to set trial values in the exec block. Once set, this can be called to dump the values into the
output file.

In 4.3.13, these are added to the logging file automatically, so this command may be obsolete.

4.6.4 The aspice Command

The aspice command allows simulation jobs to be run in the background on the present machine.

aspice infile [outfile]

This command will run a simulation asynchronously with infile as an input circuit. If outfile is given, the
output is saved in this file, otherwise a temporary file is used. After this command is issued, the job is
started in the background, and one may continue using WRspice interactively. When the job is finished,
the rawfile is loaded and becomes the current plot, and any output generated is printed. Specifically,
WRspice forks off a new process with the standard input set to infile, and which writes the standard
output to outfile. The forked program is expected to create a rawfile with name given by a -r command
line option. The forked command is effectively “program -S -r rawfile <infile >outfile, where program
is the spicepath variable (which defaults to calling WRspice), rawfile is a temporary file name, and outfile
is the file given, or a temporary file name. Although the aspice command is designed for use with
WRspice, it may be used with other simulators capable of emulating the WRspice server mode protocol.
One may specify the pathname of the program to be run with the spicepath variable, or by setting an
environment variable.

4.6.5 The cache Command

This function provides a control interface to the subcircuit/model cache.

cache [keyword] [tagname]

The subcircuit/model cache contains representations of blocks of input lines that were enclosed in
.cache and .endcache lines. These representations are used instead of the actual lines of input, reducing
setup time.

The command can have the following forms, the first argument is a keyword (or letter). additional
arguments are tag names (the names that follow “.cache” in SPICE input).

cache h[elp]
Print command usage information.

cache l[ist]
Print a list of the tag names currently in the cache. The cache command with no arguments does
the same thing.

cache d[ump] [tagname...]
This will dump the lines saved in the cache, for each tagname given, or for all names if no tagname
is given. Presently, .param lines are listed as comments; the actual parameters are in an internal
representation and not explicitly listed.

4.6. SIMULATION CONTROL COMMANDS 285

cache r[emove] tagname [tagname ...]
This will remove the cached data associated with each tagname given. The given names will no
longer be in the cache.

cache c[lear]
This will clear all data from the cache.

4.6.6 The check Command

The check command is used to initiate margin analysis. Margin analysis can consist of either a swept
operating range analysis, or a Monte Carlo analysis.

check [-a] [-b] [-c] [-m] [-r] [-f] [-s] [-k] [-h] [-v] [[pstr1] val1 del1 stp1] [[pstr2] val2 del2
stp2] [analysis]

See Chapter 5.1 for a full description of operating range and Monte Carlo analysis. The current circuit
is evaluated, and must have an associated block of control statements which contain the pass/fail script.
A second associated block of executable statements contains initialization commands. These blocks can
be provided in the circuit file, or be previously defined codeblocks bound to the circuit. Codeblocks
are executable data structures described in 4.5.1. Setting up the file in one of the formats described
described in Chapter 5.1 will ensure that these blocks are created and bound transparently, however it
is possible to do this by hand.

The option characters can be grouped following a single “-”, or entered separately.

-a

If the -a flag is given, operating range analysis is performed at every point (all points mode).
Otherwise, the analysis attempts to limit computation by identifying the contour containing the
points of operation. This algorithm can be confused by operating ranges with strange shapes, or
which possess islands of fail points. If the input file contains a .checkall line, then the -a flag to
the check command is redundant, all points will be checked in this case.

-b

If this is given, the analysis will be paused after setup and the check command will return. This
is the start for atomic Monte Carlo (see 5.6); a script can call the mctrial command numerous
times at this point, then “check -c” to clean up and end the analysis.

-c

The -c (clear) option will clear any margin analysis in progress if the analysis has been paused, for
example by pressing Ctrl-C, or if in an atomic Monte Carlo script. Return is immediate whether
or not there is a present analysis to clear. Unlike in release 4.3.8 and earlier, no new analysis is
started, and other options are ignored.

A paused margin analysis is resumed if the check command is given which does not have the -c

option set, and any arguments given in this case are ignored. The resume command will also
restart a paused margin analysis.

-m

If the -m option is given, Monte Carlo analysis is performed, rather than operating range analysis.
This is the default if a .monte line appeared in the file; the -m option is only required if there is no
.monte line. The -a option is ignored if -m is given, as is .checkall. Monte Carlo analysis files
differ from operating range files only in the header (or header codeblock). During Monte Carlo

286 CHAPTER 4. WRSPICE COMMANDS

analysis, the header block is executed before every simulation so that variables can be updated.
In operating range analysis variables are initialized by the header block only once, at the start of
analysis.

-r

If the -r (remote) option is given, remote servers will be assigned simulation runs, allowing par-
allelism to increase analysis speed. The remote servers must have been specified through the
rhost command, and each must have a wrspiced server running. More information on remote
asynchronous runs can ge found in 4.6.28 and 4.6.29.

Ordinarily, during operating range and Monte Carlo analysis, only the current data point is retained.
The amount of data retained can be altered with the -f, -s, and -k options. However, if a .measure

line appears in the circuit deck, or the iplot runop is active, data will be retained internally so that the
.measure or iplot is operational.

-f

The -f option will cause the data for the current trial to be retained. This is implied if any
.measure lines are present, or if an iplot is active. The data are overwritten for each new trial.
The data for the last trial are available after the analysis is complete, or can be accessed for
intermediate trials if the analysis is paused.

-s

The -s option also causes retention of the data for the current trial, but in addition will dump the
data to a family of rawfiles, similar to the segment keyword of the .tran line (though this works
with other than transient analysis). The default file name is the name of the range analysis output
file, suffixed with “.sNN ”, where NN is 00, 01, etc. Each trial generates a new suffix in sequence.

-k

With the -k option, all data are retained, in a multi-dimensional plot. Note that this can be
huge, so use of the maxdata variable and .save lines may be necessary. One can see the variations
by plotting some or all of the dimensions of the output. Recall forms like v(1)[N] refer to the
N+1 ’th trial, and v(1)[N,M] includes the data for the N+1 ’th to the M+1 ’th trials. The mplot
command has a facility for displaying trial data in a simplified manner.

-h

Finally, the -h (help) option will simply print a brief summary of the options to the check com-
mand.

-v

If -v (verbose) is given, results and other messages are printed on-screen as the analysis is per-
formed, otherwise the analysis is silent, except for any printing statements executed in the associ-
ated command scripts. The mplot command can be used to follow progress graphically.

If an iplot is active, -f (current trial data retention) is implied. The data will be plotted for each
trial in the same iplot, erasing after each trial is complete. If -k is given, all data will be plotted,
without erasure. Note that an iplot doubles internal memory requirements.

The command line may include one or two range specifications. In operating range analysis, each
specification consists of an optional parameter specification string, followed by three numbers. These
numbers will augment or override the checkVAL1, checkDEL1, checkSTP1, checkVAL2, checkDEL2, and
checkSTP2 vectors that may be in effect. The numbers are parsed in the order shown, and all are actually
optional. A non-numeric token will terminate a block, and missing values must be set from the vectors.

4.6. SIMULATION CONTROL COMMANDS 287

In Monte Carlo analysis, each block can contain only a single number, which will override the
checkSTP1 and checkSTP2 values (if any), in that order. These values are used to define how many
Monte Carlo trials to perform.

The optional pstr1 and pstr2 strings take the same format and significance as in the sweep command.
See the description of that command for a description of the format. If a parameter specifier is given,
the specified device parameters will be altered directly, and the variables and vectors normally used to
pass values will not be set. This applies only to operating range analysis, and the explicit parameter
strings can only be applied from the check command line and not from the file. If the analysis is two
dimensional, then both dimensions must have a parameter specification, or neither dimension can have
a parameter specification; the two mechanisms can not be mixed.

The analysis to be performed is given, otherwise it is found in the circuit deck. In interactive mode,
if no analysis is specified, the user will be prompted for an analysis string.

During operating range analysis, a file is usually created and placed in the current directory for
output. This file is named with the base name of the input file, with an extension .dNN, where NN is
replaced with 00, 01, etc. — the first case where the filename is unique. If for some reason the input file
name is unknown, the basename “check” will be used. Similarly, in Monte Carlo analysis, a file named
basename.mNN is generated. In either case, the shell variable mplot cur is set to the current output file
name. These files can be plotted on-screen with the “mplot [filename]” command.

The results from operating range/Monte Carlo analysis are hidden away in the resulting plot struc-
ture. The plot can be displayed by entering “mplot vec” where vec is any vector in the plot.

When a .measure is included in an iterative analysis, data are saved as follows. Before each iteration,
the previous result vector and its scale are saved to the end of a “history” vector and scale, and are
then deleted. The result vector and scale are recreated when the measurement is completed during the
iteration. Thus, at the end of the analysis, for a measurement named “example”, one would have the
following vectors:

example the result from the final trial
example scale the measurement interval or point in the last trial
example hist results from the prior trials
example hist scale intervals from the prior trials

Thus, during each trial, the result vector will have the same properties as in a standard run. It can
be used in the .control block of a Monte Carlo or operating range file (recall that $?vector can be used
to query existence, and that if there is no checkPNTS vector defined, the .control block is called once
at the end of each trial).

In the current circuit, the parameters to be varied are usually included as shell variables $value1

and $value2. These are special hard-coded shell variables which contain the parameter values during
simulation. Before the file is sourced (recall that variable substitution occurs during the read-in), these
variables can be set with the set command, and the file simulated just as any other circuit. Initially, the
variables $value1 and $value2 are set to zero. The value1 and value2 names can be changed to other
names, and other mechanisms can be used to supply trial values, as described in Chapter 5.1.

Briefly, operating range analysis works as follows. The analysis range and other parameters are
specified by setting certain vectors in the header script, or by hand. The range is evaluated by rows
(varying value1) for each column (value2) point. Columns are then reevaluated if the terminating pass
point was not previously found. For a row, starting at the left, points are evaluated until a pass point is
found. The algorithm skips to the right, and evaluates toward the left until a pass point is found. This
minimizes simulation time, however strange operating ranges, such as those that are reentrant or have
islands, will not be reproduced correctly. The only fool-proof method is to evaluate every point, which

288 CHAPTER 4. WRSPICE COMMANDS

will occur if the -a option is given, or the .checkall line was given in the input file.

The range of evaluation is set with center , step, and number variables. The number is the number
of steps to take above and below the center . Thus, if number is 1, the range is over the three points
center-step, center , and center+step. One can set ranges for value1 and value2, or alternatively one can
set value2, and the algorithm can determine the operating range for value1 at each value2 point. These
values represent the parameter variation range in operating range analysis, but serve only to determine
the number of trials in Monte Carlo analysis.

There are a number of vectors with defined names which control operating range and Monte Carlo
analysis. In addition, there are relevant shell variables. The check command creates a plot structure,
which contains all of the special control vectors, plus vectors for each circuit node and branch. This
plot becomes the current plot after the analysis starts. The special vectors which have relevance to the
operating range analysis are listed below.

checkPNTS (real, length >= 1)
These are the points of the scale variable (e.g., time in transient analysis) at which the pass/fail
test is applied. If a fail is encountered, the simulation is stopped and the next trial started. This
vector is usually specified as an array, with the compose command, and is used in operating range
and Monte Carlo analysis. If not specified, the evaluation is performed after the trial completes.

checkVAL1 (real, length 1)
This is the initial central value of the first parameter to be varied during operating range analysis.
It is not used in Monte Carlo analysis.

checkDEL1 (real, length 1)
The first central value will be incremented or decremented by this value between trials in operating
range analysis. It is not used in Monte carlo analysis.

checkSTP1 (integer, length 1)
This is the number of trials above and below the central value. In Monte Carlo analysis, it partially
specifies the number of simulation runs to perform, and specifies one coordinate of the visual array
used to monitor progress (with the mplot command). In operating range analysis, the default is
zero. In Monte Carlo analysis, the default is 3.

checkVAL2, checkDEL2, checkSTP2
These are as above, but relate to the second parameter to be varied in the circuit in operating range
analysis. In Monte Carlo analysis, only checkSTP2 is used, in a manner analogous to checkSTP1.
The total number of simulations in Monte Carlo analysis is (2*checkSTP1 + 1)*(2*checkSTP2 +
1), the same as would be checked in operating range analysis.

checkFAIL (integer, length 1, value 0 or 1)
This is the global pass/fail flag, which is set after each trial, 1 indicates failure. This variable is
used in both operating range and Monte Carlo analysis.

checkINIT (integer, length 1, value 0 or 1)
This is set to 1 by WRspice before the initial execution of the header block, before operating range
or the first Monte Carlo trial. It is set to 0 otherwise. Thus one can identify the first trial in Monte
Carlo analysis from within the header script.

opmin1, opmax1, opmin2, opmax2 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the one
parameter for each value of the other parameter. These vectors contain the values found. They
are not used in Monte Carlo analysis.

4.6. SIMULATION CONTROL COMMANDS 289

value (real, length variable)
This vector can be used to pass trial values to the circuit, otherwise shell variables are used. This
pertains to operating range and Monte Carlo analysis.

checkN1, checkN2 (integer, length 1)
These are the indices into the value array of the two parameters being varied in operating range
analysis. The other entries are fixed. These vectors are not used if shell variables pass the trial
values to the circuit, and are not used in Monte Carlo analysis.

The shell variables are:

checkiterate (0-10)
This is the binary search depth used in finding operating range extrema. This is not used in Monte
Carlo analysis.

value1, value2
These variables are set to the current trial values to be used in the circuit (parameters 1 and 2).
The WRspice deck should reference these variables (as $value1 and $value2) as the parameters
to vary. Alternatively, the value array can be used for this purpose. These variables can be used
in Monte Carlo analysis. Additionally, these variables, and a variable named “value” can be set
to a string. When done, the variable or vector named by the string will take on the functionality
of the assigned-to variable. For example, if set value1 = L1 is given, the variable L1 is used to
pass trial parameter 1 values to the circuit (references are $L1).

Instead of using shell substitution and the value1/value2 variables to set varying circuit param-
eters, one can use an internal parameter passing method which is probably more efficient.

The form, given before the analysis,

set value1="%devicelist,paramlist"

sets up a direct push into the named parameters of listed devices, avoiding shell expansion and
vectors. Note that the list must follow a magic ‘%’ character, which tells the system to use the
devlist ,paramlist syntax, as used in the sweep command (see 4.6.39.2). This is equivalent to giving
pstr1 , pstr2 on the command line.

The jjoprng2.cir file in the examples illustrates use of this syntax.

The checkVAL1, checkDEL1, etc. vectors used must be defined and properly initialized, either in the
deck or directly from the shell.

The shell variables value1 and value2 are set to the current variable 1 and variable 2 values. In
addition, vector variables can be set. This is needed for scripts such as optimization where the parameter
to be varied is required to be under program control. If a vector named value exists, as does a vector
named checkN1, then the vector entry value[checkN1] is set to $value1 if checkN1 is in the range of
value. Similarly, if a vector checkN2 exists, then the vector entry value[checkN2] is set to $value2, if
checkN2 is in the range of value. Thus, instead of invoking $value1 and $value2 in the WRspice text,
one can instead invoke $&value[$&checkN1], $&value[$&checkN2], where we have previously defined
the vectors value, checkN1, checkN2. The file could have a number of parameters set to $&value[0],
$&value[1], If checkN1 is set to 2, for example, $&value[2] would be varied, and the other values
would be fixed at predefined entries. The name “value” can be redefined by setting a shell variable
named “value” to the name of another vector.

If any of the shell variables value1, value2, or a shell variable value are set to a string, then the
shell variable or vector named in the string will have the same function as the assigned-to variable.

290 CHAPTER 4. WRSPICE COMMANDS

For example, if in the header one has “set value1 = L1”, then the variable reference $L1 would be
used in the file to introduce variations, rather than $value1. Similarly, if we have issued “set value =

myvec”, the vector myvec would contain values to vary (using the pointer vectors checkN1 and checkN2),
and a reference would have the form $&myvec[$&checkN1]. Note that the alternate variables are not
automatically defined before the circuit is parsed, so that they should be set to some value in the header.
The default $value1 and $value2 are predefined to zero.

In Monte Carlo analysis, the header block is executed before each simulation. In the header block,
shell variables and vectors may be set for each new trial. These variables and vectors can be used in the
SPICE text to modify circuit parameters. The names of the variables used, and whether to use vectors
or variables, is up to the user (variables are a little more efficient). Monte Carlo analysis does not use
predefined names for parameter data. Typically, the gauss function is used to specify a random value
for the variables in the header block.

One can keep track of the progress of the analysis in two ways. WRspice will print the analysis point
on the screen, plus indicate whether the circuit failed or passed at the point, if the -v option was given
to the check command. The echo command can be used in the codeblock to provide more information
on-screen, which is printed whether or not the -v option was given. The second method uses the mplot
command, which graphically records the pass/fail points. In this mode, the relevant arguments to mplot
are as follows.

mplot -on

This will cause subsequent operating range analysis results to be plotted while the analysis is
running.

mplot -off

This will return to the default (no graphical output while simulating).

The analysis can search for the actual edge of the operating region for each row and column. These
data are stored in vectors named opmin1, opmax1, opmin2, and opmax2 with length equal to the number
of points of the fixed variable. For example, opmin1[0] will contain the minimum parameter 1 value
when parameter 2 is equal to central2 - delta2*steps2, and opmin1[2*steps2] will contain the minimum
parameter 1 value when parameter 2 is central2 + delta2*steps2.

The binary search depth is controlled by a shell variable checkiterate, with possible values of 0–10. If
set to 1–10, the search is performed (setting to 0 skips the range finding). Higher values provide more
accuracy but take more time. If the search is performed, a vector called range and its scale r scale are
also produced. These contain the Y and X coordinates of the operating range contour, which can be
plotted with the command “plot range”.

A typical approach is to first unset checkiterate, checkSTP1, and checkSTP2. The check command
is used to run a single-point analysis, while changing the values of value1 and value2 until a pass point
is found. After the pass point is found, checkiterate can be set to a positive value, which will yield the
ranges for the two variables. Then, the checkSTP1 and other variables can be set to cover this range
with desired granularity, and the analysis performed again.

When only one point is checked (checkSTP1 = checkSTP2 = 0), no output file is generated. If
checkiterate is nonzero and the -a option is given, and a vector is used to supply trial values, the range
of each entry in the vector is determined, and stored in the opmin1 and opmax1 vectors. A mask vector
can be defined, with the same length as the value vector and same name with the suffix “ mask”. Value
entries corresponding to nonzero entries of this vector do not have the range computed. If the -a flag
is not given, the range is found in the usual way. The central value must pass, or the range will not be
computed.

4.6. SIMULATION CONTROL COMMANDS 291

See Chapter 5.1 for more information on performing operating range and Monte Carlo analysis, and
the suggested file formats.

4.6.7 The dc Command

The dc command performs a swept dc analysis of the current circuit.

dc .dc dc args

The dc args are the same as used in the .dc line (see 2.7.3).

4.6.8 The delete Command

The delete command is used to remove “runops” (traces or breakpoints) from the runop list.

delete [[in]active] [all | save | trace | iplot | measure | stop | number] ...]

With no arguments, a list of existing runops is printed, and the user is prompted for one to delete. The
status command also prints a list of runops. Runopss can also be controlled with the panel brought up
with the Trace button in the Tools menu.

If the inactive/active keyword is given, breakpoints listed to the right but before another (in)active
keyword are deleted only if they are inactive/active. Otherwise, they are deleted unconditionally. If one
of stop, measure, trace, iplot, or save is given, runops of that type only are deleted. These keywords
can appear in combination.

Each runop is assigned a unique number, which is available through the status command. This
number can also be entered on the command line causing that runop to be deleted (if the activity
matches the inactive keyword, if given). A range of numbers can be given, for example “2-6”. There
must be no white space in the range token.

Examples:

Delete all traces and iplots:
delete trace iplot

Delete all inactive runops:
delete inactive all

Delete all traces and inactive iplots:
delete traces inactive iplots

4.6.9 The destroy Command

The destroy command will delete plot structures.

destroy [all] | [plotname ...]

292 CHAPTER 4. WRSPICE COMMANDS

Giving this command will throw away the data in the named plots and reclaim the storage space. This
can be necessary if a lot of large simulations are being done. WRspice should warn the user if the size
of the program is approaching the maximum allowable size (within about 90%), but it is advisable to
run the rusage space command occasionally if running out of space is a possibility. If the argument to
destroy is all, all plots except the constants plot will be thrown away. It is not possible to destroy the
constants plot. If no argument is given the current plot is destroyed.

4.6.10 The devcnt Command

This command will print a table of instantiation counts of the different device types found in the current
circuit.

devcnt [model name ...]

These are the number of device structures used in the internal representation of the circuit, after sub-
circuit expansion.

If no arguments appear, all devices found will be included. Otherwise, arguments are taken as model
names (the leftmost element printed in the output), which may include use of “globbing” characters
‘*’ and ‘?’ and friends. Briefly, ‘?’ matches any character, ’*’ matches any set of characters or no
characters, “[abc]” matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and “ade”.
Matching is case-insensitive.

Note that every device has a model, which is created internally if not given explicitly. In particular,
simple resistor, inductor, and capacitor devices have default models named “R”, “L”, and “C”.

The devcnt table for all devices is also appended to the standard output of batch jobs.

4.6.11 The devload Command

This command will load a loadable device module into WRspice.

devload [module path | all]

WRspice supports runtime-loadable device modules. Once loaded, the corresponding device is avail-
able during simulation runs, in the same way as the internally-compiled devices in the device library.

This command can be used at any time to load a device module into WRspice. If given without
arguments, a list of the dynamically loaded device modules currently in memory is printed. Otherwise,
the single argument can be a path to a loadable device module file to be loaded, or a path to a directory
containing module files, all of which will be loaded.

Once a module is loaded, it can not be unloaded. The file can be re-loaded, however, so if a module
is modified and rebuilt, it can be loaded again to update the running WRspice.

On program startup, by default known loadable device modules are loaded automatically. Modules
are known to WRspice through the following.

1. If the modpath variable is set to a list of directory paths, modules are loaded from each directory
in the list. The modpath can be set from the .wrspiceinit file.

4.6. SIMULATION CONTROL COMMANDS 293

2. If the modpath variable is not set, then modules are loaded from the devices subdirectory of the
startup directory in the installation area (which is generally installed as
/usr/local/xictools/wrspice/startup/devices). Note that if the user sets up a modpath,
this directory must be explicitly included for these devices, which are supplied with the WRspice

distribution, to be loaded.

If the boolean variable nomodload is set in the .wrspiceinit file, then the module auto-loading
is suppressed. Equivalently, giving the “-mnone” command line option will also suppress auto-loading,
by actually setting the nomodload variable. Auto-loading is also suppressed if the “-m” command line
option is given, which is another method by which modules can be loaded.

If, instead of a module path, the keyword “all” is given to the devload command, all known
modules as described above will be loaded, the same as for the auto-load. This will be done whether or
not nomodload is set.

This gives the user flexibility in setting up devices in the .wrspiceinit file. Normally, devices are
auto-loaded after .wrspiceinit is processed, so that calls to the devmod command (for example) in
.wrspiceinit would likely fail. However, one can first call “devload all” to auto-load the devices,
and set nomodload to avoid the automatic loading. Then, one can call commands which require that
devices be loaded.

The “all” form may also be useful in scripts, in conjunction with setting the modpath to different
values.

4.6.12 The devls Command

This command lists currently available devices.

devls [key[minlev[-maxlev]]] ...

This commnd prints a listing of devices available for use in simulation, from the built-in device library
or loaded as modules at run time. With no argument, all available devices are listed.

Arguments take the form of a key letter, optionally followed by an integer, or two integers separated
by a hyphen to indicate a range. This will print only devices that match the key letter, and have model
levels that match the integer or integer range given. Any number of these arguments can be given.

Example: devls c r1 m30-40

This will print all devices keyed by ‘c’ (capacitors), all devices keyed by ‘r’ (resistors) with model
level 1, and devices keyed by ‘m’ (mos) with model levels 30–40 inclusive.

4.6.13 The devmod Command

It is possible to program the model levels associated with devices in WRspice.

devmod index [level ...]

This allows the user to set up model levels for compatibility with another simulator, or to directly
use simulation files where the model level is different from that initially assigned in WRspice. The effect
is similar to the .mosmap input directive, but applies to all device types.

294 CHAPTER 4. WRSPICE COMMANDS

All devices have built-in levels, which are the defaults. This command allows levels to be changed in
the currently running WRspice. The change occurs in memory only so is not persistent across different
WRspice sessions. However, the command can be used in a startup script to perform the changes each
time WRspice is invoked.

The first argument to devmod is a mandatory device index. This is an integer that corresponds
to an internal index for the device. These are the numbers that appear in the listing from the devls
command.

If there are no other arguments, the device is simply listed, in the same format as the entries from
devls.

Any following arguments are taken as model levels. Each level is an integer in the range 1–255, and
up to eight levels can be given. The device will be called for any of the level numbers listed.

After pressing Enter, the device entry is printed with the new model levels. The entire device list is
checked, and if there are clashes from the new model level, a warning is issued. If two similar devices
have the same model number, the device with the lowest index will always be selected for that value.

There are a few devices that have levels that can not be changed. These are built-in models, such as
MOS and TRA, where the model code is designed to handle several built-in levels (such as MOS levels
1–3 and 6). Attempting to change these levels will fail.

Model level 1 is somewhat special in that it is the default when no model level is given in SPICE
input for a device. Level 0 is reserved for internal use and can not be assigned. The largest possible
model level is 255 in WRspice.

4.6.14 The disto Command

The disto command will initiate distortion analysis of the current circuit.

disto disto args [dc dc args]

The disto args are the same as appear in a .disto line (see 2.7.4). If a dc sweep specification follows,
the distortion analysis is performed at each point of the dc analysis (see 2.7.3).

4.6.15 The dump Command

The dump command sends a print of the internal matrix data structure last used by the simulator for
the current circuit to the standard output. It is used for program debugging, amd may also be useful
for analyzing convergence problems.

dump [-r] [-c] [-t] [-f filename]

The command takes the following optional arguments.

-r

Print the reordred matrix, the default is to print the matrix as it exists before internal reordering
is performed to optimize stability.

-c

Print in compact form, showing only which elements are nonzero (marked with ‘x’) and zero
(marked with ‘.’).

4.6. SIMULATION CONTROL COMMANDS 295

-t
Terse format, do not print header information.

-f filename
Print output in the given file.

4.6.16 The findlower Command

This command can be used to find the lower operating limit of one or two parameters in the circuit. See
the findrange command for a complete description.

findlower findrange args

4.6.17 The findrange Command

The command, and its associated commands findlower and findupper, can be used to find the oper-
ating margins of one or two circuit parameters.

findrange [-n1 name1] [-n2 name2] [[pstr1] val1] [[pstr2] val2]

This utilizes the infrastructure developed for Operating Range analysis in 5.1, but can be used in
scripts for finer control of the process. The depth used in the binary search can be given in the checkiterate
variable as for standard range analysis, or defaults to 6 if not set.

These commands can be running only when a range analysis has been initiated with the check
command (see 4.6.6), generally by giving the “-b” option. Any number of the findrange commands
or the variants can be given, as well as other commands such as mctrial. When finished the check
command should be given with the “-c” option to terminate the mode and free internal memory.

A usage example can be found in the examples: JJexamples/nor op.cir.

By default, the lower and upper range values will be saved in vectors named opmin1, opmin2, opmax1,
and opmax2, which are created if necessary. If given following “-n1” or “-n2” respectively, name1 and
name2 tokens will serve as a base for new names that replace vector names opmin1, opmin2, opmax1,
opmax2 for range results. For example,

-n1 foo

will save output in vectors named foo min, foo max.

There is a subtlety in the syntax: a double-quoted name, e.g., -n1 "pname", is accepted and the
quotes will be stripped before use. The quotes prevent parameter substitution, so this allows use of a
name that has also been defined as a parameter (with .param directive or otherwise).

Each of the three functions can take parameter definitions and range parameters, in the same syntax
as supplied to the check and sweep commands, however only the starting parameter value is needed.
The simulation must run correctly at the starting value. The command line may include one or two
specifications. Each specification consists of an optional parameter specification string, followed by the
starting value. The numbers will override the checkVAL1, and checkVAL2 vectors that may be in effect.

The optional pstr1 and pstr2 strings take the same format and significance as in the sweep command.
See the description of that command for a description of the format. If a parameter specifier is given,

296 CHAPTER 4. WRSPICE COMMANDS

the specified device parameters will be altered directly, and the variables and vectors normally used to
pass values will not be set. If two parameters are being set, either both must be set using the syntax
above, or neither, the two methods can’t be mixed.

4.6.18 The findupper Command

This command can be used to find the upper operating limit of one or two parameters in the circuit.
See the findrange command for a complete description.

findupper findrange args

4.6.19 The free Command

The free command is used to free memory used by circuit and plot structures.

free [c[ircuit]] [p[lot]] [a[ll]] [y[es]]

This command releases the memory used to store plot and circuit structures for reuse by WRspice. The
virtual memory space used by plots in particular can grow quite large. If free is given without an argu-
ment, the user is queried as to whether to delete the current plot and circuit structures (independently).
If the argument all is given, the user is queried as to whether to delete all plot and circuit structures. If
the argument circuit is given, only circuits will be acted on. Similarly, if the argument plot is given,
only plots will be acted on. If neither circuit or plot is given, both circuits and plots will be acted on.
If the argument yes is given, the user prompting is skipped, and the action performed. Only the first
letter of the keywords is needed. Plots can also be freed from the panel brought up by the Plots button
in the Tools menu, and circuits can be freed from the panel brought up with the Circuits button. The
destroy command can also be used to free plots.

4.6.20 The jobs Command

The jobs command produces a report on the asynchronous WRspice jobs currently running. Asyn-
chronous jobs can be started with the aspice command locally, or on a remote system with the rspice
command. WRspice checks to see if the jobs are finished every time a command is executed. If a job is
finished, then the data are loaded and become available. This command takes no arguments.

4.6.21 The mctrial Command

This is a command to run a single trial for use when performing script-driven Monte Carlo analysis.

mctrial

This can run only when a Monte Carlo analysis mode has been initiated with the check command,
generally by giving the “-b” and “-m” options. Any number of the mctrial commands can be given, as
well as other commands such as findrange. When finished the check command should be given with
the “-c” option to terminate the mode and free internal memory.

A usage example can be found in the examples: JJexamples/nor mc.cir.

4.6. SIMULATION CONTROL COMMANDS 297

4.6.22 The measure Command

The measure command allows one to set up a runop (see 4.6) which will identify a measurement point
or interval, and evaluate an expression at that point, or call a number of measurement primitives that
apply during the interval, such as rise time or pulse width.

measure analysis resultname point — interval [measurements] [postcmds]
measure analysis resultname param=expression [postcmds]

The command will apply, if active, when any circuit is being run. There is also a .measure input
syntax element which will set up the measurement on that circuit only. Both use the identical syntax
described below. The syntax is based on the .measure statement in HSPICE.

analysis
This specifies the type of analysis during which the measurement will be active. Exactly one of
the following keywords should appear in this field: tran, ac, dc.

resultname
This field specifies a name for the measurement. The name should be unique among the measure-
ments in the circuit, and among vectors in scope during simulation. The name should start with
an alphabetic character and contain no white space or other special characters.

A vector with this name will be added to the current plot, if the measurement is successful. Vector
names found in measure commands and .measure lines are added to the internal save list, guarantee-
ing that the necessary data will be available when needed, whether or not the vector has been mentioned
in a .save line.

4.6.22.1 Point and Interval Specification

The field that follows the resultname contains a description of the conditions which initiate a mea-
surement. There are three basic types: a point specification, an interval specification, and a post-
measurement specificantion.

The interval begins with the “trigger” and ends with the “target”. Measurement will apply during
this interval. If no target is given, the trigger sets the point, where measurement will be performed.
The trigger and target are independently specified as follows:

point

[trig] pointlist

This consists of the keyword trig (which is optional) followed by a point specification list. The
keyword “from” is equivalent to “trig”.

interval

[trig] pointlist targ pointlist

An interval contains a second point specification initiated with the mandatory keyword targ. The
keyword “to” is equivalent to “targ”.

298 CHAPTER 4. WRSPICE COMMANDS

post-measurement

param=expression

Measurements in this form will be performed when all point and interval measurements are com-
plete. After all point and interval measurements have been performed, the expression will be
evaluated and the result saved in resultname. The expression can reference other measurement
results in addition to the usual vectors and functions provided by the system. These measurement
lines are evaluated in the order found in the input.

pointlist

pointspec [pointspec] ...

The point is specified with a list of pointspec specifications, and the event is registered on the first
occasion when all pointspec elements are true, i.e., the conjunction is true.

pointspec
keyword expression1 [=][val=] [expression2] [cross=crosses] [rise=rises] [fall=falls]
[minx=min delta] [td=delay]

The pointspec begins with one of the following kewords: before, at, after, when. The at keyword
strobes, meaning that the event is triggered only if the conjunctions (other pointspecs) in the list are true
at the specified event. The after and when keywords are equivalent, but varied use can give a natural
language feel to the conjuction list. They are not strobing, meaning that the conjunctions can become
true anytime at or after the specified event. The before keyword negates logic: the pointspec is true
before the specified event. This can be useful as an element in the conjunction list.

Once a pointspec becomes triggered, it remains triggered for the remainder of the simulation run. Once
triggered, a before pointspec will evaluate false, preventing the overall list from triggering. Otherwise,
the overall list triggers when each pointspec is true. Similarly, an at clause that did not have all
conjunctions true at its event time will thereafter always be false.

Following the keyword are one or two general expressions. There can be an optional equal sign (“=”)
or a “val” keyword “val=” between the expressions.

An expression in this context can be:

• A number or constant expression. This is taken as the triggering point, meaning that the event
occurs during simulation when the scale variable is equal to or exceeds the value.

• An integer enclosed in square brackets. This is interpreted as an output index, which increments
whenever data would be written out from the running simulation. This is most useful when the
printing increment is constant. The event triggers when the output index equals the integer given.

• The resultname of a measure in the circuit. The event occurs when the referenced measurement is
performed.

• A general expression consisting of constants, vector names, and circuit variables. Frequently this
will be simply a vector name corresponding to a node voltage or branch current in the circuit.

In WRspice, an expression token is the minimum text required for a syntactically complete expression,
and may include white space. Single quotes or parentheses can be used to delimit expressions in the

4.6. SIMULATION CONTROL COMMANDS 299

pointspec, if nexessary. The normal single-quote expression expansion and substitution is suppressed in
this context.

If only one expression is given, and it is not a constant expression or a measure name, the event
is triggered at the first time the expression becomes logically true, meaning that the absolute value is
one or larger. This corresponds to logical true produced by comparison and other logical operations in
WRspice. For example, the expression “v(5) > 0.25” returns 0 if false and 1 if true.

It may be a bit confusing but the form expr1=expr2 is interpreted as two expressions, but the same
form with any relational operator other than = is taken as a single expression with a binary result. Either
the symbol or the keyword equivalent can be used. The relational operators available are listed below.

eq or = equal to
ne or <> not equal to
gt or > greater than
lt or < less than
ge or >= greater than or equal to
le or <= less than or equal to

If two expressions are given, neither can be a measure result name. We are implicitly comparing
the values of the two expressions, finding points where the two expressions are equal. By default, the
first time the values of the two expressions cross will trigger the event. The following keywords can be
assigned an integer value to trigger at the indicated point.

cross=crosses
Integer crosses is the number of crossings.

rise=rises
Integer rises is the number of times that expression1 rises above expression2.

fall=falls
Integer falls is the number of times that expression1 falls below expression2.

minx=min delta
Real min delta is the minimum time before a following crossing event will be recognized, used to
suppress spurious crossings from noise or ringing.

td=delay
If two expressions are given, the delay is the amount of scale value (e.g., time in transient analysis)
before starting to look for crossing events.

If one expression is given, and the expression is not constant or a measure result name, the delay
is the amount of the scale value to wait before checking to see if the expression evaluates true. If
the expression is a measurement name, than the delay is added to the measurement time of the
referenced measurement.

There is a special case, where no expressions are given, only a td=delay value. This can be a second
or subsequent pointspec in the pointlist. This will trigger at the time of the previous pointspec in
the list (to the left) delayed by delay.

ts=delay
This is similar to td, however it is strobing. In the two expression case, in addition to having the
effect of td, it will convert when and after clauses to work as at, requiring conjunctions to be true
at the time of the event. It simply acts as td for at and before.

In the single expression case, it requires that the expression and any conjunctions be true at the
value given for ts.

300 CHAPTER 4. WRSPICE COMMANDS

Examples:
at v(2)=0.5 rise=3 td=0.2nS after td=0.1nS

Trigger 0.1nS after the third rising edge of v(2) after 0.2nS crosses 0.5V.
when v(2)<v(1) before v(2)<v(3)

Trigger the first time that v(2) < v(1) if and only if v(2) < v(3) has never been true.

4.6.22.2 Syntax Compatibility

The present syntax supported by the measure command and .measure lines in WRspice is a superset
of the previous syntax cases, which are shown below. These should all work in the present system.

Form 1:

trig|targ at=value

Form 1 is straightforward; the interval starts (trig) or ends (targ) at value. Value must be within
the simulation range of the scale variable (e.g., time in transient analysis).

The same effect can be achieved with:

from=value to=value

Form 2:

trig|targ variable [val=]value [td=delay] [cross=crosses] [rise=rises] [fall=falls] [minx=min delta]

Form 2 allows the interval boundaries to be referenced to times when a variable crosses a threshold.
The variable can be any vector whose value is available during simulation. The value is a constant
which is used to measure crossing events. The val= which precedes the value is optional. At least one
of the rise/fall/cross fields should be set. Their values are integers which represent the variable
crossing the threshold a number of times. The rise indicates the variable rising through the threshold,
fall indicates the variable decreasing from above to below the threshold, and cross indicates rises +

falls. If given, the minx value sets the minimum time delta between the crossing events, those that
occur too soon are ignored. This can be used to suppress false triggering from ringing or noise. The
interval boundary is set when the specified number of transitions is reached.

If the delay is specified, transition counting starts after the specified delay.

Example:
trig v(2) 2.5 td=0.1ns rise=2

This indicates that the interval begins at the second time v(2) rises above 2.5V after 0.1ns.

Form 3:

trig|targ when expr1=expr2 [td=delay] [cross=crosses] [rise=rises] [fall=falls] [minx=min delta]

The third form is similar to the second form, except that crossings are defined when expr1 = expr2.
These are expressions, which must be enclosed in parentheses if they contain white space or commas. A
rise is defined as expr1 going from less than to greater than expr2.

4.6. SIMULATION CONTROL COMMANDS 301

4.6.22.3 Measurements

One should be aware that measurements are performed using data saved in the plot structure as a
simulation progresses. The accuracy of the results is directly affected by the density of saved points.
In transient analysis, one may wish to use internal time point data by setting the steptype=nousertp

option. This avoids the interpolation to tranient time increments which may reduce accuracy if the
increment is too coarse.

The following measurements are available when an interval has been specified.

find expr
Evaluate the difference: expr at target minus expr at trigger.

min expr
Find the minimum value of expr .

max expr
Find the maximum value of expr .

pp expr
Find the (maximum - minimum) value of expr .

avg expr
Compute the average of expr .

rms expr
Compute the rms value of expr .

pw expr
This will measure the full-width half-maximum of a pulse contained in the interval. The baseline is
taken as the initial or final value with the smallest difference from the peak value. The algorithm
will measure the larger of a negative going or positive going pulse.

rt expr [firstval secondval]
This will measure the rise or fall time of the edge contained in the interval. The optional following
two numbers are the measurement thresholds, which default to 0.1 and 0.9 if not given. The
reference start and final values are the values at the ends of the interval.

These functions are also available in general expressions outside of the measure command:

mmin,
mmax,
mpp,
mavg,
mrms,
mpw,
mrft,
mrft2.

Each of these functions other than mrft2 takes three arguments: (vector , scaleval1 , scaleval2).
The mrft2 function tackes the same arguments, but in addition accepts two additional real numbers
representing the transition thresholds that would replace 0.1 and 0.9 used for rise/fall time measurement
in the mrft function. The mrft2 function is otherwise identical to mrft. The two scale values frame

302 CHAPTER 4. WRSPICE COMMANDS

the area of measurement. These must be chosen to isolate the feature of interest for rise/fall/width
measurement. If not in range of the vector scale, the vector scale endpoints are assumed.

When a point has been specified, the only measurement form available is

find expr
Evaluate expr at point.

A measure command line or .measure statement can contain any number of measurements, includ-
ing no measurements. If no measurement is specified, the vector produced contains only zeros, however
the scale vector contains the start and stop values, which may be the only result needed. The created
vector, which is added to the current plot, will be of length equal to the number of measurements, with
the results placed in the vector in order.

The measurement scale point(s) in measure commands and .measure statements are also saved in
a vector, which is the scale for the result vector. If the measurement name is “result”, then the scale
vector is named “result scale”. The scale contains one or two values, depending on whether it is a
point or interval measurement.

4.6.22.4 Post-Measurement Commands

There are a few commands which can be performed after measurement, which will run whether or not
any measurements are actually made.

print, print terse

By default, nothing is printed on-screen for a measurement performed during interactive simulation.
If the keyword print appears in the measure command or .measure line, the results will be
printed on the standard output. A more concise format can be obtained from the alternative
keyword print terse. The result vectors are created in all cases.

stop

If the keyword stop appears in a measure command or .measure line, the analysis will be paused
when all measurements are complete. Thus if the run performs several wmeasurements and stop

is given in at least one, the analysis will pause when all of the measurements are complete, not
just the one containing stop. The analysis can then be resumed with the resume command, or
reset with the reset command.

exec command
Execute the WRspice shell command found in command , which should be double-quoted if it
contains white space. Note that multiple commands can be given, separated by semicolon (’;’)
characters. This will be run before a script is called (see below) so can be used to pass information
to the script. The command will be executed once only, after measurements if any.

call script
After the measurement (if any) is performed and any command string is executed, the named script
will be called. The script can be a normal script file or codeblock. The special names “.exec”,
“.control”, and “.postrun” call the exec, control, or postrun bound codeblocks of the running
circuit, if they exist.

The script can be used for additional processing or testing of whatever sort. If the script returns
1, the current simulation will pause immediately (no waiting for other measures) however a calling
analysis, such as Monto Carlo, will continue. If 2 is returned, this indicates a fatal global error

4.6. SIMULATION CONTROL COMMANDS 303

and any calling analysis will be stopped too. Any other return value allows the run to continue
normally.

When a measurement is included in an iterative analysis (Monte Carlo, loop, etc.), data are saved as
follows. Before each iteration, the previous result vector and its scale are saved to the end of a “history”
vector and scale, and are then deleted. The result vector and scale are recreated when the measurement
is completed during the iteration. Thus, at the end of the analysis, for a measurement named “example”,
one would have the following vectors:

example the result from the final trial
example scale the measurement interval or point in the last trial
example hist results from the prior trials
example hist scale intervals from the prior trials

Thus, during each trial, the result vector will have the same properties as in a standard run. It can
be used in the .control block of a Monte Carlo or operating range file (recall that $?vector can be used
to query existence, and that if there is no checkPNTS vector defined, the .control block is called once
at the end of each trial).

Multiple measurements can be “chained” in the following manner. The vector name following the
from, to, trig, or targ keywords can be the name of another measure. In this case, the effective start
time is the measure time of the referenced measure. The measure time is the end of the interval or
the measure point. The td, rise, and other keywords can be used in the referencing measure. The td

will be added to the imported time, and the other keywords operate in the normal way. If there are no
keywords other than td specified, the time is the delay time plus the imported time.

Example:

.measure tran t1 trig v(5) val=.4m rise=3

.measure tran t2 trig v(5) val=.4m rise=4

.measure tran pw trig t1 td=20p targ t2 td=20p pw v(5) max v(5)

In this case, the measures t1 and t2 “frame” a period of an (assumed) repeating signal v(5). Note
that no actual measurement is performed for these lines. Their purpose is to be referenced in the third
line, which takes as its interval the t1–t2 interval delayed by 20 pS, and measures the pulse width and
peak value.

4.6.22.5 Referencing Results in Sources

It is possible to reference measurement results in sources. The referencing token has the same form as
a circuit variable, with an optional index, i.e.

@result[index]

where the index , if used, is an integer that references a specific component of the result (0-based). The
value is always zero for timepoints before the measurement has been performed, and a constant value
afterward.

Example:

.measure tran peak from=50n to=150n max v(5)

.measure tran stuff trig v(4) val=4.5 rise=1 targ v(4) val=4.5 fall=2

304 CHAPTER 4. WRSPICE COMMANDS

+ min v(4) max v(4) pp v(4) avg v(4) rms v(4) print

vxx 1 0 @peak

vyy 2 0 @stuff[2]

In this example, during transient analysis, vxx is zero until 150 nS, where the measurement takes
place, at which point it jumps to the value measured. Likewise, vyy is zero until the measurement, at
which point it jumps to the third component (“pp v(4)”) result. The resulting voltages can be used
elsewhere in the circuit. Note that we have two implementations of a behavioral peak detector.

4.6.23 The noise Command

The noise command initiates a small-signal noise analysis of the current circuit.

noise noise args [dc dc args]

The noise args are the same as appear in a .noise line (see 2.7.5). If a dc sweep specification follows,
the noise analysis is performed at each point of the dc analysis (see 2.7.3).

4.6.24 The op Command

The op command will initiate dc operating point analysis of the current circuit (see 2.7.6). The command
takes no arguments.

4.6.25 The pz Command

The pz command will initiate pole-zero analysis on the current circuit.

pz pz args

The pz args are the same as appear in a .pz line (see 2.7.7).

4.6.26 The reset Command

The reset command will reinitialize the current circuit.

reset [-c]

The command will throw out any intermediate data in the circuit (e.g, after a breakpoint or user pause
with Ctrl-C) and re-parse the deck. Any standard analysis in progress will be cleared, however the
state of any margin analysis (started with the check command), or loop analysis (started with the loop
command) is retained by default. However, if the -c option is given, these too are cleared. Thus, the
reset command can be used to update the shell variables in a deck with or without affecting the status
of a margin or loop analysis in progress.

4.6. SIMULATION CONTROL COMMANDS 305

4.6.27 The resume Command

The resume command will resume an analysis in progress. The simulation can be stopped by typing
an interrupt (Ctrl-C) or with the stop command. If no analysis is currently in progress, the effect is
the same as the run command. Each circuit can have one each of a standard analysis, a loop analysis
(started with the loop command), and a margin analysis (from the check command) in progress. The
resume command will resume standard analysis, margin analysis, and loop analysis in that precedence.
Paused margin and loop analysis can also be restarted with the check and loop commands. These
commands, and the reset command, can be used to clear stopped analyses. The resume command
takes no arguments.

4.6.28 The rhost Command

The rhost command allows addition of host names which are available for remote WRspice runs.

rhost [-a][-d] [hostname]

This command allows manipulation of a list of host names which are available for remote WRspice runs
with the rspice command. If no arguments are given, the list of hosts is printed. The -a and -d options
allow a host name to be added to or deleted from the list, respectively. The default is -a. Hosts are
added to the list if they have been specified in the environment or with the rhost variable, and a job
has been submitted. The hostname can optionally be suffixed with a colon followed by the port number
to use to communicate with the wrspiced daemon. If not given, the port number is obtained from the
operating system for “wrspice/tcp”, or 6114 if this is not defined. Port number 6114 is registered with
IANA for this service.

4.6.29 The rspice Command

The rspice command is used to initiate simulation runs on a remote machine.

rspice inputfile
or
rspice [-h host][-p program][-f inputfile] [analysis]

This command initiates a remove WRspice job, using the inputfile as input, or the current circuit if no
inputfile is given. If the -h option is not used, the default host can be specified in the environment before
WRspice is started with the SPICE HOST environment variable, or with the rhost variable. In addition,
a list of hosts which are nominally available for remote runs can be generated with the rhost command.
The default host used is the host known to WRspice that has the fewest active submissions, or which
appears last on the list (hosts are added to the front of the list). If the -p option is not used, WRspice

will use the program found in the rprogram variable, and if not set will use the same program as the
aspice command. If the -f option is not used, the current circuit is submitted, otherwise inputfile is
submitted. If there is no analysis specification, there must be an analysis specified in inputfile. If the
current circuit is being submitted, there must be an analysis specification given on the command line.

Once the job is submitted, WRspice returns to interactive mode. When the job is complete, the
standard output of the job, if any, is printed, and the rawfile generated becomes the current plot.

Remote runs can only be performed on machines which have the wrspiced daemon operating, and
have permission to execute the target program.

306 CHAPTER 4. WRSPICE COMMANDS

4.6.30 The run Command

The run command initiates the analysis found in the deck associated with the current circuit.

run [file]

The command will run the simulation as specified in the input file. If there were any of the analysis
specification lines (.dc, .tran, etc.) they are executed. The output is put in file if it was given, in
addition to being available interactively.

There are two file formats available, the native “rawfile” format, and the Common Simulation Data
Format (CSDF) used by HSPICE. See the description of the write command (4.5.12) for information
on format selection.

If a standard analysis run is in progress and halted with the stop command or by pressing Ctrl-C,
the run command will resume that run. This applies only to standard analyses, and not margin analysis
or loop analysis. Standard analyses started with the analysis commands tran, dc, etc. , will always
start a new analysis, after clearing any paused standard analysis.

4.6.31 The save Command

The save command can be used to save a particular set of outputs from a simulation run.

save [all] [nodename ...]

The command will save a set of outputs, the rest will be discarded. If a node has been mentioned in a
save command, it will appear in the working plot after a run has completed, or in the rawfile if WRspice

is run in batch mode (in this case, the command can be given in the input file as .save ...). If a node is
traced or used in an iplot it will also be saved. If no save commands are given, all nodes will be saved.
The save can be deleted with the delete command, or from the panel brought up by the Trace button
in the Tools menu.

If a save command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# save v(1) ...

and the action will be performed as that circuit is run, but the “save v(1) ...” directive will not apply
to other circuits.

One can save “special” variables, i.e., device/circuit parameters that begin with ‘@’. If a device
parameter is a list type, only a single component can be saved. The single component can be specified
with an integer, or with a vector name that evaluates to an integer. For example, the initial condition
values for a Josephson junction can be accessed as a list, say for a junction named “b1”, one can specify

@b1[ic,0] or @b1[ic][0]

which are equivalent, and each the same as @b1[vj], the initial voltage. Similarly,

4.6. SIMULATION CONTROL COMMANDS 307

@b1[ic,1] or @b1[ic][1]

are equivalent, each being the same as @b1[phi], the initial phase.

One can also have

let val = 1 (this vector is defined somewhere)
@b1[ic,val] or @b1[ic][val]

Thus, commands like

save @b1[ic,0]

or equivalently

save @b1[ic][0]

are accepted. Note that “save @b1[ic]” is the same as “save @b1[ic,0]”. The “0” can be an integer,
or a vector name that evaluates to an integer.

4.6.32 The sens Command

The sens command initiates sensitivity analysis on the current circuit.

sens sens args [dc dc args]

The sens args are the same as appear in a .sens line (see 2.7.8). If a dc sweep specification follows, the
sensitivity analysis is performed at each point of the dc analysis (see 2.7.3).

4.6.33 The setcirc Command

The setcirc command will set the “current circuit” assumed by WRspice.

setcirc [circuit name]

The current circuit is the one that is used by the analysis commands. When a circuit is loaded with the
source command it becomes the current circuit. If no arguments are given, a list of circuits is printed,
and the user is requested to choose one. The current circuit can also be selected from the panel brought
up by the Circuits button in the Tools menu.

4.6.34 The show Command

The show command is used to display information about devices, models, and internal statistics.

show [-r|-o|-d|-n nodename|-m|-D[M]|-M] [args] [, parmlist]

308 CHAPTER 4. WRSPICE COMMANDS

If -r is given, system resource values are printed. The args are resource keywords as in the rusage and
stats commands, and there is no parmlist. If there are no args, only total time and space usage are
printed.

If -o is given, WRspice option values are printed. These values are obtained from the .options line
of the current circuit, or have been set with the set command. If no args are given, the default is all.
There is no parmlist.

If -d is given, or if no option is given, device parameters are printed. The args are device names,
and the parmlist, which is separated from the device list by a comma, consists of device parameter
keywords. The parameters are expected to apply to each device in the list. Both lists can contain
“globbing” (wild-card) characters with similar behavior to globbing (global substitution) in the WRspice

shell. Briefly, ‘?’ matches any character, ’*’ matches any set of characters or no characters, “[abc]”
matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and “ade”. Either the device
args or the parmlist can be “all”, and the default is “all, all” (“all” is equivalent to ‘*’). Either the
device args or the parmlist can be “all”, and the default is “all, all”. If the parmlist is the keyword
“none”, then no parameters are listed, only the devices with their resolved model names. This can be
useful for determining which model is actually used for a MOS device, if L/W model selection is being
used. The command “show -d m*,none” will display the name of the model used for each MOS device.

If -n is given, followed by the name of a circuit node, the output is in the same form as for -d however
only devices connected to the named node are displayed.

If -m is given, model parameters are printed. The args are model names, and the parmlist is the list
of model parameters to print. Wild-carding is accepted in both lists. The default is all, all. The
parameters are expected to apply to each model in the list. See the entries for the various devices and
models for the parameter names, or type the show command without a parameter list to see the current
values for all available parameters for the devices or models mentioned.

Spaces around the “,” are optional, as is the “,” itself if no parameters are given. If no argument is
given to the show command, all parameters of all devices in the current circuit will be displayed.

The -D and -M options are similar, but keywords and descriptions from the internal models are listed,
and no values are shown. It is not necessary to have a circuit loaded, as it is with -d and -m. The args are
single characters which key the devices in WRspice, such as ‘c’ for capacitors, ‘q’ for bipolar transistors,
etc. . For devices with a level model parameter such as MOSFETs, an integer indicating the model
level can follow the key argument, without any space.

If these options are given with no argument, the device or model info is printed for each device or
model (both for “show -DM”) found in the device library. If an argument is given, only the matching
device or model will be be shown, but all of the parameters will be listed in addition. The -D option
lists the instance parameters, and -M the model parameters, and -DM will list both. In the listing, the
letters ‘RO’ indicate a read-only parameter, which is a computed quantity not set in the instance or
model lines. The letters ‘NR’ indicate a parameter that can’t be read, i.e., it is input-only. Recall that
device parameters can be accessed as vectors with the @devname[param] construct. There is no parmlist
for the -D and -M options.

For example, to print the resistance of all resistors in the current circuit, enter

show -d r*, resistance

The -d above is optional, being the default. To print the cbs and cbd parameters of mosfets m1–m4

show m[1-4], c{bd,bs}

4.6. SIMULATION CONTROL COMMANDS 309

To print the current value of the relative tolerance option, enter

show -o reltol

Entering

show -DM q m5

will list the instance and model parameters of bipolar transistors and level 5 (BSIM2) MOSFETs.

4.6.35 The state Command

The state command will print the name and a summary of the state of the current circuit. The command
takes no arguments.

4.6.36 The status Command

The status command is used to print a list of the “runops” currently in force. The command will print
out a summary of all the save, iplot, trace, measure, and stop, commands that are active. Each
runop is assigned a unique number, which can be supplied to the delete command to remove the runop.
The runop list can also be manipulated from the panel brought up with the Trace button in the Tools
menu. The command takes no arguments.

4.6.37 The step Command

The step command allows single-stepping through a transient simulation.

step [number]

The command will simulate through the number of user output points given, or one, if no number is
given.

4.6.38 The stop Command

The stop command will add a stop point to the runop list.

stop analysis point [postcmds]

When a condition is true, simulation will stop, but can be resumed, after clearing the stop point, with
the resume command. The stop points can be cleared with the delete command, and listed with the
status command. The panel brought up by the Trace button in the Tools menu can also be used to
manipulate stop points.

The stop command is a “runop” similar to the measure command, and is in fact implemented
internally from the same components. Analogous to measure, there is also a .stop input syntax
element which uses the same syntax, which will be in force when simulating the circuit containing the
line. When entered on the command line, the stop is in force for all circuits, while the runop is active.

310 CHAPTER 4. WRSPICE COMMANDS

Note that this is a different implementation of the stop command than found in WRspice-4.3.8 and
earlier, which was based on the Berkeley Spice3 implementation. Although similar, the present syntax
is a little different, and the command has more features and options.

analysis
This specifies the type of analysis during which the break condition will be active. Exactly one of
the following keywords should appear in this field: tran, ac, dc. Note that this did not appear in
the stop syntax used in WRspice-4.3.8 and earlier.

point
This is precisely the same point specification as is used in the measure command. Please refer
to that section for a description of the syntax. Note that this should cover the pre-4.3.9 syntax,
however an analysis point index is now an integer enclosed is square brackets, numeric values are
now assumed to be scale values (such as time) otherwise.

repeat delta
The delta is a real number scale extent. After the point trigger, the actions are repeated on every
multipole of delta that follows, as long as a call script (see below) returns 1.

There are a couple of optional “postcmd” operations which can be performed when the stop is
triggered, but before simulation ends.

exec command
Execute the WRspice shell command found in command , which should be double-quoted if it
contains white space. Note that multiple commands can be given, separated by semicolon (‘;’)
characters. This will be run before a script is called (see below) so can be used to pass information
to the script. The command will be executed only once, and only if the point condition is reached.

call script
After the point is reached and any command string is executed, the named script will be called.
The script can be a normal script file or codeblock. The special names “.exec”, “.control”, and
“.postrun” call the exec, control, or postrun bound codeblocks of the running circuit, if they exist.

The script can be used for additional processing or testing of whatever sort. If the script returns
1, the current simulation will not stop, and will continue as if the stop condition never occurred.
If the script returns 2, a global error is indicated and the present analysis is terminated. If any
other value is returned, or there is no explicit return, the analysis will stop as normal, and can be
resumed.

silent

Normally when the stop is activated a message is printed. If the silent keyword is given, no
message will be printed. Suppressing the message may be desirable when the stop is being used to
terminate failed Monte Carlo trials, for example, where message output simply clutters the screen.

If a stop command is given at the prompt in interactive mode, it is placed in the global runop list,
and activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# stop tran when ...

and the action will be performed as that circuit is run, but the “stop tran when ... ” directive will
not apply to other circuits. This is the same effect as a .stop line.

4.6. SIMULATION CONTROL COMMANDS 311

4.6.39 The sweep Command

The sweep command, which for historical compatibility is also available as “loop”, is used to perform
a simulation analysis over a range of conditions.

sweep [-c] [[[pstr1] min1 max1 [step1]] [[pstr2] min2 [max2 [step2]]] [analysis]]

The command works something like a chained dc sweep, running an analysis over a one or two-
dimensional range of parameter values. The resulting plot will be multi-dimensional.

There are two fundamental ways in which parameter values can be passed to the circuit. In the
command, the pstr1 and pstr2 are text tokens which specify the device parameters to vary, in a format
to be described. In a two-dimensional sweep, both pstr1 and pstr2 must be given, or neither can be
given. The two different value-setting mechanisms can not be mixed.

The specified analysis is performed at each point, yielding multidimensional output vectors. If
analysis is omitted, an analysis specification is expected to be found in the circuit deck.

If a sweep analysis is paused, for example by pressing Ctrl-C, it can be resumed by entering the
sweep command again. No arguments are required in this case, however if the -c option is given the
old analysis is cleared, and a new analysis started if further parameters are supplied. The -c is ignored
if there was no sweep analysis in progress. The resume command will also resume a paused sweep
analysis. The reset command given with the -c option will also clear any paused sweep analysis.

4.6.39.1 Without explicit device parameter setting

Assume in this section that the pstr1 and pstr2 parameter specification strings do not appear, then the
the shell variables value1 and value2, which are accessible in the circuit as $value1 and $value2, are
incremented, as in operating range analysis. This is the behavior of the historic loop command. As in
operating range analysis, there are various related ways of introducing the variations.

1. Perhaps the most direct method is to include the forms $value1 and $value2 (if two dimensional)
for substitution in the current circuit. The variables will be replaced by the appropriate numerical
values before each trial, as for shell variable substitution.

2. If a variable named “value1” is set to a string token with the set command, then a variable of
the same name as the string token will be incremented, instead of value1. The same applies to
value2. Thus, for example, if the circuit contains expansion forms of the variables foo1 and foo2

(i.e., $foo1 and $foo2), one could perform a sweep analysis using these variables as

set value1 = foo1 value2 = foo2

sweep ...

3. The method above allows the SPICE options to be iterated. These are the built-in keywords,
which can be set with the set command or in a .options line in an input file, which control or
provide parameters to the simulation.

The most important example is temperature sweeping, using the temp option. A temperature
sweep would look like

set value1=temp

sweep -50 50 25 analysis

312 CHAPTER 4. WRSPICE COMMANDS

This will run the analysis at -50, -25, 0, 25, and 50 Celsius.

4. If there are existing vectors named “checkN1” and (if two dimensions) “checkN2” that contain
integer values, and the variable named “value” is set to the name of an existing vector (or a
vector named “value” exists), then the vector components indexed by checkN1 and checkN2 will
be iterated, if within the size of the vector. For example:

let vec[10] = 0

let checkN1 = 5 checkN2 = 6

set value = vec

sweep ...

The first line creates a vector named “vec” of size sufficient to contain the indices. The iterated
values will be placed in vec[5] and vec[6]. The circuit should reference these values, either
through shell substitution (e.g., $&vec[5]) or directly as vectors.

Alternatively, a variable named “checkN1” can be set. If the value of this variable is an integer,
that integer will be used as the index. If the variable is a name token, then the index will be
supplied by a vector of the given name. The same applies to checkN2. The following example
illustrates these alternatives:

let vec[10] = 0

set checkN1 = 5

let foo = 6

set checkN2 = foo

sweep ...

5. Given that it is possible to set a vector as if a variable, by using the set command with the syntax

set &vector = value

it is possible to iterate vectors with the sweep command. The form above is equivalent to

let vector = value

Note, however, that the ‘&’ character has special significance to the WRspice shell, so when this
form is given on the command line the ampersand should be quoted, e.g., by preceding it with a
backslash.

Thus, suppose that the circuit depends on a vector named delta. One can set up iteration using
this vector as

set value1 = ’&delta’

sweep ...

6. The construct above can be extended to “special” vectors, which enable device and model param-
eters to be set ahead of the next analysis. These special vectors have the form

@devname[param]

where devname is the name of a device or model in the circuit, and param is one of the parameter
keywords for the device or model. These keywords can be listed with the show command.

For example, if the circuit contains a MOS device m1 one might have

4.6. SIMULATION CONTROL COMMANDS 313

set value1 = ’&@m1[w]’

sweep 1.0u 2.0u 0.25u analysis

This will perform the analysis while varying the m1 w (device width) parameter from 1.0 to 2.0
microns in 0.25 micron increments.

4.6.39.2 Explicit parameter setting

If parameters specifications (pstr1 and pstr2) are given, there is no variable or vector setting. Instead,
the indicated device parameters are altered directly, very similar to the alter command.

The syntax for the pstr strings is very similar to the device/parameter lists accepted by the show
command.

device list,param list

The device list is a list of one or more device names found in the circuit. The names are separated by
white space, and the list is terminated with a comma. Following the comma is one or more parameter
names. A parameter name is a device or model keyword, which should be applicable to all of the names
listed in the device list. The device keywords can be obtained from the show command.

The device list can contain “globbing” (wild-card) characters with similar behavior to globbing (global
substitution) in the WRspice shell. Briefly, ‘?’ matches any character, ’*’ matches any set of characters
or no characters, “[abc]” matches the characters ‘a’, ‘b’, and ‘c’, and “a{bc,de}” matches “abc” and
“ade”.

If the string contains white space, it must be quoted. Since the same range is applied to all the
parameters, if would be unusual to list more than one parameter name. However, wildcarding or multiple
names in the device list allows setting the values of arbitrarily many devices for each trial.

If the device list contains only a single name, and the name is a voltage or current source, resistor,
capacitor, or inductor, then the comma and parameter name can be omitted. It will be taken as the
output of a source, or the resistance, capacitance, or inductance of the component.

4.6.40 The tf Command

The tf command will initiate a transfer function analysis of the current circuit.

tf tf args [dc dc args]

The arguments appear as they would in a .tf line (see 2.7.9) in the input file. If a dc sweep specification
follows, the transfer function analysis will be performed at each dc sweep point (see 2.7.3).

4.6.41 The trace Command

The trace command will add a “runop” which prints the value of the expression(s) at each user analysis
point.

trace expr [...]

314 CHAPTER 4. WRSPICE COMMANDS

At each time point, the expressions on the command line will be evaluated, and their values printed on
the standard output.

If a trace command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command). If the command is given in a file, the
command will be added to a list for the current circuit, and will apply only to that circuit. Thus, for
example, a WRspice file can contain lines like

*# trace v(1)

and the trace will be performed as that circuit is run, but the “trace v(1)” directive will not apply to
other circuits.

The traces in effect can be listed with the status command, deleted with the delete command, and
otherwise manipulated from the panel brought up with the Trace button in the Tools menu.

4.6.42 The tran Command

The tran command initiates transient analysis of the current circuit.

tran tran args [dc dc args]

The arguments are the same as those of a .tran line (see 2.7.10). Output is retained at tstart, tstop,
and multiples of tstep in between, unless the variable steptype is set to nousertp. In this case, output
is retained at each internally generated time point in the range. If a dc sweep specification follows, the
transient analysis is performed at each sweep point.

4.6.43 The vastep Command

This command has application when simulating a circuit containing Verilog block, and the option vastep
has been set to 0. In this case, a call to this command will advance the Verilog simulation to the
next clock tick. This function can be called from a callback initiated from a .stop line, used when
co-simulating Verilog and SPICE.

4.6.44 The where Command

The where command, which takes no arguments, prints information about the last nonconvergence, for
debugging purposes.

4.7 Data Manipulation Commands

The following commands perform various operations on vectors, which are the basic data structures of
WRspice. Vectors from the current plot can be referenced by name. A listing of the vectors for the current
plot is obtained by typing the let or display commands without arguments, or pressing the Vectors
button in the Tools menu. Vectors for other than the current plot are referenced by plotname.vecname,
for example, tran2.v(1). The current plot can be changed with the setplot command, or from the
panel brought up by the Plots button in the Tools menu. See 3.16 for more information about vectors.

4.7. DATA MANIPULATION COMMANDS 315

Vectors can be created and manipulated in many ways. For example, typing

let diff = v(1) - v(2)

creates a new vector diff. All vectors can be printed, plotted, or used in expressions. They can be deleted
with the unlet command.

Data Manipulation Commands
compose Create vector
cross Vector cross operation
define Define a macro function
deftype Define a data type
diff Compare plots and vectors
display Print vector list
fourier Perform spectral analysis
let Create or assign vectors
linearize Linearize vector data
pick Create vector from reduced data
seed Seed random number generator
setdim Set current plot dimensions
setplot Set current plot
setscale Assign scale to vector
settype Assign type to vector
spec Perform spectral analysis
undefine Undefine macro function
unlet Undefine vector
vastep Advance Verilog simulator

4.7.1 The compose Command

The compose command is used to create vectors. It has three forms:

compose vecname values value [...]

or
compose vecname pattern [n1 [n2]] bstring [modifiers] [...]

or
compose vecname param = value [...]

All forms of this command create a new vector called vecname. In the first form, indicated by the
keyword “values”, the given values are concatenated to form the vector. The second form creates a
binary pattern of 1 and 0 values based on the given pattern specification to be described. In the third
form, the values in the vector are determined by the parameters given, as will be described.

The pattern generation syntax given in the second form is as used in pulse source. See 2.15.3.5 for a
complete description of the bstring and modifier syntax and usage. The optional preceding numbers n1
and n2 apply only when infinite repetition (r=-1) is given in the modifier : neither given will will cause
the vector to end at the sequence end, with no repeat. If n1 only is given, this number is taken as the
maximum length of the vector. If both n1 and n2 are given, the two numbers are taken as step and
stop, with the maximum length stop/step. This is convenient for setting the length to match a transient
analysis specification.

316 CHAPTER 4. WRSPICE COMMANDS

In the third form, there are three groups of possible parameter sets. The first set facilitates creation
of uniform arrays. This set contains the following parameters.

start The value at which the vector should start
stop The value at which the vector should end
step The difference between successive elements
lin The number of points, linearly spaced
log The number of points, logarithmically spaced
dec The number of points per decade, logarithmically spaced

The words “len” and “length” are synonyms for “lin”. A subset of these parameters that provides
the information needed is sufficient. If all four are given, the point count and step value must be
consistent or the command will fail. The parameter start defaults to zero, unless implicitly set by
other parameters. The stop and step have no defaults and must be supplied unless implied by other
parameters. If the lin parameter is not given, the other parameters determine the vector length.

The second parameter group generates Gaussian random values.

gauss The number of points in the gaussian distribution
mean The mean value for the gaussian distribution
sd The standard deviation for the gaussian distribution

The gauss parameter is required, sd defaults to 1.0, and mean defaults to 0. The random number
sequences can be reset by calling the seed command.

The third parameter group generates uniform random values.

random The number of randomly selected points
center Where to center the range of points
span The size of the range of points

The random parameter is required, span defaults to 2.0, and center defaults to 0. The random
number sequences can be reset by calling the seed command.

4.7.2 The cross Command

The cross command creates a new vector.

cross vecname number source [...]

The vector is constructed, with name vecname and values consisting of the number ’th element of each
of the source vectors. If the index is out of range for a vector, 0 is taken.

4.7.3 The define Command

The define command is used to specify user-defined vector functions.

define [function(arg1, arg2, ...)] [=] [expression]

4.7. DATA MANIPULATION COMMANDS 317

This will define the user-definable function with the name function and arguments arg1 , arg2 , ... to be
expression, which will usually involve the arguments. When the function is called, the arguments that
are given are substituted for the formal arguments.

The define command and the .param line in input files can be used to define user-defined functions
(UDFs). User-defined function definitions are modularized and prioritized. At the base of the hierarchy
(with lowest priority) are the ”shell” UDFs which are defined with the define command.

Every circuit has its own set of UDFs, which are obtained from .param lines which are not part of
a subcircuit. When a circuit is the current circuit, its UDFs will be searched before the shell UDFs to
resolve a function reference. The current circuit’s UDF database is pushed onto a stack, ahead of the
shell UDFs. Most of the time, this stack is two levels deep.

During initial circuit processing, when subcircuit expansion is being performed, when a subcircuit is
bing expanded, any functions defined within the .subckt text with .param lines are pushed on the top
of the stack. Since subcircuit definitions may be nested, functions will be pushed/popped according to
the depth in the hierarchy currently being processed.

Thus, a function defined in a subcircuit will have priority over a function of the same name and
argument count defined in the circuit body, and a function defined in the circuit body will have priority
over a function with the same name and argument count defined from the shell with the define command.

When define is given without arguments, all currently defined functions are listed. Those definitions
from the current circuit will be shown with an asterisk ‘*’ in the first column. Other functions listed
have been defined with the define command. The functions defined in subcircuits are invisible, their
use is only transient and they are part of the database only during subcircuit expansion.

If only a function name is given, any definitions for functions with the given name are printed.

It is possible to define a function that calls a non-existing function. The resolution is done when the
function is evaluated. Thus, functions of functions can be defined in any order.

Note that one may have different functions defined with the same name but different argument
counts. Some useful definitions (which are part of the default environment) are:

define max(x,y) x > y ? x : y

define min(x,y) x < y ? x : y

4.7.4 The deftype Command

The deftype command defines a new data type.

deftype v typename [abbrev]
deftype p plottype [pattern ...]

This is an obscure command that might be useful for exporting rawfile data to other programs. If a
vector’s value indicates furlongs per fortnight, its type can be so defined. However, user-defined types
are not compatible with the internal WRspice type propagation logic. Vectors with user-defined types,
or results involving user-defined types, will be treated as untyped in WRspice.

The first form defines a new type for vectors. The typename may then be used as a vector type
specification in a rawfile. If an abbrev is given, values of that type can be named abbrev(something)
where something is the name given in the rawfile (and something doesn’t contain parentheses).

318 CHAPTER 4. WRSPICE COMMANDS

The second form defines a plot type. The (one word) name for a plot with any of the patterns present
in its plot type name as given in the rawfile will be plottypeN, where N is a positive integer incremented
every time a rawfile is read or a new plot is defined.

4.7.5 The diff Command

The diff command compares vectors in different plots.

diff plot1 plot2 [vecname ...]

The command will compare all the vectors in the specified plots, or only the named vectors if any are
given. If there are different vectors in the two plots, or any values in the vectors differ significantly,
the difference is reported. The variables diff abstol, diff reltol, and diff vntol are used to determine if two
values are “significantly” different.

4.7.6 The display Command

The display command prints information about the named vectors, or about all vectors in the current
plot if no names are given.

display [vecname ...]

This command will list the names, types and lengths of the vectors, and whether the vector is real or
complex.

Additional information is also given: if there is a minimum or maximum value for the vector defined,
this is listed (see A.1 for the manner in which this and the rest of the per-vector parameters are defined),
if there is a default grid type or a default plot type, they are mentioned, and if there is a default color
or a default scale for the vector it is noted. Additionally, one vector in the plot will have the notation
[default scale] appended — this vector will be used as the x-scale for the plot command if none is
given or if the vectors named have no default scales of their own. See the plot command (4.8.6) for
more information on scales.

The vectors are sorted by name unless the variable nosort is set. The let command without arguments
is equivalent to the display command without arguments.

4.7.7 The fourier Command

The fourier command performs Fourier analysis.

fourier fundamental frequency [value ...]

The command initiates a fourier analysis of each of the given values, using the first 10 multiples of
the fundamental frequency (or the first nfreqs, if that variable is set). The values may be any valid
expression. They are interpolated onto a fixed-space grid with the number of points given by the
fourgridsize variable, or 200 if it is not set. The interpolation will be of degree polydegree if that variable
is set, or 1. If polydegree is 0, then no interpolation will be done. This is likely to give erroneous results
if the time scale is not monotonic. This command is executed when a .four line is present in the input
file and WRspice is being run in batch mode.

4.7. DATA MANIPULATION COMMANDS 319

4.7.8 The let Command

The let command is used to assign vectors.

let [vecname [= expr]] [vecname = expr ...]

With no arguments, the list of vectors from the current plot is printed, similar to the display command.
If one or more arguments appear without an assignment, information about the named vectors is printed,
similar to the display command. Otherwise, for each assignment, if vecname does not exist, a new vector
is created with name vecname and value given by the expression expr . An existing vector with the given
name will be overwritten with new data.

In WRspice releases prior to 3.0.9, only a single assignment could appear in a let command. In
current releases, any number of assignemnts can be given in a single command line. The assignments
are performed left-to-right, so that expressions to the right of an assignment may make use of that
assignment, i.e., forms like

let a=1 b=a

work properly.

None of the vector options such as default scale, color, etc. that are read from the rawfile are
preserved when a vector is created with the let command.

The vecname above can actually be in the plotname.vecname format, where the plotname is the name
of a plot or one of the plot aliases as described in 3.16. In this case, only the indicated plot will be
searched for a vector named vecname, and if not found, a new vector of that name will be created in the
indicated plot.

If no plot is specified, a search for vecname will occur in the current plot, then the context plot if any,
and finally the constants plot. If a match is found, that vector will be reused, which may not be what
is intended. When a scrpt is run, the current plot at the time the script starts is saved as the “context
plot”. Vectors created in the script before any change in the current plot are saved in the context plot.
If the script runs an analysis, the current plot will change, but the previously defined variables will still
be available by name as the context plot will be searched as well as the current plot.

If the intention is to use or create a vector in the current plot, the form

let curplot.vecname = expr

should be used, if there is any chance of ambiguity.

The syntax

let a[N] = vec

with N a non-negative integer, is valid. If vec is a vector, then a[N] = vec[0], a[N+1] = vec[1], etc.,
If undefined, a is defined, and new entries that are not explicitly set are zeroed. The length of a is set
or modified to accommodate vec. The syntax a[0] = vec is also valid, and is equivalent to a = vec. If
vec is a vector, then a is a copy of vec. If vec is a scalar (unit length vector), then a is also a scalar with
the value of vec.

When assignment is from a scalar value, any SPICE number format may be used. That is, if
alpha characters appear after a number, the initial characters are checked as a scale factor. Recognized

320 CHAPTER 4. WRSPICE COMMANDS

sequences are t, g, k, u, n, p, f, m, meg, mil. Remaining characters are parsed as a units string. This is
all case insensitive.

The units suffix of a constant value is used to assign the units of any vector to which the constant is
assigned. This means, for example, in

let a = v(1)/15o

a has units of current (A). Use the settype command without arguments to see a list of recognized
types.

The “let” is actually optional; the let command will be applied to a line with the second token being
“=”. This is somewhat less efficient, however.

4.7.9 The linearize Command

This linearize command is used to create linearized vectors from vectors whose scales are not evenly
spaced.

linearize [vecname ...]

The command will force data from a transient analysis to conform to a linear scale, if the plot has been
created using raw timepoints. This is the case only when the steptype variable is set to “nousertp”.

The linearize command will create a new plot with all of the vectors in the current plot, or only those
mentioned if arguments are given. The new vectors will be interpolated onto a linear time scale, which
is determined by the values of tstep, tstart, and tstop in the currently active transient analysis. The
currently loaded deck must include a transient analysis, or a tran command may be run interactively,
and the current plot must be from this transient analysis. The variable polydegree determines the degree
of interpolation.

4.7.10 The pick Command

The pick command creates a new vector from elements of other vectors.

pick vecname offset period vector [vector ...]

The command creates a vector vecname and fills it with every period ’th value starting with offset from
the vectors. The offset and period are integers. For example, for

pick xx 1 2 v1 v2

we obtain

xx[0] = v1[1]

xx[1] = v2[1]

xx[2] = v1[3]

xx[3] = v2[3]

and so on.

4.7. DATA MANIPULATION COMMANDS 321

4.7.11 The seed Command

The seed command will reset the internal random number generator.

seed [seed integer]

The seed integer , if given, will be used to seed the new random number sequence. This affects the
statistical functions in 3.16.9 and other functions that generate random values. Setting the seed explicitly
enables the sequence of “random” values returned from these functions to be repeatable (the default
seed is random).

4.7.12 The setdim Command

The setdim command allows the dimensions of the current plot to be changed.

setdim [numdims [dim ...]]

If given without arguments, the length and dimensions of the scale vector of the current plot are
printed. Otherwise, all arguments are non-negative numbers. There should be numdims-1 “dims” given.
The numdims is the new dimensionality of the plot. Values of 0–8 are allowed. The sub-dimensions that
follow are integers 2 or larger.

The dimension list must be compatible with the existing plot dimensions in that the total number of
points must remain the same, and the size of the basic vector (scale period) remains the same.

There is a special case where the numdims is the same as the vector length. The plot will become
multidimensional, with each dimension having one point. There is no limit to the number of dimensions
in this case. Such vectors plot as collections of multi-colored points. This type of plot is generated
normally by, for example, use of the loop command to repeat op analysis. Additional argumens to the
command are ignored.

Giving numdims a value of 0 or 1 will set to “no” dimensionality, the status of a regualar vector.

4.7.13 The setplot Command

The setplot command can be used to set the current plot, or to create a new, empty plot and make it
the current plot.

setplot [plotname]

Here, the word “plot” refers to a group of vectors that are the result of one WRspice simulation run.
Plots are created in memory during a simulation run, or by loading rawfile data. When more than one
file is loaded in, or more than one plot is present in one file, WRspice keeps them separate and only
shows the vectors in the current plot. One generally accesses a given plot by first making it the current
plot.

The same functionality is available from the Plots button in the Tools menu. The setplot command
will set the current plot to the plot with the given plotname, or if no name is given, prompt the user
with a menu. The plots are named as they are loaded, by reading in a rawfile, or created by running

322 CHAPTER 4. WRSPICE COMMANDS

a simulation, with names like tran1 or ac2. These names are shown by the setplot and display
commands and are used by other commands.

The plotname can also be a numerical index. Plots are saved in the order created, and as listed by
the setplot command without arguments, and in the Plots tool. In addition to the plot name, the
following constructs are recognized. Below, N is an integer.

-N
Use the N ’th plot back from the current plot. N must be 1 or larger. For example, “setplot -1”
will set the current plot to the previous plot. The command will fail if there is no such plot.

+N
This goes in the reverse direction, indicating a plot later in the list than the current plot.

N
An integer without + or - indicates an absolute index into the plot list, zero-based. The value 0
will always indicate the “constants” plot, which is the first plot created (on program startup).

If the plotname is “new”, a new plot is created, which becomes the current plot. This plot has no
vectors.

The current plot can also be changed by resetting the curplot variable. There are three read-only
variables which are reset internally whenever the current plot changes. Each contains a string describing
a feature of the current plot. These are curplotdate, curplotname, and curplottitle.

4.7.14 The setscale Command

The setscale command is used to set the vector used as a scale when plotting other vectors.

setscale [plot or vector] [vectors ...]

Each plot has a default scale, which can be set with this command. Each vector has a scale variable,
which if set will override the default scale of the plot. These also can be set with this command. This
command takes as input the names of a plot and a new scale vector in that plot, or the names of vectors
from the current plot. The wildcard forms using “all” and the plot prefix form plot .vector are not
allowed in this command. If only one argument is given, i.e.

setscale vector

then vector is assigned as the default scale of the current plot. The vector must already exist in the
current plot.

If two arguments are given, the first argument is initially interpreted as the name of a plot, and
the second argument is the name of a vector in that plot to use as the scale. The plot has names like
“tran1” or “ac2” and the vector must exist in that plot.

If the first argument is not a plot name, or there are more than two arguments, the arguments are
expected to be vectors in the current plot, and the last vector will be assigned as the scale for the other
listed vectors.

The scales assigned to vectors can be removed by assigning the vector that is the current default scale
for the plot, or the scale vector name given can have the special names “none” or “default”. The scale
for plots can’t be removed, since a plot must always have a default scale (if any vectors are defined).

4.7. DATA MANIPULATION COMMANDS 323

The let command without arguments lists the vectors and will show the scales, if any.

4.7.15 The settype Command

The settype command is used to change the data types of the vectors in a plot.

settype [type] [vector ...]

The command will change the type of the named vectors to type. With no arguments, the list of
recognized types and abbreviations is printed. The type field can consist of a single name, or a single
token containing a list of abbreviations. The token list can contain a digit power after an abbreviation,
and a single ‘/’ for denominator units. Examples are “F/M2”, “Wb2/Hz”. Units of vectors generated
during analysis are set automatically.

The WRspice numerical input format (see 2.1.2) allows the type to be specified when a value is given
to WRspice, either interactively or in an input file.

Type names can also be found in the description of the rawfile format in A.1, or they may be
defined with the deftype command. However, only the primitive types listed below propagate through
expressions and are recognized by the WRspice type-propagation system.

The primitive built-in types and abbreviations are:

time S
frequency Hz
voltage V
current A
charge Cl
flux Wb
capacitance F
inductance H
resistance O
conductance Si
length M
area M2
temperature C
power W

The codes from the rawfile are:

324 CHAPTER 4. WRSPICE COMMANDS

Name Description SPICE2 Numeric Code

notype Dimensionless value 0
time Time 1
frequency Frequency 2
voltage Voltage 3
current Current 4
output-noise SPICE2 .noise result 5
input-noise SPICE2 .noise result 6
HD2 SPICE2 .disto result 7
HD3 SPICE2 .disto result 8
DIM2 SPICE2 .disto result 9
SIM2 SPICE2 .disto result 10
DIM3 SPICE2 .disto result 11
pole SPICE3 pz result 12
zero SPICE3 pz result 13

4.7.16 The spec Command

The spec command will create a new plot consisting of the Fourier transforms of the vectors given on
the command line.

spec start freq stop freq step freq vector [...]

This is based on a SPICE3 spec command by Anthony Parker of Macquarie University in Sydney
Australia, which is available as part of the patch set from
http://www.elec.mq.edu.au/cnerf/spice/spice.html.

The command will create a new plot consisting of the Fourier transforms of the vectors given on
the command line. Each vector given should be a transient analysis result, i.e., have time as a scale,
and each should have the same time scale. The Fourier transform will be computed using the frequency
parameters given, and will use a window function as given with the specwindow variable.

The following variables control operation of the spec command. Each can be set with the set
command, or equivalently from the Fourier tab of the Commands tool.

spectrace
This enables messages to be printed during Fourier analysis with the spec command, for debugging
purposes.

specwindow
This variable is set to one of the following strings, which will determine the type of windowing
used for the Fourier transform in the spec command. If not set, the default is hanning.

bartlet Bartlet (triangle) window
blackman Blackman order 2 window
cosine Hanning (cosine) window
gaussian Gaussian window
hamming Hamming window
hanning Hanning (cosine) window
none No windowing
rectangular Rectangular window
triangle Bartlet (triangle) window

4.8. GRAPHICAL OUTPUT COMMANDS 325

specwindoworder
This can be set to an integer in the range 2–8. This sets the order when the gaussian window is
used in the spec command. If not set, order 2 is used.

4.7.17 The undefine Command

The undefine command is used to undefine user-defined functions that have previously been defined
with the define command.

undefine word [...]

The command deletes the definitions of the user-defined functions passed as arguments. If the argument
is “*”, then all macro functions are deleted. Note that all functions with the given names are removed,
so there is no way to delete a function with a particular argument count without deleting all functions
with that name.

4.7.18 The unlet Command

The unlet command will delete the vectors listed as arguments.

unlet vecname [...]

The current plot is assumed, though the plot .vector notation is accepted. When the default scale vector
is deleted, another random vector will become the default scale. The names can be “all”, indicating
that all matching vectors should be removed. If the vector name is “all”, all vectors in the plot are
removed, but the plot itself is not deleted. Giving “all.all” will clear the vectors in all plots (not very
useful). To delete a plot, use the destroy or free commands.

4.8 Graphical Output Commands

The following commands display the output of simulations graphically, either on-screen or on a printing
device. Many take as input a list of vectors or expressions to plot, and in some cases ambiguities may
arise. An example would be

plot v(1) -v(2)

which would be interpreted as a plot of the difference between the vectors (1 trace) rather than two
traces. To resolve such ambiguities, double quotes may be used, as in

plot v(1) "-v(2)"

which enforses interpretation as separate expressions. Additional parentheses may also be used to the
same effect.

In the expression list, a “.” token is replaced with the vector list found in a .plot line from the file
with the same analysis type as the current plot. For example, if the input file contained

326 CHAPTER 4. WRSPICE COMMANDS

.tran .1u 10u

.plot tran v(1) v(2)

then one can type “run”, then “plot .” to plot v(1) and v(2).

Graphical Output Commands
asciiplot Generate line printer plot
combine Combine plots
hardcopy Send plot to printer
iplot Plot during simulation
mplot Plot range analysis output
plot Plot simulation results
plotwin Pop down and destroy plot windows
xgraph Plot simulation results using xgraph

4.8.1 The asciiplot Command

The asciiplot command generates a crude plot on a character mode device. It is not often used in
modern environments, but is retained for compatibility with SPICE2.

asciiplot plotargs

The plotargs are vectors or expressions to be plotted, as with the plot command. The plot is sent to
the standard output, so one can put it into a file by using redirection. The variables width, height, and
nobreak determine the width and height of the plot, and whether there are page breaks, respectively,
though if the asciiplot is printed on-screen or in a window, the plot width and height are determined
by the window size.

There are problems if one tries to plot something with an X scale that is not monotonic, because
asciiplot uses a simple-minded sort of linear interpolation. Also, most of the variables that the plot
command recognizes aren’t used by asciiplot. The scaling and other variables can be set with the set
command as for the plot command. These variables can also be set with the Plot Options tool from
the Tools menu of the Tool Control window.

The nointerp variable is used only by the asciiplot command. Normally asciiplot interpolates data
onto a linear scale before plotting it. If this option is given this won’t be done — each line will correspond
to one data point as generated by the simulation. Since data are already linearized unless from a transient
analysis with steptype set to nousertp, setting this variable will avoid a redundant linearization.

Ordinarily, the first vector plotted has its values also printed in the first column. This can be
suppressed by setting the variable noasciiplotvalue. When printing, the number of significant digits used
can be set with numdgt variable.

This command is completely obsolete, but is retained for nostalgia for those who fondly remember
punched cards and line printers.

4.8.2 The combine Command

The combine command takes no arguments. The command will combine the two most recent plots,
if similar, into a single plot, and expands the dimensionality of the resulting plot. The two plots must

4.8. GRAPHICAL OUTPUT COMMANDS 327

have identical vector names and compatible lengths. The purpose of this command is to create a single
multi-dimensional plot from sequences of runs. The most recent plot is added to the end of the previous
plot, and is deleted.

Example:

while i < 5

(set parameters for run)
run

if i > 0

combine

end

i = i + 1

end

This will combine all the data from the five runs into a single plot.

4.8.3 The hardcopy Command

The hardcopy command is used to generate hardcopy plots of simulation data on a printer or plotter.
This capability is similar to the Print button which appears on each of the on-screen plots from the
plot command.

hardcopy [setupargs] plotargs
setupargs: -d driver -c command -f filename -r resolution -w width -h height
-x left marg -y top marg -l

This command uses the internal hardcopy drivers to generate a hard copy of the vectors and expressions
given in plotargs. The plotargs are vectors or expressions to be plotted, as with the plot command. If
no plotargs are provided, the arguments are taken to be the same as those given to the last plotting
command given (these include plot, asciiplot, hardcopy, and xgraph). The setupargs override the
current values established using the set command or the Plot Options tool in the Tools menu, and
default to the driver defaults if not specified either way.

The -d driver specifies the name of a hardcopy driver using one of the keywords known to the
hcopydriver variable. If the -d option is not specified, the hcopydriver variable will be used if set. If no
driver is set, or set to an unrecognized driver name, the hardcopy is aborted.

The -c command option specifies the operating system command used to send the job to the printer,
and overrides the value of the hcopycommand variable, which is otherwise used if set. The value is a
string (which must be quoted it it contains space), where the characters “%s” are replaced by the name
of the (possibly temporary) file used to store the plot data. If no %s appears, the file name is appended
to the end of the command string. In BSD Unix, the command string might be “lpr -h -Pmyprinter”,
for example. See the man page for the print command on your machine for more information. If there
is no command string given using the -c option and hcopycommand is undefined, the data will be saved
in a file, but not printed.

The -f filename option gives a file name to store the plot data. There is no analogous “set” variable.
If given, the plot will be saved in the file, and not sent to the printer.

The -r resolution command will set the printer to use the specified resolution, if that resolution is
supported by the driver and the printer. If not given, the value of hcopyresol is used, if set, otherwise
the driver default is used. The default is almost always the best choice.

328 CHAPTER 4. WRSPICE COMMANDS

The -w width and -h height options set the size of the image as it would appear on a portrait-oriented
page. The numbers given represent inches, unless followed by “cm” which indicates centimeters. If these
options are not given, the hcopywidth and hcopyheight variables are used if set, otherwise the driver
defaults are used.

The -x xoffset and -y yoffset options control the position of the image on the page, as defined in
portrait orientation. The yoffset may be measured from the top or bottom of the page, depending upon
the driver. These values default to those in the variables hcopyxoff and hcopyyoff if set, otherwise driver
defaults are used. The numbers represent inches, unless followed by “cm” indicating centimeters.

If the -l option is given, or the hcopylandscape variable is set, the image will be rotated and printed
in landscape orientation.

The variables which control plot presentation also control the presentation of the hardcopy (see 4.8.6).
The hardcopy command is suited for use in scripts. For general plotting, the Print button in the plot
windows brings up a panel which provides a superior user interface.

4.8.4 The iplot Command

The iplot command adds an incremental plot to the “runop” list. While a simulation is running, the
plots will be generated, allowing immediate feedback as to whether the simulation is producing the
“right” results.

iplot plotargs

The plotargs are vectors or expressions to be plotted, as with the plot command. The variables which
control plotting also apply to iplots. These are set with the set command, or with the Plot Options
tool in the Tools menu of the Tool Control window.

The argument list can not be empty. Similar to the plot command, if the argument list contains a
token consisting of a single period (“.”), this is replaced with the vector list found in the first .plot
tran line from the input file. For example, if the input file contains

.plot tran v(1) v(2)

then one can type “iplot .” as a short cut for “iplot v(1) v(2)”.

The related syntax .@N is also recognized, where N is an integer representing the N ’th matching
.plot tran line. The count is 1-based, but N=0 is equivalent to N=1. The token is effectively replaced
by the vector list from the specified .plot tran line found in the circuit deck.

The iplots can be deleted with the delete command, and can also be specified and deleted using the
panel brought up by the Trace button in the Tools menu. The status command will list the runops,
including iplots.

If an iplot command is given at the prompt in interactive mode, it is placed in a global list, and
activity will persist until deleted (with the delete command or with the Trace tool). If the command
is given in a file, the command will be added to a list for the current circuit, and will apply only to that
circuit. Thus, for example, a WRspice file can contain lines like

*# iplot v(1)

and the iplot will be performed as that circuit is run, but the “iplot v(1)” directive will not apply to
other circuits.

4.8. GRAPHICAL OUTPUT COMMANDS 329

4.8.5 The mplot Command

The mplot command is used to plot the results from margin analysis, which includes operating range
and Monte Carlo analyses. It is also used to set and clear interactive margin analysis plotting.

mplot [[-on|-off] | [-c][filename ...] | vector]

The filenames are names of files produced by the margin analysis. If no file is specified, the file produced
by the last margin analysis run in the current session is assumed. If no margin analysis files have been
produced in the current session, the file named “check.dat” is assumed. It is also assumed that these
files exist in the current directory. The name of the most recent margin analysis output file produced in
the current session is saved in the mplot cur variable.

The results from operating range/Monte Carlo analysis are also hidden away in the resulting plot
structure. The mplot can be displayed by entering “mplot vector” where vector is any vector in the
plot.

The vector can actually be any multi-dimensional vector, from margin analysis or not. The selections
(see below) can then be used to determine which dimensions are displayed in subsequent plots.

The -c option combines the operating range data from the files on the command line into a single
display, if possible. Thus, if two or more successive operating range analysis runs are required to obtain
the total operating range, then it is possible to plot all of the results on a single graph with the -c

option. The data must have identical coordinate spacing and projected origins to be combinable.

There are two switches, -on and -off, which control whether or not operating range analysis results
are plotted on the screen during analysis, similar to the iplot command. Entering mplot -on will cause
margin analysis results to be plotted while simulating, and mplot -off will turn this feature off.

The display consists of an array of cells, each of which represent the results of a single trial. As the
results become available, the cells indicate a pass or fail. In operating range analysis, the cells indicate
a particular bias condition according to the axes. In Monte Carlo analysis, the position of the cells has
no significance. In this case the display indicates the number of trials completed.

The panel includes a Help button which brings up the appropriate topic in the help system, a
Redraw button to redraw the plot if, for example, the plotting colors are redefined, and a Print button
for generating hard copy output of the plot.

Text entered while the pointer is in the mplot window will appear in the plot, and hardcopies. This
text, and other text which appears in the plot, can be edited in the manner of text in plot windows.

4.8.5.1 Selections

The cells in an mplot can be selected/deselected by clicking on them. Clicking with button 1 will
select/deselect that cell. Using button 2, the row containing the cell will be selected or deselected, and
with button 3 the column will be selected or deselected. A selected cell will be shown with a colored
background, with an index number printed.

Only one mplot window can have selections. Clicking in a new window will deselect all selections in
other mplot windows.

At present, the selections are used to facilitate plotting of multidimensional plots, such as those
obtained from the -k option of the check command. If selections exist, only the data from the selected
cells will be plotted from the associated multidimensional vectors in the plot command.

330 CHAPTER 4. WRSPICE COMMANDS

For example, after running “check -k”, suppose one has a resulting vector v(1) (which will contain
data from all of the trials). If not using “mplot -on” during the run, one can type “mplot” after the run
to display the pass/fail results. In the mplot window, select one of the cells. Then, “plot v(1)” will
plot the v(1) from that trial only. If no cells are selected, or all cells are selected, “plot v(1)” would
show the superimposed v(1) traces from all trials. The index number that appears in the cell is the
vector index, so for example if a single box is selected with index 4, “plot v(1)” would be equivalent to
“plot v(1)[4]”. Note that the selection mechanism allows combinations of traces to be plotted which
can’t easily be obtained from indexing.

This capability is carried a step further for general multidimensional plots. If one enters “mplot
vector” where vector is the name of a multidimensional vector from whatever source, an mplot will
appear. If the vector originated from operating range or Monte Carlo analysis, the resulting mplot will
appear (the pass/fail results are saved in the plot structure, as well as in the output file). Otherwise,
the mplot has nothing to do with range analysis, and all cells are marked ”fail”. Either case allows the
selection mechanism to be used for displaying the plots.

Suppose for example one has a multidimensional plot from a loop-transient analysis. Entering “mplot
time” will bring up a dummy mplot whose cells represent the loop iterations (time is the scale vector
for the plot, but any data vector in the plot would suffice). Then, by selecting the cells, one can choose
which iterations will be visible when vectors from the plot are plotted with the plot command.

The plot window will use a “flat” dimension map which can subsequently be used to control which
dimensions are visible. The mplot selections set the initial state of this map.

4.8.6 The plot Command

The plot command is used to plot simulation output on-screen. Each execution of a plot command will
bring up a window which displays the plot, along with several command buttons. Each plot will remain
on-screen until dismissed with the Dismiss button.

plot [expr ...] [vs x-expr] [attributes]

The set of expressions can be followed with a “vs x-expr” clause, which will produce an x-y plot using
the values of x-expr as the x scale.

If no arguments are given, the arguments to the last given plot command are used. If the argument
list contains a token consisting of a single period (“.”), this is replaced with the vector list found in the
first .plot line from the input file with the same analysis type as the current plot. For example, if the
input file contains

.tran .1u 10u

.plot tran v(1) v(2)

then one can type “run” followed by “plot .” to plot v(1) and v(2).

The related syntax .@N is also recognized, where N is an integer representing the N ’th matching
.plot line. The count is 1-based, but N=0 is equivalent to N=1. The token is effectively replaced by
the vector list from the specified .plot line found in the circuit deck.

Vectors and expression results will be interpolated to the scale used for the plot. This applies when
using forms like “tran2.v(2)” where the tran2 may have a different scale, for example the x-increment
may be different, or the data may correspond to internal time points vs. user time points.

4.8. GRAPHICAL OUTPUT COMMANDS 331

The plot style can be controlled by a number of variables (listed below), which can be set with the
set command. These define default behavior, as the plot window contains buttons which also determine
presentation. The Plot Options tool from the Tools menu of the Tool Control window can also be
used to set these variables. The Colors tool from the Tools menu can be used to change the colors
used for plotting.

For each of the variables listed in the table below with an asterisk in the middle column, if a variable
named temp varname is defined, its value will be used rather than that of varname. This allows
temporary overriding of the nominal settings of the variables, and is used internally for the zoom-in
operation. In addition, there are certain variables such as gridstyle which can be set to one of several
keywords. If the keyword itself is set as a boolean variable, it will override the string variable. For
example, one could issue “set gridstyle = lingrid” to set a nominally linear grid. This can be
changed by, for example, “set loglog” (or “set temp loglog”), but it is an error to have two or more
such keywords set as booleans at a time.

The variables with an asterisk in the middle column can appear in a .options line in a circuit file.
The option will be in force when the circuit containing this line is the current circuit.

Many of these attributes can also be set from the plot command line, which will override any
corresponding variable, if set. The functionality is as described for the variables. The “value” of the
variables (if any) should follow the keyword, separated by space and/or an optional ‘=’ character. For
values consisting of two numbers, a comma and/or space can delimit the numbers. The variable names
that are also recognized as command line keywords are shown with an asterisk in the third column in
the table below.

Variable temp name? Attribute?
color

combplot * *
gridsize

gridstyle

group * *
lingrid * *
linplot * *
loglog * *
multi * *
nogrid * *
nointerp * *
noplotlogo * *
plotposn

plotstyle

pointchars

pointplot * *
polar * *
polydegree

polysteps

present * *
scaletype

single * *
smith * *
smithgrid * *
ticmarks

title * *

332 CHAPTER 4. WRSPICE COMMANDS

xcompress * *
xdelta * *
xindices * *
xlabel * *
xlimit * *
xlog * *
ydelta * *
ylabel * *
ylimit * *
ylog * *
ysep * *

When a plot is read from a rawfile, defaults for the presentation attributes are set as specified in
the rawfile. These can be overridden by reseting the attributes in WRspice, with the exception of the
color specification in the rawfile. If given, that color will be used for a particular trace independent of
the current setting within WRspice. WRspice never sets the color specification, when writing a rawfile,
unless that color was indicated from a previous rawfile. If a certain unalterable color is desired for a
trace, the rawfile can be edited with a text editor to specify that color.

Any text typed while the pointer is in the plot window will appear on the plot (and hardcopies).
This is useful for annotation. Entered and existing text can be edited and moved. In addition, traces in
the plot can be moved to change the order, or moved to other (x-scale compatible) plot windows. The
description of the plot window (3.11) contains more information.

4.8.7 The plotwin Command

The plotwin command provides an interface for destroying plot windows, most useful in scripts. It
applies in graphical mode only. There are two forms:

plotwin [id]

Given without an argument, or with literal “id” (only the first letter is significant, case insensitive),
the identification number of the most recently created plot window is printed. Every plot window has a
unique running identification number, which can be used as a “handle” to the window.

plotwin k[ill] [idarg]

This form is used to destroy plot windows. The first token is a word starting with ‘k’, case insensitive.
The idarg is a number. If not given or zero, the most recently created plot is destroyed. If idarg is
positive, the plot window with that identification number is destroyed. If idarg is negative, the plot
window relative to the most recently created plot window is destroyed. For example, -1 destroys the
plot before the most recent, -2 the one before that, etc. The idarg can also be a word starting with ‘a’
(for “all”) in which case all plot windows are destroyed.

4.8.8 The xgraph Command

The xgraph command will produce plots using the UNIX xgraph utility.

4.9. MISCELLANEOUS COMMANDS 333

xgraph file plotargs

This command is similar to the plot command, however the xgraph program (an obsolete plotting
package) actually generates the plots. If the given file is either “tmp” or “temp”, then a temporary file
is used to hold the data while being plotted. Polar and Smith plots are not supported, otherwise the
variables associated with the plot command apply.

The xglinewidth variable specifies the line width in pixels to use in the plots. If not set, a minimum
line width is used.

If xgmarkers is set, point plots will use cross marks, otherwise big pixels are used.

4.9 Miscellaneous Commands

These commands perform miscellaneous functions.

Miscellaneous Commands
bug Submit bug report
help Enter help system
helpreset Clear help system cache
qhelp Print command summaries
quit Exit program
rusage Print resource usage statistics
stats Print resource usage statistics
version Print program version

4.9.1 The bug Command

The bug command facilitates sending bug reports and other messages to the WRspice administrator.
Issuing the bug command will pop up a mail editing window if graphics is available, or will allow a
message to be entered on the command line if not. The environment variable SPICE BUGADDR is used
to set the internet address to which bug reports are sent (this can be changed in the pop-up mail editor
window). If not set, the report is sent to the Whiteley Research technical support staff. This command
takes no arguments.

The mail editor window can also be displayed by pressing the WR button in the Tool Control
window.

4.9.2 The help Command

The help command brings up a help window describing the topic keyword passed as an argument to
the command, or the top-level entry if no argument is given.

help [-c | topic]

When graphics is not available, the help text is presented in a text-only format on the terminal. The
HTML to ASCII text converter only handles the most common HTML tags, so some descriptions may
look a little strange. The figures (and all images) are not shown, and links are not available, except for
the “subtopics” and “references” lists.

334 CHAPTER 4. WRSPICE COMMANDS

The help data files are found in directories specified in the helppath variable, or from the
SPICE HLP PATH environment variable. If for some reason the help directory is not found, a very
minimal internal text-mode help system will be provided. The single character ‘?’ is internally aliased
to “help”.

If the single argument “-c” is given, the internal topic hash tables are cleared. Since the topics are
hashed as offsets into the files, if a topic text changes, the offsets will be incorrect. After changes are
made to a help file, or new help files are added, if in WRspice and the help database has already been
cached by viewing any help topic, giving “help -c” will ensure that new topics are found and present
topics display correctly. This is the same effect as giving the helpreset command.

The helpinitxpos variable specifies the distance in pixels from the left edge of the screen to the left
edge of the help window, when it first appears. If not set, the value taken is 100 pixels. The helpinitypos
variable specifies the distance in pixels from the top edge of the screen to the top edge of the help
window, when it first appears. If not set, the value taken is 100 pixels.

See 3.14 for more information about the WRspice help system.

4.9.3 The helpreset Command

This will clear the internal topic cache used by the help system. The cache saves topic references as
offsets into the help (.hlp) files, so that if the text of a help file is modified, the offsets are probably
no longer valid. This function is useful when editing the text of a help file, while viewing the entry
in WRspice. Use this function when editing is complete, before reloading the topic into the viewer.
Although the offset to the present topic does not change when editing, so that simply reloading would
look fine, other topics in the file that come after the present topic would not display correctly if the
offsets change.

This is the same effect as giving the help command with the -c option.

4.9.4 The qhelp Command

The qhelp command prints a brief description of each command listed as an argument. If no arguments
are given, all commands are listed. This is not part of the main help system.

4.9.5 The quit Command

The quit command terminates the WRspice session. If there are circuits that are in the middle of a
simulation, or plots that have not been saved in a file, the user is reminded of this and asked to confirm.
The variable noaskquit disables this. WRspice can also be terminated from the Quit button in the File
menu of the Tool Control window. The command takes no arguments.

4.9.6 The rusage Command

The rusage command is used to obtain information about the consumption of system resources and
other statistics during the WRspice session.

rusage [all] [resource ...]

4.9. MISCELLANEOUS COMMANDS 335

If any resource keywords are given, only those resources are printed. All resources are printed if the
keyword all is given. With no arguments, only total time and space usage are printed. The show
command can also be used to obtain resource statistics. The recognized keywords are listed below.

The stats command is almost identical to rusage, and accepts the same keywords. The difference
is that stats given without arguments will print all run statistics.

In release 4.3.10 and later, statistics accumulate in Monte Carlo, operating range, and sweep opera-
tions. This was not the case in earlier releases.

The two tables that follow list the available resource statistics. An internal statistical database
maintains these values, the rusage and stats commands are the user interface to this database. The
following are a few keywords handled by the rusage and stats commands directly. Other keywords are
passed in queries to the internal statistical database.

elapsed

This keyword prints the total amount of time that has elapsed since the last call of the rusage
or stats command with the elapsed keyword (explicit or implied with “all”), or to the program
start time.

faults

This keyword prints the number of page faults and context switches seen by the program thus
far. See also pagefaults, involcxswitch, and volcxswitch for the values that occurred during the last
anslysis.

space

This keyword will print the memory presently in use by WRspice.

totaltime

If this keyword is given, the total time used in the present session will be printed.

subsubsectionStatistical Database Entries

The statistical database contains the following data items, listed in the tables below and with a more
detailed description of each item following.

Resource
Name

Description

Real-Valued Parameters
cvchktime Time spent convergence testing.
loadtime Device model evaluation and matrix load time.
lutime L-U decomposition time.
reordertime Matrix reordering time.
solvetime Matrix solve time.
time Total analysis time.
tranlutime Transient L-U decomposition time.
tranouttime Transient output recording time.
transolvetime Transient solve time.
trantime Transient time.
trantstime Transient timestep computation time.

Integer-Valued Parameters

336 CHAPTER 4. WRSPICE COMMANDS

accept Accepted timepoints.
equations Circuit equations.
fillin Fill-in terms from decomposition.
involcxswitch Involuntary context switches during analysis.
loadthrds Number of device loading helper threads.
loopthrds Number of repetitive analysis helper threads.
matsize Matrix size.
nonzero Number of nonzero matrix entries.
pagefaults Number of page faults during analysis.
rejected Number of rejected timepoints.
runs Accumulated core analysis runs.
totiter Total iterations.
trancuriters Transient interations at last timepoint.
traniter Transient interations.
tranitercut Transient timepoints where iteration limit exceeded.
tranpoints Transient timepoints.
trantrapcut Transient timepoints where trapcheck failed.
volcxswitch Voluntary context switches during analysis.

4.9.6.1 Real Valued Database Entries

cvchktime

Print the time spent checking for convergence in the most recent dc or transient analysis (including
operating point).

loadtime

If given, print the time spent loading the matrix in the last simulation run. This includes the time
spent in computation of device characteristics.

lutime

The lutime keyword will print the time spent in LU factorization of the matrix during the last
simulation run.

reordertime

Print the time spent reordering the matrix for numerical stability in the most recent simulation.

solvetime

This will print the time spent solving the matrix equations, after LU decomposition, in the last
simulation run.

time

This keyword will print the time used by the last simulation run.

tranlutime

The time spent LU factoring the matrix in the most recent transient analysis, not including the
dc operating point calculation.

tranouttime

Print the time spent saving output in the most recent transient analysis.

transolvetime

This keyword prints the matrix solution time required by the last transient analysis, not including
the operating point calculation.

4.9. MISCELLANEOUS COMMANDS 337

trantime

This keyword will print the total time spent in transient analysis in the last transient analysis,
not including the operating point calculation.

trantstime

Report the time spent computing the next timestep in the most recent transient analysis.

4.9.6.2 Integer Valued Database Entries

accept

This keyword prints the number of accepted time points from the last transient analysis.

equations

Print the number of nodes in the current circuit, including internally generated nodes. This
includes the ground node so is one larger than the matrix size.

fillin

Print the number of fillins generated during matrix reordering and factoring. This is not available
from KLU.

involcxswitch

This provides the number of involuntary context switches seen during the last analysis. If multiple
threads are being used, this is the total for all threads.

loadthrds

Report the number of threads used for device evaluation and matrix loading during the most
recent dc (including operating point) or transient analysis. This would be at most the value of the
loadthrds option variable in effect during the analysis, but is the number of threads actually used.

loopthrds

Report the number of threads in use for repetitive analysis in the most recent analysis run. This
would be at most the value of the loopthrds option variable in effect during the analysis, but is the
number of threads actually used.

matsize

Print the size of the circuit matrix.

nonzero

Print the number of nonzero matrix elements.

pagefaults

Report the number of page faults seen during the most recent analysis.

rejected

This keyword prints the number of rejected time points in the last transient analysis.

runs
In Monte Carlo, operating range, and sweep analysis, this returns the number of trial runs over
which statistics have accumulated.

totiter

This keyword prints the total number of Newton iterations used in the last analysis.

trancuriters

This prints the number of Newton iterations used in the most recent transient analysis time point
evaluation.

338 CHAPTER 4. WRSPICE COMMANDS

traniter

The traniter keyword will print the number of iterations used in the last transient analysis. This
does not include iterations used in the operating point calculation, unlike totiter which includes
these iterations.

tranitercut

The number if times that the most recent transient analysis had a time step cut by iteration count.
If the itl4 limit is reached when attempting convergence at a transient time point, the timestep is
cut and convergence is reattempted.

tranpoints

This keyword prints the number of internal time steps used in the last transient analysis.

trantrapcut

This is the number of times in the most recent transient analysis that a timestep was cut due to
the trapcheck algorithm. This may occur when the trapcheck variable is set, which enables a test
to detect numerical problems in trapezoidal integration.

volcxswitch

This provides the number of voluntary context switches seen during the last analysis. If multiple
threads are being used, this is the total for all threads.

4.9.7 The stats Command

The stats command is basically identical to the rusage command, and accepts the same arguments as
described for that command.

stats [all] [resource ...]

The difference is that when given without an argument, all run statistics are printed. This is the
same as “rusage all” with the totaltime, elapsed, space, and faults fields omitted.

4.9.8 The version Command

The version command is used to determine the version of WRspice running.

version [version name]

With no arguments, this command prints out the current version of WRspice. If there are arguments,
it compares the current version with the given version and prints a warning if they differ. A version
command is usually included in the rawfile.

4.10 Variables

Shell variables can be set from the shell with the set command. Equivalently, most of the variables
that have internal meaning to WRspice can be set from variaous panels available in the Tools menu of
the Tool Control window. These are the Plot Options, Plot Colors, Shell Options, Simulation

4.10. VARIABLES 339

Options, Command Options and Debug Options panels. The Variables panel from the Tools
menu will list the variables currently set, as will giving the set command without arguments.

In addition, shell variables are set which correspond to definitions supplied on the .options line of
the current circuit, and there are additional shell variables which are set automatically in accord with
the current plot. In the variable listings, a ‘+’ symbol is prepended to variables defined from a .options
line in the current circuit, and a ‘∗’ symbol is prepended to those variables defined for the current plot.
These variable definitions will change as the current circuit and current plot change. Some variables are
read-only and may not be changed by the user, though this is not indicated in the listing.

Before a simulation starts, the options from the .options line of the current circuit are merged with
any variables of the same name that have been set using the shell. The default result of the merge is
that options that are booleans will be set if set in either case, and those that take values will assume
the value set through the shell if conflicting definitions are given. The merging behavior can be altered
by the user, as described in the section listing circuit options (2.4.4.1). In general, variables set in the
.options line are available for expansion in $varname references, but do not otherwise affect the shell.

While any variable may be set, there are many shell variables that have special meaning to WRspice,
which will be described. Note the difference between a variable and a vector — a variable is manipulated
with the commands set and unset, and may be substituted in a command line with the $varname
notation. A vector is a numerical object that can be manipulated algebraically, printed and plotted, etc.

4.10.1 Shell Variables

These variables control behavior of the WRspice shell. Most of these variables can be set indirectly from
the Shell Options tool from the Shell button in the Tools menu of the Tool Control window.

argc
This read-only variable is set to the number of arguments used to invoke the currently executing
script, including the script name. This can be referenced from within scripts only.

argv
This is a read-only list of tokens from the invoking line of the currently executing script, including
the script name. This can be referred to within scripts only.

cktvars
When this boolean variable is set with the set command or the Shell tool (not in a SPICE
.options line), variables set in the .options line of the current circuit will be treated the same
as variables set with the set command.

With this variable unset, the legacy behavior is maintained, i.e., variables set in .options will
work in variable substitution, but will be ignored in most commands.

In releases prior to 2.2.61, when a variable is set in a .options line, it becomes visible almost like
it was set with the set command, when the circuit containing the .options line is the current
circuit. In the variables listing (set command without arguments or the Variables tool), these
have a ‘+’ in the first column. However, they are not part of the normal variable database, and
they only “work” in special cases. For example, they will work in variable substitution, but won’t
affect the defaults in most commands, such as the plot command. If the same variable is also set
with set, the set definition will have precedence. The variables set with .options can’t be unset,
except by changing the current circuit.

This was confusing to the user. If a .options line contains an assignment for a plot-specific
variable (for example), the variable will appear to be active when listed, but it will have no effect
on the plot command.

340 CHAPTER 4. WRSPICE COMMANDS

It can be argued that making the circuit variables behave the same as those set with the set
command would be an improvement. In this case, variables listed in the set or Variables tool
listing will always have effect, and one can set any variable in the .options line, and have it always
“work”.

On the other hand, circuit variables can’t be unset, so a variable in the current circuit would
always have effect, desired or not. Also, changing present behavior would possibly adversely affect
existing users who expect the current behavior, and this change might break existing scripts.

The cktvars variable gives the user control over how to handle the circuit variables.

height
This variable sets the number of lines assumed in a page to use when printing output to a file. It
will also be used for standard output if for some reason WRspice cannot determine the size of the
terminal window (or has no terminal window). If not set, 66 lines will be assumed.

history
The history variable sets the number of commands saved in the history list. The default is 1000.

ignoreeof
If this boolean variable is set, the EOF character (Ctrl-D) is ignored in file input. If not set, an
EOF character will terminate the input. When typed as keyboard input, Ctrl-D prints a list of
completion matches, if command completion is in use.

noaskquit
If this variable is set, WRspice will skip the exit confirmation prompting it there are simulations
in progress or unsaved data when a quit command has been given.

nocc
If this boolean variable is set, command completion will be disabled.

noclobber
If this boolean variable is set, files will not be overwritten with input/output redirection.

noedit
By default, command line editing is enabled in interactive mode, which means that WRspice takes
control of the low level functions of the terminal window. This can be defeated if noedit is set. If
the terminal window doesn’t work properly with the editor, it is recommended that “set noedit”
appear in the .wrspiceinit file. Note that the command completion character is Tab when editing
is on, and Esc otherwise.

This variable is ignored under Microsoft Windows. The editing is always enabled in that case.

noerrwin
In interactive mode, error messages are generally printed in a separate pop-up window. When
this variable is set, error messages will appear in the console window instead. This variable is
automatically set when WRspice is started in JSPICE3 emulation mode (-j command line option
given).

noglob
If this boolean variable is set, global pattern matching using the characters ‘*’, ‘?’, ‘[’, and ‘]’ is
disabled. This variable is set by default, since ‘*’ is often used in algebraic expressions.

nomoremode
If nomoremode is not set, whenever a large amount of text is being printed to the screen (e.g., from
the print or asciiplot commands), the output will be stopped every screenful and will continue
when a character is typed. The following characters have special meaning:

4.10. VARIABLES 341

q Discard the rest of the output
c Print the rest of the output without pausing
? Print a help message

If nomoremode is set, all output will be printed without pauses.

nonomatch
If set, and noglob is unset and a global expression cannot be matched, the global characters will
be used literally. If not set, lack of a match produces an error.

nosort
If this boolean is set, lists of output are not sorted alphabetically.

prompt
This variable contains a string to use as the command prompt. In this string, the ‘!’ character
is replaced by the event number, and “-p” is replaced by the current directory. If the program is
reading lines which form a part of a control block, the prompt becomes a set of ‘>’ characters, one
for each level of control structure. The default prompt is “$program ! − > ”.

revertmode
This sets up the strategy to revert keyboard focus to the terminal window when a new window
pops up, stealing focus. This is highly dependent on operating system/window manager. The
default auto mode makes a guess based on the operating system. The variable can be set to one
of the integer values below explicitly.

0 default “auto” mode.
1 off, don’t attempt to revert focus.
2 assume older linux, e.g. CentOS 6 and Gnome.
3 assume newish linux, e.g., CentOS 7 and KDE.
4 Apple Mac.
5 Microsoft Windows.

sourcepath
This list variable contains directories to search for command scripts or input files. A list variable in
WRspice takes the form of a list of words, surrounded by space-separated parentheses, for example

(/path/to/dir1 /path/to/dir2 "/usr/bill/my files")

If a directory path contains white space, it should be quoted, as above.

unixcom
When this boolean is set, WRspice will attempt to execute unrecognized commands as operating
system commands.

width
This variable sets the number of columns assumed in printed output, when output is being directed
to a file. This will also be used for standard output if for some reason WRspice cannot determine
the width of the terminal window (or has no terminal window). If not set, 80 columns will be
assumed.

wmfocusfix
When WRspice starts in interactive graphical mode from a terminal window, the tool control
window will appear above other windows, and the keyboard focus should stay with the terminal
window. Similarly, when the user types a command such as a plot command that brings up another

342 CHAPTER 4. WRSPICE COMMANDS

window, the new window should appear above existing windows, and the terminal window should
retain the keyboard focus.

Unfortunately, not all window managers are cooperative, or know the protocols. By setting this
variable, a slightly more brute-force approach is taken to keep the terminal window from losing
focus. This may fix the problem, but in some cases this may have side-effects, such as causing
pop-up windows to appear below existing windows. Anyway, if the terminal window loses focus
when another window pops up, and the user finds this annoying, then setting this boolean variable
in the .wrspiceinit file might fix the problem.

nototop
Ordinarily, the window manager is asked to raise new windows to the top. If this boolean variable
is set, that will not happen. This will probably be needed when using a Windows PC X-server to
run WRspice. In Windows, it is not possible to revert the “window on top” property, so that if this
variable is not set, plot windows and some others will always be shown on top of other windows.

4.10.2 Command-Specific Variables

These variables control the operation of specific WRspice commands and functions. Most of these
variables can be set indirectly from the Command Options tool from the Commands button in
the Tools menu of the Tool Control window.

appendwrite
When set, data written with the write command will be appended to the file, if the file already
exists. If not set, the file will be overwritten.

checkiterate
This sets the binary search depth used in finding operating range extrema in operating range
analysis initiated with the check command. It can be set to an integer value 0–10. If not set or
set to zero, the search is skipped.

diff abstol
This variable sets the absolute error tolerance used by the diff command. The default is 1e-12.

diff reltol
This variable sets the relative error tolerance used by the diff command. The default is 1e-3.

diff vntol
This variable sets the absolute voltage tolerance used by the diff command. The default is 1e-6.

dollarcmt
This boolean variable, when set, alters the interpretation of comments triggered by ‘$’ and ‘;’
characters, for compatibility with input files intended for other simulators.

In other simulators, the ‘$’ character always indicates the start of a comment. The ‘;’ (semicolon)
character is interpreted as equivalent to ‘$’ for purposes of comment identification. In WRspice,
‘$’ is used for shell variable substitution, a feature that does not appear in other simulators and
prevents general use of ‘$’ comments. This can cause trouble when reading files intended for other
simulators. WRspice will detect and strip “obvious” comments, where the ‘$’ is preceded with a
backslash or surrounded by white space, but this may not be sufficient.

Setting this variable will cause ‘$’ and ‘;’ to indicate the start of a comment when reading input,
if the character is preceded by start of line, white space, or a comma, independent of what follows
the character.

4.10. VARIABLES 343

dpolydegree
This variable sets the polynomial degree used by the deriv function for differentiation. If not set,
the value is 2 (quadratic). The valid range is 0–7.

editor
This variable is set to the name or path of the text editor to be used within WRspice. This
overrides the SPICE EDITOR and EDITOR environment variables. If no editor is set, the internal
editor xeditor is used if graphics is available, otherwise the vi editor is used.

errorlog
If this variable is set to a file path, all error and warning messages will be copied to the file. The
variable can also be set as a boolean, in which case all errors and warnings will be copied to a file
named “wrspice.errors” in the current directory. When not set, errors that are not currently
displayed in the error window are lost. Only the last 200 messages are retained in the error window.

filetype
This variable can be set to either of the keywords ascii or binary. It determines whether ASCII
or binary format is used in the generated rawfiles, for example from the write command. The
default is ascii, but this can be overridden with the environment variable SPICE ASCIIRAWFILE,
which is set to “1” (for ASCII), or “0” (zero, for binary).

fourgridsize
When a fourier command is given, the data are first interpolated onto a linear grid. The size of
the grid is given by this variable. If unspecified, a size of 200 is used.

helpinitxpos
This variable specifies the distance in pixels from the left edge of the screen to the left edge of the
help window, when it first appears. If not set, the value taken is 100 pixels.

helpinitypos
This variable specifies the distance in pixels from the top edge of the screen to the top edge of the
help window, when it first appears. If not set, the value taken is 100 pixels.

helppath
This variable specifies the search path used to locate directories containing help database files. This
variable takes its initial value from the SPICE HLP PATH environment variable, if set, otherwise
it assumes a built-in default “(/usr/local/xictools/wrspice/help)”, or, if XT PREFIX is
defined in the environment, its value replaces “/usr/local”.

modpath
This list variable contains directory paths where loadable device module files are expected to be
found. A list variable in WRspice takes the form of a list of words, surrounded by space-separated
parentheses, for example

(/path/to/dir1 /path/to/dir2 "/usr/bill/my files")

If a directory path contains white space, it should be quoted, as above.

The loadable device modules found in modpath directories are normally loaded automatically on
program start-up. See the description of the devload command in 4.6.11 for more information.

mplot cur
This variable contains the name of the last margin analysis output file generated. This variable
can be set, but has no effect, as the file names are generated internally.

344 CHAPTER 4. WRSPICE COMMANDS

nfreqs
This variable specifies how many multiples of the fundamental frequency to print in the fourier
command. If not set, 10 values are printed.

noeditwin
If this boolean variable is set, no window is created for the text editor. This is desirable for editors
that create their own windows.

nomodload
This variable has relevance only if set in the .wrspiceinit file. If set, the automatic loading of
device model modules will be suppressed. This normally occurs after the .wrspiceinit file (if
any) is read and processed. This variable is set if the -m command line option is given.

nopadding
If set, binary rawfiles with vectors of less than maximum length are not zero padded.

nopage
If set, page breaks are suppressed in the print and asciiplot commands. The nobreak variable is
similar, but suppresses page breaks only in the asciiplot command.

When given in the .options line, page ejects are suppressed in printed output, in batch mode.

noprtitle
In interactive mode, when a circuit file is sourced, the title line from the circuit is printed on-screen.
If this boolean variable is set, the title printing is suppressed, and circuit sourcing is silent unless
there are errors. The variable can be set by checking the box in the source page of the Command
Options tool from the Tools menu.

numdgt
This variable specifies the number of significant digits to print in print, asciiplot, fourier, and
some other commands. The default precision is six digits.

This variable sets the number of significant digits printed in output from batch mode, when used
in the .options line.

printautowidth
In column mode of the print command, if this boolean variable is set, the logical page width is
expanded as necessary to print all vectors, up to a hard limit of 2048 characters.

printnoheader
In column mode of the print command, if this boolean variable is set, the three-line header that
normally appears at the top of the first page of output is suppressed.

printnoindex
In column mode of the print command, if this boolean variable is set, the column of index values
that normally appears to the left of all vector data is suppressed.

printnopageheader
In column mode of the print command, if this boolean variable is set, the two line page header
which is normally printed at the top of each page is omitted.

printnoscale
In column mode of the print command, the values of the scale vector are by default printed in
the first data column of each page. Setting this boolean variable suppresses this. A deprecated
alias noprintscale is also recognized, for backwards compatibility with Spice3 and earlier WRspice

releases.

4.10. VARIABLES 345

random
When set, the HSPICE-compatible random number functions (unif, aunif, gauss, agauss, limit)
will return random values. When not set and not running Monte Carlo analysis these functions
always return mean values.

This applies to the listed functions only, and not the statistical functions in 3.16.9, and not the
voltage/current source random functions, which always produce random output.

This can be set with the set command or in a .options line to enable the random functions for use
in scripts, during analysis, or working from the command line. The random output is disabled by
default since some foundry model sets make use of random functions intended for HSPICE Monte
Carlo analysis, and this would cause big trouble in WRspice.

Warning: with this variable set, reading in foundry models such as those from IBM will gener-
ate random model parameters, as these models have built-in random generation compatible with
HSPICE and WRspice. This may be exactly what you want, but if not, be forewarned.

rawfile
This variable sets the default name for the data file to be produced. The default is as entered with
the -r command line option, or “rawspice.raw”. An extension sets the file format, which can be
the native rawfile format, or the Common Simulation Data Format (CSDF). See the description
of the write command (4.5.12) for more information about the formats and how they can be
specified. In server mode (the -s command line option was given) data will be output in rawfile
format in all cases. The filetype variable is used to set whether native rawfiles are written using
ASCII or binary number representations (ASCII is the default).

rawfileprec
This variable sets the number of digits used to print data in an ASCII rawfile. The default is 15.

rhost
This variable specifies the name of the default machine to submit remote simulations to. This
machine must have a wrspiced daemon running. The default machine can also be specified in the
SPICE HOST environment variable, which will be overridden if rhost is set. Additional machines
can be added to an internal list with the rhost command. The host name can be optionally suffixed
with a colon followed by the port number to use to communicate with the wrspiced daemon. The
port must match that set up by the daemon. If not given, the port number is obtained from the
operating system for “wrspice/tcp” or 6114 (the IANA registered port number for this service)
if this is not defined.

rprogram
The name of the program to run when an rspice command is given. If not set, the program path
used will be determined as in the aspice command.

spectrace
This enables messages to be printed during Fourier analysis with the spec command, for debugging
purposes.

specwindow
This variable is set to one of the following strings, which will determine the type of windowing
used for the Fourier transform in the spec command. If not set, the default is hanning.

346 CHAPTER 4. WRSPICE COMMANDS

bartlet Bartlet (triangle) window
blackman Blackman order 2 window
cosine Hanning (cosine) window
gaussian Gaussian window
hamming Hamming window
hanning Hanning (cosine) window
none No windowing
rectangular Rectangular window
triangle Bartlet (triangle) window

specwindoworder
This can be set to an integer in the range 2–8. This sets the order when the gaussian window is
used in the spec command. If not set, order 2 is used.

spicepath
This variable can be set to a path to a simulator executable which will be executed when asyn-
chronous jobs are submitted with the aspice command. If not set, the path used will default to
the value of the environment variable SPICE PATH. If this environment variable is not set, the
path is constructed from the value of the environment variable SPICE EXEC DIR prepended to the
name of the presently running program. If the SPICE EXEC DIR variable is not set, the path used
is that of the presently running WRspice.

units
If this variable is set to “degrees”, all trig functions will use degrees instead of radians for the
units of their arguments. The default is “radians”.

4.10.3 Plot Variables

These variables control the numerous plotting modes and capabilities of the plot, hardcopy, xgraph,
and asciiplot commands. Most of these variables can be set indirectly from the Plot Options panel
and the Colors panel in the Tools menu of the Tool Control window.

colorN
If a variable with the name “colorN ” (N 1–19) is set to the name of a color the N ’th value used
in a window will have this color. The value of color0 denotes the background color and color1

denotes the grid and text color. The color names recognized are those found in the rgb.txt file
in the X-window system library. These mappings are built into WRspice and apply whether or
not X is being run. The colors can also be set using the panel brought up by the Colors button
in the Tools menu, and can be set through the X-resource mechanism (see 3.4) and the setrdb
command.

The “name” for a color can be given in HTML-style notation: #rrggbb, where rr, gg, bb are the
hex values for the red, green and blue component of the color.

combplot
This is a keyword of the plotstyle variable, or can be set as a boolean. It directs the use of a comb
plot (histogram) instead of connected points. Each point is connected to the bottom of the plot
area by a line.

curanalysis
This read-only variable is set to the name of the analysis when analysis starts, and retains the
value until a new analysis starts. Possible values are

4.10. VARIABLES 347

ac dc op tran tf noise disto sens, or not set.

This can be used in a .postrun block to make actions specific to analysis type.

Example

.postrun

strcmp("tran", $curanalysis)

if ($? = 0)

print v(1) v(2) > tranout.prn

end

.endc

curplot
This variable holds the name of the current plot. It can be set to another plot name (as listed in
the plots variable), which will become the current plot. This variable can also be set to “new”, in
which case a new, empty plot is created and becomes the current plot.

curplotdate
This read-only variable contains the creation date of the current plot.

curplotname
This read-only variable contains a description of the type of simulation which produced the current
plot. Note that this is not the name used by the setplot command, but rather a description of
the type of simulation done.

curplottitle
This read only variable contains the title of the circuit associated with the current plot.

gridsize
If this variable is set to an integer greater than zero and less than or equal to 10000, this number
will be used as the number of equally spaced points to use for the X-axis when plotting in the plot
command. The plot data will be interpolated to these linearly spaced points, and the use of this
variable makes sense only when the raw data are not equally spaced, as from transient analysis
with the steptype variable set to nousertp. Otherwise the current scale will be used (which may
not have equally spaced points). If the current scale isn’t strictly monotonic, then this option will
have no effect. The degree of the interpolation is given by the variable polydegree.

gridstyle
This variable is used to determine the style of grid used by the commands plot, hardcopy, and
asciiplot. It can be set to one of the following values:

lingrid Use a linear grid
loglog Use a log scales for both axes
xlog Use a log scale for the X axis
ylog Use a log scale for the Y axis
polar Use a polar grid
smith Transform data and use a Smith grid
smithgrid Use a Smith grid

group
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of
common scales for three categories of data: voltages, currents, and anything else. Each group will
have its own Y-scale.

348 CHAPTER 4. WRSPICE COMMANDS

hcopycommand
This variable specifies the operating system command which the hardcopy command will use
to send a job to the printer. If the string contains the characters “%s”, those characters will be
replaced by the name of the file being used to store the plot data, otherwise the file name will be
appended to the end of the string, separated by a space character. This allows reference to the file
in the middle of the string. For example, suppose that your site has some strange printer, but that
there is a filter which converts PostScript to a format recognized by that printer. The command
string might be “myfilt <%s |lpr -Pstrange printer”. Note that double quotes must be used
in the set command since the string contains space:

set hcopycommand = "myfilt <%s |lpr -Pstrange printer"

hcopydriver
This variable specifies the default driver to use in the hardcopy command. The variable should
be set to one of the following keywords:

Keyword Description

hp laser pcl mono HP laser
hpgl line draw color color HPGL
postscript bitmap mono PostScript
postscript bitmap encoded mono PostScript, compressed
postscript bitmap color color PostScript
postscript bitmap color encoded color PostScript, compressed
postscript line draw mono PostScript, vector draw
postscript line draw color color PostScript
windows native Microsoft Windows native
image tiff, gif, jpeg, png, etc. images
xfig line draw color format for the xfig program

These drivers correspond to the drivers available in the format menu of the Print panel from the
plot windows.

For PostScript, the line draw drivers are most appropriate for SPICE plots. The bitmap formats
will work, but are less efficient for simple line drawings. More information on these drivers can be
found in 3.13.1.

If this variable is set to one of these formats, Print panels from new plot windows will have this
format set initially. Otherwise, the initial format will be the first item in the format menu, or the
last format selected from any plot window.

hcopyheight
This variable sets the default height of the image on the page, as measured in portrait orientation,
used by the hardcopy command. It is specified as a floating point number representing inches,
unless followed by “cm” (without space) which indicates centimeters. The default is typically 10.5
inches, but this is driver dependent.

hcopylandscape
This boolean variable, used by the hardcopy command, will cause plots to be printed in landscape
orientation when set.

hcopyresol
This variable sets the default resolution used by the driver to generate hardcopy data in the
hardcopy command. In almost all cases, the default resolution which is achieved by not setting
this variable is the best choice. One case where this may not be true is with the hp laser pcl

driver, where the choices are 75, 100, 150, and 300 (default 150).

4.10. VARIABLES 349

hcopyrmdelay
When a plot or page is printed, a temporary file is produced in a system directory (/tmp by default),
and by default this file is not removed. There does not appear to be a portable way to know when
a print job is finished, or to know whether the print spooler requires the existence of the file to be
printed after the job is queued, thus the default action is to not perform any cleanup.

If this variable is set to an integer value larger than 0, it will specify that a temporary print file is
to be deleted this many minutes after creation.

The at command, available on all Unix/Linux/OS X platforms (but not Windows) is used to
schedule deletion, which will occur whether or not WRspice is still running. For this to work, the
user must have permission to use at. See “man at” for more information.

This variable can also be set from the hardcopy page in the Plot Options tool from the Tools
menu of the Tool Control window, in Unix/Linux/OS X releases.

hcopywidth
This variable sets the default width of the image on the page, as measured in portrait orientation,
used by the hardcopy command. It is specified as a floating point number representing inches,
unless followed by “cm” (without space) which indicates centimeters. The default is typically 8.0
inches, but this is driver dependent.

hcopyxoff
This variable sets the distance of the image from the left edge of the page, viewed in portrait
orientation, used by the hardcopy command. It is specified as a floating point number represent-
ing inches, unless followed by “cm” (without space) which indicates centimeters. The default is
typically 0.25 inches, but this is driver dependent.

hcopyyoff
This variable sets the vertical position of the image on the page, viewed in portrait orientation, used
by the hardcopy command. Some drivers measure this distance from the top of the page, others
from the bottom. This is a consequence of the internal coordinate systems used by the drivers,
and the lack of assumption of a particular page size. The offset is specified as a floating point
number representing inches, unless followed by “cm” (without space) which indicates centimeters.
The default is typically 0.25 inches, but this is driver dependent.

lingrid
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a linear
grid. This is the default grid type.

linplot
This is a keyword of the plotstyle variable, or can be set as a boolean. It specifies the display of
plot data as points connected by lines. This is the default.

loglog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log-log
grid.

multi
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of
separate Y-scales for each trace of the plot (the default).

nobreak
If set, suppress page breaks when doing an asciiplot. The nopage variable is similar, but suppresses
page breaks in both the asciiplot and print commands.

350 CHAPTER 4. WRSPICE COMMANDS

noasciiplotvalue
If set, suppress printing the value of the first variable plotted with asciiplot on the left side of the
graph.

nogrid
Setting this boolean variable specifies plotting without use of a grid. The data will be plotted with
only the border lines at the bottom and left sides of the plotting area.

nointerp
This variable is used only by the asciiplot command. Normally asciiplot interpolates data onto a
linear scale before plotting it. If this option is given this won’t be done — each line will correspond
to one data point as generated by the simulation. Since data are already linearized unless from
a transient analysis with steptype set to nousertp, setting this variable will avoid a redundant
linearization.

noplotlogo
When set, the WRspice logo is not shown in plots and hard-copies.

plotgeom
This variable sets the size of subsequently created plot windows. It can be set as a string "wid
hei" or as a list (wid hei). The wid and hei are the width and height in pixels.

For Microsoft Windows, the default (when plotgeom is unset) width and height are 500, 300 and
these apply to the whole window. Due to Microsoft’s silly and unnecessary conversion to “dialog
units”, the actual pixel size may be slightly different.

For others, the default width and height are 400, 300 and these apply to the plotting area only.

The acceptable numbers for the width and height are 100—2000. In the string form, a non-numeric
character can separate the two numbers, e.g., "300x400" is ok.

plotposnN
This variable can be used to set the screen position of the N ’th plot window. It can be specified
as a list, as

set plotposn0 = (100 200)

or as a string, as in

set plotposn2 = "150 250".

The N can range from 0–15. If not set, the plots are positioned by an internal algorithm.

plots
This list variable is read-only, and contains the names of the plots available. The curplot variable
can be set to any of these, or to the word “new”, in which case a new, empty plot is created.

plotstyle
This variable is used to determine the plot style in the commands plot, hardcopy, and asciiplot.
Its value may be one of:

linplot Connect points with line segments
combplot Connect each point to the X-axis
pointplot Plot each point as a discrete glyph

pointchars
If this variable is set as a boolean, alpha characters will be used as glyphs for point plots (i.e., the
pointplot mode is active) in a plot command. If set to a string, the characters in this string are
used to plot successive data values. The default is “oxabcdefhgijklmnpqrstuvwyz”.

4.10. VARIABLES 351

pointplot
This is a keyword of the plotstyle variable, or can be set as a boolean. This will cause data to
be plotted as unconnected points. Each successive expression is plotted with a different glyph to
mark the points. The glyphs default to an internally generated set, however alpha characters can
be used if the variable pointchars is set.

polar
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a polar
grid instead of a rectangular grid.

polydegree
This variable determines the degree of the polynomial that is fit to points when a plot is done.
If it is not set or set to 1, then the points are connected by lines. If it is greater than 1, then a
polynomial curve is fit to the points. If the value of polydegree is n, then for each n + 1 adjacent
points, an nth degree curve is fit. If this is not possible (due to the fact that the points aren’t
monotonic), the curve is rotated 90 degrees and another attempt is made. If is is still unsuccessful,
n is decreased by 1 and the process is repeated. Thus four points in the shape of a diamond may
be fit with quadratics to approximate a circle (although it’s not clear that this situation comes
up often in circuit simulation). The variable gridsize determines the size of the grid on which the
curve is fit if the data are monotonic. If the gridsize variable is zero or not set, or the scale is
non-monotonic, no polynomial fitting is done.

polysteps
This variable sets the number of intermediate points to plot between each actual point used for
interpolation. If not set, 10 points are used.

present
Setting this boolean variable will cause plots to be rendered without certain features, including
title strings, date, logo, and vertical scale factors in multi-range cases. The resulting plot window
is intended to be customized by the user by adding text, and the exported image may be more
suitable for use in presentations, papers, etc.

scaletype
This variable is used to determine the treatment of the Y-axis scaling used in displaying the curves
in the plot command. Its value may be one of:

multi Use separate Y-scales for each trace (the default)
single Use common Y-scale for all traces
group Use same scale for voltages, currents, and others

single
This is a keyword of the scaletype variable, or can be set as a boolean. It indicates the use of a
common Y-scale for all traces in the plot.

smith
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a Smith
grid instead of a rectangular or polar grid, and an implicit transformation of the data into the
“reflection coefficient” space through the relation S = (z−1)/(z+1), where z is the complex input
data.

smithgrid
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a Smith
grid instead of a rectangular or polar grid, and plots the data directly, without transformation.
The data must fall within the unit circle in the complex plane to be visible.

352 CHAPTER 4. WRSPICE COMMANDS

ticmarks
If this variable is set as a boolean, than an “x” will be printed every 10 points for each curve
plotted. This variable may also be set as a number, which will be the number of points between
each tic mark. If interpolation is used for plotting, the ticmarks feature is disabled.

title
This variable provides a string to use as the title printed in the plot. If not specified, the title is
taken as the name of the current plot.

xcompress
This variable can be set to an integer value. It specifies that we plot only one out of every value
points in each of the vectors.

xdelta
This value is used as the spacing between grid lines on the x-axis, if set.

xglinewidth
This variable specifies the line width in pixels to use in xgraph plots. If not set, a minimum line
width is used.

xgmarkers
If set, xgraph point plots will use cross marks, otherwise big pixels are used.

xindices
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are integers. Only data points with indices between lower and upper are plotted. The value
of upper must be greater or equal to lower.

xlabel
This variable provides a string to be used as the label for the x-axis. If not set, the name of the
scale vector is used.

xlimit
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are reals. The plot area in the x-direction is restricted to lie between lower and upper. The
area actually used may be somewhat larger to provide nicely spaced grid lines, however.

xlog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log scale
for the x-axis and a linear scale for the y-axis.

ydelta
This value is used as the spacing between grid lines on the y-axis, if set.

ylabel
This variable provides a string to be used as the label for the y-axis. If not set, no label is printed.

ylimit
This variable can be set as a list (lower upper) or as a string "lower upper", where lower and
upper are reals. Setting this variable will limit the plot area in the y-direction to lie between lower
and upper. It may be expanded slightly to allow for nicely spaced grid lines.

ylog
This is a keyword of the gridstyle variable, or can be set as a boolean. It specifies use of a log scale
for the y-axis and a linear scale for the x-axis.

4.10. VARIABLES 353

ysep
If this boolean is set, the traces will be provided with their own portion of the vertical axis, so as
to not overlap. Otherwise, each trace may occupy the entire vertical range on the plot.

4.10.4 Simulation Option Variables

These variables control parameters and modes related to simulation. Most of these variables can be set
indirectly from the Simulation Options tool from the Sim Opts button in the Tools menu of the
Tool Control window, which is equivalent to using the set command to set the variable in the WRspice

shell.

Most of these variables are referred to as “options” in historic SPICE vernacular as they are commonly
given in a .options line in SPICE input. In versions of SPICE that are batch-mode only, this is the only
way to set these parameters. In WRspice, there is little difference between shell variables and options,
however there are subtleties, particularly with respect to resolving conflicts if one of these parameters is
set both as a shell variable and in a .options line in the current circuit. These issues are discussed in
the section desctibing the options, 2.4.4.1.

4.10.4.1 Real-Valued Parameters

abstol
This variable sets the absolute error tolerance used in convergence testing branch currents.

Default Min Value Max Value Set From
1e-12 1e-15 1e-9 Simulation Options/Tolerance

chgtol
This variable sets the minimum charge used when predicting the time step in transient analysis.

Default Min Value Max Value Set From
1e-14 1e-16 1e-12 Simulation Options/Timestep

dcmu
This option variable takes a value of 0.0–0.5, with the default being 0.5. It applies during operating
point analysis. When set to a value less than 0.5, the Newton iteration algorithm mixes in some
of the previous solution, which can improve convergence. The smaller the value, the larger the
mixing. This gives the user another parameter to twiddle when trying to achieve dc convergence.

Default Min Value Max Value Set From
0.5 0.0 0.5 Simulation Options/Convergence

defad
This variable sets the default value for MOS drain diffusion area, and applies to all MOS device
models.

Default Min Value Max Value Set From
0.0 0.0 1e-3 Simulation Options/Devices

defas
This sets the default value for MOS source diffusion area, and applies to all MOS device models.

Default Min Value Max Value Set From
0.0 0.0 1e-3 Simulation Options/Devices

354 CHAPTER 4. WRSPICE COMMANDS

defl
This sets the default value for MOS channel length, and applies to all MOS device models. The
default is model dependent, and is 100.0 microns for MOS levels 1–3 and 6, and typically 5.0
microns for other models.

Default Min Value Max Value Set From
0.0 1e4 Simulation Options/Devices

defw
This variable sets the default value for MOS channel width, and applies to all MOS device models.
The default is model dependent, and is 100.0 microns for MOS levels 1–3 and 6, and typically 5.0
microns for other models.

Default Min Value Max Value Set From
0.0 1e4 Simulation Options/Devices

delmin
This can be used to specify the minimum internal time step alowed during transient analysis.
When a convergence fails, the internal time step is reduced, and a solution is attempted again. If
repeated failures drop the internal timestep below delmin, the run will abort with a “timestep too
small” message.

If this variable is not set or set to 0.0, WRspice will use 1e-6*tmax. The tmax is the maximum
internal timestep which can be specified in the transient analysis specification (.tran syntax), or
defaults to tstep, the transient user timestep.

Default Min Value Max Value Set From
0.0 0.0 1.0 Simulation Options/Timestep

It may be counterintuitive, but using a larger delmin may avoid nonconvergence. The matrix
elements for reactive terms have the time delta in the denominator, thus these become large for
small delta. when delta becomes too small, the matrix elements may become so large that solutions
lose accuracy and won’t converge. On non-convergence, the time delta is cut, making matters worse
and leading to a ”timestep too small” error and termination of analysis.

dphimax
This variable sets the maximum allowable phase change of sinusoidal and exponential sources
between internal time points in transient analysis.

Consider a circuit consisting of a sinusoidal voltage source driving a resistor network. The internal
transient time steps are normally determined from a truncation error estimation from the numerical
integration of reactive elements. Since there are no such elements in this case, a large, fixed time
step is used. This may not be sufficient to reasonably define the sinusoidal source waveform, so
the timestep is cut. This variable sets the time scale for the cut. The default value of π/5 provides
about 10 points per cycle. All of the built-in source functions that are exponential or sinusoidal
reference this variable in the timestep cutting algorithm.

This variable also limits the transient time step when Josephson junction devices are present, i.e.,
it is equivalent to the jjdphimax variable in Jspice3.

Default Min Value Max Value Set From
π/5 π/1000 π Simulation Options/Timestep

gmax
The diagonal elements of the circuit matrix are limited to be no larger than a value, which can
be set with the gmax option. No normal circuit elements will have conductance near this value,
however during iterative solving, large values may be produced by some device models. This can
cause non-convergence or the matrix may become singular. By limiting the matrix elements, the
problem is avoided.

4.10. VARIABLES 355

Default Min Value Max Value Set From
1e3 1e-3 1e6 Simulation Options/Convergence

gmin
This sets the value of gmin, the minimum conductance allowed by the program.

Default Min Value Max Value Set From
1e-12 1e-18 1e-6 Simulation Options/Tolerance

maxdata
This variable sets the maximum allowable memory stored as plot data during an analysis, in
kilobytes. The default is 256000. For all analyses except transient with the steptype variable set to
“nousertp”, the run will abort at the beginning if the memory would exceed the limit. Otherwise,
the run will end when the limit is reached.

Default Min Value Max Value Set From
256000 1e3 2e9 Simulation Options/General

minbreak
This sets the minimum interval between breakpoints in transient analysis. If this variable is not
set or set to 0.0, WRspice will use a value of 5e-8*maxStep, where maxStep may be specified in the
transient analysis initiation (.tran syntax), or defaults to (endTime - startTime)/50.

Default Min Value Max Value Set From
0.0 0.0 1.0 Simulation Options/Timestep

pivrel
This variable sets the relative ratio between the largest column entry and an acceptable pivot
value. In the numerical pivoting algorithm the allowed minimum pivot value is determined by

epsrel = MAX(pivrel*maxval , pivtol)

where maxval is the maximum element in the column where a pivot is sought (partial pivoting).

Default Min Value Max Value Set From
1e-3 1e-5 1.0 Simulation Options/Tolerance

pivtol
This variable sets the absolute minimum value for a matrix entry to be accepted as a pivot.

Default Min Value Max Value Set From
1e-13 1e-18 1e-9 Simulation Options/Tolerance

rampup
When set to a value dt , during transient analysis all source values are effectively multiplied by
pwl(0 0 dt 1). That is, all sources ramp up from zero, and assume their normal values at time =
dt .

The dc operating point calculation (if uic is not given) becomes trivial with all sources set to zero.

This is mostly intended for Josephson junction circuits so constant valued sources can be used
without convergence problems.

Default Min Value Max Value Set From
0.0 0.0 1.0 Simulation Options/Convergence

reltol
This sets the relative error tolerance used in convergence testing.

Default Min Value Max Value Set From
1e-3 1e-8 1e-2 Simulation Options/Tolerance

356 CHAPTER 4. WRSPICE COMMANDS

resmin
This is the smallest absolute value of a resistor, smaller given values are set to this value, preserving
sign.

Default Min Value Max Value Set From
1e-3 1e-5 10 Simulation Options/Devices

temp
This variable specifies the assumed operating temperature of the circuit under simulation.

Default Min Value Max Value Set From
25 -273.15 1e3 Simulation Options/Temperature

tnom
The tnom variable sets the nominal temperature. This is the temperature at which device model
parameters are assumed to have been measured.

Default Min Value Max Value Set From
25 -273.15 1e3 Simulation Options/Temperature

trapratio
This controls the “sensitivity” of the trapezoid integration convergence test, as described with the
trapcheck variable. Higher values make the test less sensitive (and effective) but reduce the number
of false positives that can slow down simulation.

Default Min Value Max Value Set From
10.0 2.0 100.0 Simulation Options/Timestep

trtol
This is a factor used during time step prediction in transient analysis. This parameter is an
estimate of the factor by which WRspice overestimates the actual truncation error. Larger values
will cause WRspice to attempt larger time steps.

Default Min Value Max Value Set From
7.0 1.0 20.0 Simulation Options/Timestep

vntol
This variable sets the absolute voltage error tolerance used in convergence testing.

Default Min Value Max Value Set From
1e-6 1e-9 1e-3 Simulation Options/Tolerance

xmu
This is the trapezoid/Euler mixing parameter that was provided in SPICE2, but not in SPICE3. It
effectively provides a mixture of trapezoidal and backward Euler integration, which can be useful
if trapezoid integration produces nonconvergence. It applies only when trapezoidal integration is
in use, and the maximum order is larger than 1. When xmu is 0.5 (the default), pure trapezoid
integration is used. If 0.0, pure backward-Euler (rectangular) integration is used, but the time
step predictor still uses the trapezoid formula, so this will not be the same as setting maxord to 1
(which also enforces backward-Euler integration). Trapezoidal integration convergence problems
can sometimes be solved by setting xmu to values below 0.5. Setting xmu below about 0.4 is not
recommended, better to use Gear integration.

Default Min Value Max Value Set From
0.5 0.0 0.5 Simulation Options/Timestep

4.10. VARIABLES 357

4.10.4.2 Integer-Valued Parameters

bypass
When bypassing is enabled, which is the default, semiconductor devices will skip certain compu-
tations when terminal voltages are relatively static. This is a speed optimization. This variable
can be set as an integer to a value of 0 (zero) to disable bypassing. This can perhaps increase
accuracy, at the expense of speed. When set to a nonzero value, or to no value, there is no effect
as bypassing is enabled by default.

Default Min Value Max Value Set From
1 0 1 Simulation Options/Devices

fpemode
The fpemode variable can be set to an integer which controls how the program responds to a
floating-point exception, such as divide by zero or overflow. The accepted values are

0 (default)
Halt computation if an error is detected. In many cases, the computation will be retried,
after going to a smaller step size in simulation (for example), so the halt does not necessarily
mean simulatiuon failure.

1
Ignore floating-point errors and just continue. This is what most other simulators do.

2
This is for debugging. A floating-point error will cause a signal to be emitted, that when
caught will terminate the program. Under control of a debugger, the expression causing the
exception can be located easily, but this is not likely to be useful for the general user.

In releases prior to 4.1.6, there were two “signaling” modes, that attempted to return to the running
program. This is no longer possible and these would instead hang the program if used.

If set as an option, e.g. “.options fpemode=1” then the mode applies only when the circuit is
running a simulation.

Default Min Value Max Value Set From
0 0 2 Simulation Options/General

gminsteps
This variable controls the gmin stepping used in operating point analysis (see 2.7.6). The values
are integers in the range -1 through 20, with the default being 0. If -1, no gmin stepping will
be attempted. If set to 0 (the default) the dynamic gmin stepping algorithm is used. This will
use variable-sized steps, reattempting with a smaller step after failure. If positive, the Berkeley
SPICE3 gmin stepping algorithm will be used, with a fixed number of steps as given.

Default Min Value Max Value Set From
0 -1 20 Simulation Options/Convergence

interplev
In transient analysis, in the default steptype mode, internal timepoint data are interpolated onto
the external (user supplied) time points. Only the interpolated data are saved. This variable sets
the polynomial degree of interpolation, in the range 1–3. The default is 1 (linear interpolation).

Default Min Value Max Value Set From
1 1 3 Simulation Options/Timestep

358 CHAPTER 4. WRSPICE COMMANDS

itl1
The itl1 variable sets the dc iteration limit before convergence failure is indicated.

Default Min Value Max Value Set From
400 10 1000 Simulation Options/Convergence

itl2
The itl2 variable sets the dc transfer curve iteration limit before convergence failure is indicated.

Default Min Value Max Value Set From
100 4 500 Simulation Options/Convergence

itl2gmin
The itl2gmin variable sets the maximum number of iterations to allow per step during gmin stepping
when finding the dc operating point.

Default Min Value Max Value Set From
20 4 500 Simulation Options/Convergence

itl2src
The itl2src variable sets the maximum number of iterations to allow per step during dynamic source
stepping when finding the dc operating point.

Default Min Value Max Value Set From
20 4 500 Simulation Options/Convergence

itl4
This variable sets the number of timepoint iterations in transient analysis above which convergence
failure is indicated.

Default Min Value Max Value Set From
20 4 100 Simulation Options/Convergence

loadthrds
WRspice currently supports multi-threaded matrix loading on all supported platforms. The concept
is to use otherwise unused processor cores to evaluate device model code in parallel, thus reducing
simulation time. This is experimental, and applies to dc (including operating point) and transient
analysis only.

The load function is the function that evaluates all of the device model code, and sets up the circuit
matrix and right-hand side vector, for subsequent LU factorization and solution. This dominates
circuit simulation time in some circuits, particularly when using complex device models such as
BSIM.

This variable sets the number of helper threads that will be created to assist the main thread in
evaluating device code. If 0 or not set, no helper threads are used. It has a corresponding entry in
the General page of the Simulation Options panel.

Multiple threads will not necessarily make simulations run faster and in fact can have the opposite
effect. The latter is sadly true in Josephson circuits tested thus far. The problem is that multi-
threading adds a small amount of overhead, and the load function may be called hundreds of
thousands of times in these simulations. The model calculation for JJs runs very quickly, and the
overhead becomes significant. The same is true for other simple devices. Work to improve this
situation is ongoing.

On the other hand, if there is a lot of computation in the device model, this will dominate the
overhead and we see shorter load times. This is true for BSIM MOS models, in circuits with more
than about 20 transistors. Such simulations can run 2-3 times faster than a single thread. One
should experiment with the value of the loadthrds variable. Most likely for best performance, the

4.10. VARIABLES 359

value plus the main thread should equal the number of available hardware threads, which is usually
twice the number of available CPU cores.

Default Min Value Max Value Set From
0 0 31 Simulation Options/Beneral

loopthrds
WRspice currently supports multi-threaded simulation runs when performing chained-dc analysis
(see 1.4). Most analysis types allow dc analysis chaining. That is, the basic analysis specification
is followed by a dc analysis specification involving one or two sources or device parameters in
the circuit, and the analysis is run at each dc bias condition. The result will be a family of
multi-dimensional vectors, one dimension per bias condition.

In this release, the dc-point analyses may be run using multiple threads. All supported operating
systems provide multi-threading, however parallel runs require multiple cores or CPUs. Multiple
threads will be used automatically if:

1. The loopthrds variable is set to an integer 1 or larger. This option variable indicates the
number of “helper” threads to use. It can be set to an integer in the range 0 through 31, with
0 being the same as not set (single threading). The “best” value can be found experimentally,
but the value plus the main thread probably equals twice the number of available CPU cores.

2. The analysis specification supports multi-threading. Presently the following analyses can be
multi-threaded:

tran, without scrolling, segmenting, and with the “nousertp” mode not set.
ac
tf

Concurrent threads in loop/Monte Carlo analysis is not yet available, but will be be provided in a
future release. These analysis require a rebuild of the circuit object for each trial.

Hint: If your requirements can be met with chained dc analysis instead of loop analysis,
overhead can be minimized. Chained dc can be used in many instances, since a source
voltage can be used in an expression for a component value, for example.

In chained dc analysis, the same circuit object is re-used multiple times. In loop analysis, the
circuit object must be recreated for each trial run, since the deck after shell substitution will have
changed.

The loopthrds and loadthrds can be used together. One should experiment to find the fastest
settings.

Default Min Value Max Value Set From
0 0 31 Simulation Options/Beneral

maxord
This variable sets the maximum order of the integration method used. Setting this to 1 will always
use rectangular integration. If unset, the value taken is 2, which is the maximum order for the
default trapezoidal integration. If Gear integration is used, the maximum order is 6.

Default Min Value Max Value Set From
2 1 6 Simulation Options/Timestep

srcsteps
This variable controls the source stepping used in operating point analysis (see 2.7.6). The values
are integers in the range -1 through 20, with the default being 0. If -1, no source stepping will
be attempted. If set to 0 (the default) the dynamic source stepping algorithm is used. This will

360 CHAPTER 4. WRSPICE COMMANDS

use variable-sized steps, reattempting with a smaller step after failure. If positive, the Berkeley
SPICE3 source stepping algorithm will be used, with a fixed number of steps as given.

Default Min Value Max Value Set From
0 -1 20 Simulation Options/Convergence

vastep
This option applies when a .verilog block is present, and the Verilog simulation is run in parallel
with transient analysis. Precisely how this occurs is controlled by this option. The value is an
unsigned integer.

0
The Verilog simulation is advanced by calling the vastep command, likely through a callback
function called from a .stop line.

1 (the default)
The Verilog simulation is advanced at each transient analysis time step.

X (positive integer greater than 1)
The Verilog simulation is advanced after X transient time steps.

4.10.4.3 Boolean Parameters

dcoddstep
Where set: Simulation Options/General

Consider the dc sweep specification

.dc vxxx 0 1.1 0.2

WRspice will evaluate at 0.0, 0.2, ... 1.0. If dcoddstep is given, evaluation will also be performed
at the end-of-range value 1.1. This is the default for some other simulators, so dcoddstep provides
compatibility.

extprec
Where set: Simulation Options/General

When this option is set, WRspice will use extended precision arithmetic when setting up and solving
the circuit equations. With Intel, this mode uses the 80-bit native floating point format for all
calculations, rather than the 64-bit “double precision”. This requires that floating point numbers
use 16 bytes rather than 8, however matrix space is allocated assuming complex numbers, which
are 16 bytes. Thus, this mode has no memory-use penalty, and may actually cause some circuits
to simulate faster.

The mode applies to both KLU and Sparse matrix solvers. It adds about three decimal digits
of precision to the calculations. Using extended precision may avoid “singular matrix” and other
convergence problems with some circuits. See and run the “precision.cir” file in the examples
for more information.

forcegmin
Where set: Simulation Options/Convergence

When set, this will enforce a minimum gmin conductance to ground on all nodes in the circuit
(including internal nodes of devices). This may facilitate convergence.

gminfirst
Where set: Simulation Options/Convergence

4.10. VARIABLES 361

When this boolean option variable is set, during operating point analysis, gmin stepping is at-
tempted before source stepping. This is the default in Berkeley SPICE, however the WRspice

default is to apply source stepping first, which seems more effective.

hspice
Where set: Simulation Options/Parser

When set, many of the HSPICE parameters and keywords that are not handled are silently ignored.
Ordinarily, these produce a warning message. In particular, when set:

1. The following MOS model parameters are silently ignored.

acm

alpha

binflag

calcacm

capop

cjgate

cta

ctp

dtemp

hdif

iirat

lalpha

ldif

lmlt

lref

lvcr

mismatchflag

nds

pta

ptp

rd

rdc

rs

rsc

scale

scalm

sfvtflag

sigma

tlev

tlevc

vcr

vnds

walpha

wmlt

wref

wvcr

xl

xw

2. The following BJT model parameters are silently ignored.

iss ns tlev tlevc update

3. The following MOS device parameters are silently ignored.

dtemp

4. The following control lines are silently ignored.

.alias

.alter

.connect

.data

.dellib

.dout

.global

.graph

.hdl

.lin

.malias

.protect

.stim

.unprotect

jjaccel
Where set: Simulation Options/Timestep

This applies only when Josephson junctions are present in the circuit, and performing transient
analysis. It causes a faster convergence testing and iteration control algorithm to be used, rather
than the standard more comprehensive algorithm suitable for all devices. If the circuit consists of
Josephson junctions, passive elements, and sources only, then setting this option may provide a
reduction in simulation time. It probably should not be used if semiconductor devices are present.

noiter
Not currently implemented.

During transient analysis, at each new time step, Newton iterations are used to solve the nonlinear
circuit equations. The first iteration, the prediction step, uses extrapolation from past values to
obtain a best guess at the solution for use as input. Additional iterations use the previous output
values as input.

In cases where the nonlinearity is weak, or where the internal time step is forced to be small (as
when Josephson junctions are present) iterations beyond the predictor sometimes lead to unneeded
accuracy. Setting the variable noiter causes skipping of iterations beyond the prediction step, and
also skipping of certain other code. This maximizes the simulation rate, but can lead to errors if
not used carefully. Much the same effect can be obtained by setting reltol to a large value, however
noiter is more efficient as convergence testing and matrix loading are skipped, as there is a-priori
knowledge that no iterations are to take place. The iteration count and total internal timepoint
count are available from the rusage command.

362 CHAPTER 4. WRSPICE COMMANDS

nojjtp
Where set: Simulation Options/Timestep

During transient analysis with Josephson junctions present, the default time step is given by
T = φ/vmax, where φ = Φ0/2π (φ = 3.291086546e-16, Φ0 is the magnetic flux quantum) and
vmax = max(V j, sqrt(φJc/C)). If the variable nojjtp is set, the timestep is determined from a
truncation error calculation, as is the case when Josephson junctions are not present in the circuit.
The user should experiment to determine which timestep leads to faster execution.

noklu
Where set: Simulation Options/General

When this boolean variable is set, KLU will not be used for sparse matrix calculations. Otherwise,
if the KLU plug-in is available, KLU will be used by default. The KLU plug-in is provided with
all WRspice distributions, and is installed in the startup directory.

nomatsort
Where set: Simulation Options/General

When using Sparse (i.e., KLU is unavailable or disabled), this boolean variable when set will
prevent using element sorting to improve speed. This corresponds to the legacy WRspice sparse
code. It may be interesting for comparison purposes, but setting this variable will slow simulation
of most circuits. This variable has no effect if KLU is being used.

noopiter
Where set: Simulation Options/Convergence

This boolean variable applies when one of gminsteps or srcsteps is given a positive value, and thus
operating point analysis (see 2.7.6) is using a Berkeley algorithm. In this case, by default a direct
iterative solution of the circuit matrix is attempted, and if this fails the stepping methods are
attempted. This initial direct solution attempt most often fails with complex circuits and can be
time consuming. Setting noopiter¿ will skip this initial attempt.

noshellopts
This option is deprecated, use optmerge instead. See the section describing options (2.4.4.1) for a
discussion of option merging and the role of this variable.

If set, do not use WRspice options that have been set interactively through the shell. Use only
options that appear in a .options line in the circuit file when running a simulation of the circuit.

oldlimit
Where set: Simulation Options/Devices

When set, the SPICE2 limiting algorithm for MOS devices is used. Otherwise, an improved limiting
procedure is used.

oldsteplim
In transient analysis, WRspice by default limits the maximum internal time step to the printing
time step (tstep). This is obtained from the tran line

(simplified syntax)
.tran tstep tstop [tstart [tmax]]

I.e., tmax now defaults to tstep. Previously if defaulted to (tstop – tstart)/50, which is usually a
much larger value.

The oldsteplim boolean option if given will revert the run to the earlier limiting condition.

4.10. VARIABLES 363

It is important to understand the consequences of this difference. This change was made to improve
results from circuits containing only devices that weakly limit the time step (e.g. MOSFETs, ring
oscillator results) which otherwise can be ugly and wrong. This allows users of such devices to get
good results without having to set an explicit maximum time step in the tran line.

However, if the printing time increment tstep is too small, the simulation time can dramatically
increase, since these points are actually being calculated and not just interpolated. The user in
this situation has several options:

1. Accept the longer analysis time as the cost of greater accuracy.

2. Use a larger printing time increment (tstep).

3. Use the tmax parameter to set a larger limit.

4. Use .options oldsteplim to use the old limit of (tstop – tstart)/50.

renumber
Where set: Simulation Options/Parser

When set, the source lines are renumbered sequentially after subcircuit expansion.

savecurrent
Where set: Simulation Options/General

If this variable is set, then all device current special vectors are saved in the plot by default during
analysis. This enables plotting of device currents using the @device[param] construct.

spice3
Where set: Simulation Options/Timestep

By default, WRspice uses a custom algorithm for controlling integration order during transient
analysis. This algorithm provides the following advantages over the SPICE3 algorithm:

1. It provides a possibly better determination of when to use higher integration orders. This
is slightly different from the SPICE3 algorithm even for the order 2 that SPICE3 supports,
and probably takes a few more Euler time steps, but the WRspice code appears to be less
susceptible to trapezoid integration nonconvergence.

2. WRspice allows the full range of Gear integration orders, unlike SPICE3 which does not
advance integration order above 2, when maxord is larger than 2. It is not clear how useful
higher-order Gear integration is. Unlike Gear 2, which is much more stable in general than
trapezoidal integration for stiff systems, this is not true of the higher orders.

3. When the time step is reduced and integration order is cut due to non-convergence, backward-
Euler is now enforced for the next two time steps. In SPICE3, only the first time step is
forced to be backward-Euler. The new approach reduces the tendency of some circuits to not
converge when trapezoidal integration is used.

The standard SPICE3 logic can be used if desired, by setting the boolean option variable spice3.
WRspice releases prior to 3.2.13 used the SPICE3 algorithm exclusively.

translate
This should be ignored. It enables some unneeded processing when building the circuit matrix
internally.

trapcheck
Where set: Simulation Options/Timestep

364 CHAPTER 4. WRSPICE COMMANDS

In some circuits, whose equations are “stiff” in a mathematical sense, trapezoidal integration may
not converge in transient analysis. These circuits likely have a low impedance (voltage source)
driving a capacitor, and/or a high impedance driving an inductor. Non-convergence can take
several forms:

1. The run exits with a “timestep too small” message.

2. The run exits with a math error such as overflow or underflow.

3. Circuit variables oscillate between values at every internal time point. The oscillations may
increase in amplitude as simulation progresses.

4. Circuit variables monotonically diverge to huge values.

When using trapezoidal integration, there is a test to check for the oscillatory behavior charac-
teristic of this type of nonconvergence. If nonconvergence is detected, the present time point is
rejected, the time step is cut by a factor of eight, and the time point calculation is repeated using
backward Euler integration. The circuit will return to trapezoid integration in a few internal time
steps.

This is an improvement, but does not solve all convergence problems. In particular, this test
will not detect monotonic divergence, which could be detected by other means but too late to do
anything about it.

This test is not enabled by default, since it tends to cause circuits to simulate a little more slowly.
It tends to produce false-positives which increase the iteration count. When needed, it can be
enabled by setting the trapcheck variable.

In WRspice releases prior to 4.1.22, this test was enabled by default, and could be disabled by
setting a variable named “notrapcheck”. The notrapcheck variable is no longer recognized.

trytocompact
Where set: Simulation Options/Devices

This boolean variable is applicable only to the LTRA model. When specified, the simulator tries
to condense LTRA transmission line past history of input voltages and currents.

useadjoint
Where set: Simulation Options/Devices

Most of the BSIM device models in WRspice have added code that builds an adjoint matrix which
is used to accurately compute device currents. The computed currents are not used in the device
models, but are available as simulation outputs. This has a small performance overhead so is not
enabled by default, but will be enabled by setting this variable. Without this it may not be possible
to obtain device currents during the simulation, using the device[param] “pseudo-vector”.

In WRspice releases prior to 4.1.23, this feature was enabled by default, and a variable named
“noadjoint” could be set to disable the feature. The noadjoint option is no longer recognized.

vasilent

When set, text generated from Verilog-A models is suppressed while simulating. This can be used
to prevent debugging or other messages from appearing on the screen.

4.10.4.4 String Parameters

method
This string can be set to either of the keywords “trap”, which is the default and sets trapezoidal

4.10. VARIABLES 365

integration, or “gear”, for Gear integration. The maxord variable sets the maximum order of the
integration.

Default Values Set From
trap trap, gear Simulation Options/Timestep

optmerge
This variable is used to specify the rule for dealing with options and variables that are set in the
shell and also in the circuit (given in .options lines). The description of option merging in 2.4.4.1
explains the use of this variable.

Default Values Set From
global global, local, noshell Simulation Options/Parser

parhier
By default, parameters from .param lines, subcircuit instantiation lines, and subcircuit defini-
tion lines have top-down precedence, meaning that when resolving parameter name clashes, the
definition at the highest level in the subcircuit hierarchy takes precedence. Thus, by default, pa-
rameters defined in .param lines outside of any subcircuit will override parameters of the same
name anywhere in the hierarchy.

The parhier option variable can be set to one of the keywords “global” or “local”. The “global”
setting retains default behavior. The “local” setting reverses the precedence to bottom-up. In
this case, parameter definitions at the lowest level within subcircuits will have precedence.

The parameter scoping rules are identical to HSPICE in release 3.2.15 and later. Earlier releases
had different scoping rules, with the default being closer but not identical to the “local” rule.

Default Values Set From
global global, local Simulation Options/Parser

steptype
This string can be set to one of four keywords which determine the data output mode in transient
analysis. It can be set to “interpolate”, which is the default, “hitusertp”, “nousertp”, or
“fixedstep”. The integers 0, 1, 2, 3 are effectively synonyms for these keywords.

If not set, or set to “interpolate”, output points are interpolated from internal time points to
the user time increments, with degree 1 (the default) to 3, set by the interplev variable.

If set to “hitusertp”, then during transient analysis the time step will be cut so as to land on the
user time points. This requires more simulation time, but provides the greatest accuracy.

Setting to “nousertp” will cause internal timepoint data to be saved, either in internal data
structures in interactive mode or in the rawfile in batch mode. The amount of data can grow quite
large.

If set to “fixedstep”, operation is similar to “hitusertp”, however the internal time step is
constrained to this value exactly. No smaller time step is taken, if convergence fails then the
run terminates. The time delta is that given for the transient analysis. This mode is only useful
for debugging as truncation error is ignored. As a side-effect the integration method will be
rectangular.

Default Values Set From
interpolate interpolate, hitusertp, nousertp, fixedstep Simulation Options/Timestep

tjm path
This list variable provides the directories to search for tunnel current amplitude tables created
with the mmjco utility or equivalent, for use in the microscopic Josephson junction model. If not
given, the search path is effectively “(. $HOME/.mmjco)”.

366 CHAPTER 4. WRSPICE COMMANDS

4.10.5 Syntax Control Variables

These variables alter the expected syntax of various types of WRspice input. It may, on occasion, be
useful or necessary to use one or more of these variables to provide compatibility with SPICE input
intended for another simulator, or for compatibility with earlier releases of WRspice.

modelcard
This variable allows the keyword that specifies a model to be reset. If unset, the keyword is
“.model”.

nobjthack
If this boolean is set, bipolar transistors are assumed to have four nodes. Otherwise, three nodes
are acceptable. This only affects subcircuit expansion.

pexnodes
When this boolean variable is set, node names in device and subcircuit call lines will be parameter
expanded as the circuit is read in. In 4.1.12 and later, node names are not parameter expanded by
default, to save processing time and avoid unintended matches causing errors. This variable can
be set for backward compatibility, for files that actually used this feature.

plot catchar
One can specify a fully qualified vector name as input to WRspice, where the default syntax is

plotname.vectorname

The character used to separate the plotname from the vectorname, which defaults to a period (‘.’),
can be changed with this variable. If this variable is set to a single-character string, then that
character becomes the separation character.

spec catchar
By default, vector names that begin with the character ‘@’ are interpreted as “special” vectors that
provide the value of a model, device, or circuit parameter. These have forms like

@devicename[paramname] for a device parameter,
@modelname[paramname] for a model parameter, or
@paramname for a circuit parameter.

The character used to indicate a special vector can be changed from the default ‘@’ with this
variable. If this variable is set to a single-character string, then that character is used to indicate
a special vector.

strictnumparse
When this variable is set, WRspice will not allow trailing characters after a number, unless they
are separated from the number with an underscore (‘ ’). This may prevent errors, for example
writing “1meter” and expecting it to have a value of 1.

subc catchar
When WRspice processes an input circuit containing subcircuits, it internally generates a “flat”
representation of the circuit through subcircuit expansion. All subcircuit calls are replaced with
the subcircuit body text, and the node and device names in the subcircuit are given new names
that are unique in the overall circuit. One can view this flattened representation with the listing
e command.

This variable can be set to a string consisting of a single punctuation character, which will be used as
the field separation character in names generated in subcircuit expansion. It should be a character

4.10. VARIABLES 367

that is not likely to confuse the expression parser. This requirement is rather ambiguous, but
basically means that math operators, comma, semicolon, and probably others should be avoided.

In release 3.2.15 and later the default is ‘.’ (period), which is also used in HSPICE, and provides
nice-looking listings.

In releases 3.2.5 – 3.2.14, the default was ‘ ’ (underscore).

In release 3.2.4 and earlier, and in SPICE3, the concatenation character was ‘:’ (colon).

This variable can appear in a .options line in SPICE input, where is will set the concatenation
character used for the circuit. See also the description of the subc catmode variable below.

subc catmode
When WRspice processes an input circuit containing subcircuits, it internally generates a “flat”
representation of the circuit through subcircuit expansion. All subcircuit calls are replaced with
the subcircuit body text, and the node and device names in the subcircuit are given new names
that are unique in the overall circuit. One can view this flattened representation with the listing
e command.

Previous WRspice versions used the SPICE3 algorithm for generating the new node and device
names. Release 3.2.15 and later have a new, simpler algorithm as the default, but support for the
old algorithm is retained.

This string variable can be set to one of the keywords “wrspice” or “spice3”. It sets the encoding
mode for subcircuit node and device names. In 3.2.15 and later, the “wrspice” mode is the default.
In earlier releases, only the “spice3” mode was available.

A detailed discussion of the two mapping modes is provided in the description of subcircuit expan-
sion in 2.6.1.1.

Typically, the user may not know or care about subcircuit mapping details, however in some SPICE
input it may be necessary to reference subcircuit nodes in .save lines and elsewhere. In this case
knowledge of, and control of, the mapping employed is necessary.

There is also a compatibility issue with older WRspice input files that explicitly reference subcir-
cuit nodes, as both the default renaming algorithm and concatenation character have changed as
WRspice evolved. The format of the subcircuit node names depends on the algorithm, so SPICE
input that explicitly references subcircuit node names implicitly assuming a certain mapping algo-
rithm will require either changes to the node names, or specification of the matching algorithm and
concatenation character. Such files can be easily updated to be compatible with newer WRspice

releases, but some familiarity with the renaming modes is needed.

This variable can appear in a .options line in SPICE input, where is will set the name mapping
algorithm used for the circuit. Typically, to “fix” an old input file, one would add a .options line
specifying the spice3 mapping algorithm, and either the colon or underscore (as appropriate) for
the concatenation character.

subend
This variable allows the keyword which ends a subcircuit definition to be changed. If unset, the
keyword is “.ends”.

subinvoke
This variable allows the prefix which invokes a subcircuit to be changed. If unset, the prefix is “x”.

substart
This variable allows the keyword which begins a subcircuit definition to be changed. If unset, the
keyword is “.subckt”. The equivalent “.macro” keyword applies whether or not this variable is
set.

368 CHAPTER 4. WRSPICE COMMANDS

submaps
This is a string which can be set to a list of tokens of the form name[,value], separated by space.
The square brackets indicate that the value part and delimiting comma are optional.

Before subcircuit expansion, if a line starts with xname (x followed by a name given in the option),
then if the corresponding value is given it will replace xname. If no value was given, the x is simply
stripped off. This is all case insensitive.

Example: set submaps j,b

In the deck, “xj1 1 2 ...” would be replaced by “b1 1 2 ...”.

This is fairly obscure, but may be useful for reading HSPICE netlists that contain Verilog-A
devices. HSPICE uses “X” for these, WRspice maps them to a standard letter for the device type.

units catchar

The units concatenation character may be used in the units string to identify the start of the units
string, and to identify the start of the denominator units. The units separation character (see
below) can also be used to indicate the start of denominator units. See the section about input
numerical format and the units string (2.1.3) for a complete syntax description. If not given, the
concatenation character is ‘#’, but if this variable is set to a string containing a single punctuation
character, that character will become the units concatenation character.

Examples:

1.0#F#S 1 Farad per second
1.0F#S 1 femtosecond (note that ’F’ can be a multiplier or a unit!)
1.0FS 1 femtosecond
1.0#FS 1 Farad-second
1.0S 1 second
1.0#S 1 second
1.0##S 1 Hertz

units sepchar

The units separation character may be used in the units string to identify the start of the denomina-
tor units. The units concatenation character can also be used to indicate the start of denominator
units. See the section about input numerical format and the units string (2.1.3) for a complete
syntax description. If not given, the separation character is ‘ ’ (underscore), but if this variable
is set to a string containing a single punctuation character, that character will become the units
separation character.

var catchar
When expanding shell variables, i.e. replacing forms like “$var” in WRspice input with the value
that has been assigned to var, it is sometimes useful to use the “concatenation character”, which
defaults to ‘%’, to separate the variable name from surrounding text.

For example, if “set one = 1” is active, then “$one%k” will expand to “1k”. Note that it is also
possible to use the form “{$one}k” to achieve the same objective.

The same applies when expanding parameters in SPICE input, using definitions from a .param

line. If one has “.param one=1” in scope, then “one%k” expands to “1k”.

This variable allows the default concatenation character ‘%’ to be changed. If this variable is set
to a single-character string, then that character becomes the concatenation character.

4.10. VARIABLES 369

4.10.6 Batch Mode Option Variables

The following variables are mostly familiar from Berkeley SPICE2, and are used by WRspice when
running in batch mode. Generally, these would be included in a .options line in the SPICE input file.
They have no effect when running WRspice interactively.

acct
When WRspice is run in batch mode, print out resource usage information at the end of the run,
similar in format to the output of the rusage all command. This boolean variable has meaning
only when set in the input file in a .options line.

dev
This option variable is unique to WRspice. When given, a listing of all device instances and
parameters is printed in the batch output, in a format similar to the output of the “show -d *”
command. This boolean variable has meaning only when set in the input file in a .options line.

list
When WRspice is run in batch mode, print a circuit listing before running the simulation. This
boolean variable has meaning only when set in a .options line of the input file.

mod
This option variable is unique to WRspice. Logically, it is the inversion of the SPICE2 nomod

option, if given a listing of device models and parameters is added to batch output. The format
is similar to the output of the “show -m *” command. This boolean variable has meaning only
when set in a .options line of the input file.

node
The SPICE2 variable to print a node summary. When given, a list of the node voltages and
branch currents after dc operating point analysis is printed. The values are printed whether or
not operating point analysis succeeds. This boolean variable has meaning only when set in the
.options line of the input file.

opts
When WRspice is run in batch mode, print out all the variables set and their values. This boolean
variable has meaning only when set in the .options line of the input file.

post
This option variable is similar to the post option of HSPICE. It must be set to one of the following
literal keywords.

post=csdf

In batch mode, if no rawfile (-r option) was specified on the WRspice command line, a CSDF
file will be produced for the batch run. The name of the file will be that of the input file
suffixed with “.csdf” if the input file name is known, or “unknown.csdf” if the input file
name can’t be determined.

post=raw

In batch mode, if no rawfile (-r option) was specified on the WRspice command line, a rawfile
will be produced for the batch run. The name of the file will be that of the input file suffixed
with “.raw” if the input file name is known, or “unknown.raw” if the input file name can’t
be determined.

370 CHAPTER 4. WRSPICE COMMANDS

4.10.7 Unused Option Variables

The following variables have no significance to WRspice, but were used in Berkeley SPICE2 and thus
may be present in input files. These are silently ignored by WRspice.

cptime
The SPICE2 option to set the maximum allowable CPU time for the job. This has no effect in
WRspice.

itl3
The SPICE2 option to set the lower transient iteration limit for timestep control. This is not used
in WRspice.

itl5
The SPICE2 option to set the maximum number of iterations for the job. This is not used in
WRspice.

limpts
The SPICE2 variable which sets the maximum number of points per analysis. This is not used in
WRspice.

limtim
The SPICE2 option to reserve time for output generation. This is not used in WRspice.

lvlcod
The SPICE2 option to generate machine code. This is not used in WRspice.

lvltim
The SPICE2 variable to set the type of timestep control. This is not used in WRspice.

nomod
The SPICE2 variable to suppress printing of a summary of models. This is not used in WRspice.

4.10.8 Debugging Variables

These variables turn on debugging modes and otherwise provide debugging utility. Most of these variables
can be set indirectly from the Debug OPtions tool from the Debug button in the Tools menu of the
Tool Control window.

debug
This variable may be a boolean (i.e., set to nothing), in which case all debugging is turned on, a
string token from the list below, in which case the string specifies which part of the program to
enable debugging for, or a list of these strings, which enables any combination. The possible values
are:

4.10. VARIABLES 371

async The aspice and rspice code
control The control structure code
cshpar The C-shell pre-processor and parser
eval The expression evaluation routines
ginterface Graphics package interface routines
helpsys The help system
plot The plotting routines
parser The parser for expressions
siminterface The interface to the simulator
vecdb The vector database

display
This variable contains the display name for X used by the graphics system, generally of the form
host :number . This variable is read-only.

dontplot
This variable disables the plotting system for debugging purposes. When this variable is set, and
a plot command is given, no graphical operations are performed.

nosubckt
This variable disables the expansion of subcircuits when set, for debugging purposes. A circuit
with subcircuits cannot be parsed if this is set.

program
This variable contains the full path name of the program.

trantrace
This can take integer values 0–2, a value 0 is the same as if unset. When set to 1 or 2, a message
is printed at every internal time point during transient analysis, providing information about the
predicted and used time step, integration order, convergence testing results, and breakpoints. The
value 2 is more verbose than 1.

Also, for values 1 and 2 equivalently, the operating point analysis is traced, with iteration counts,
step values and other information printed. This is done for any operating point analysis, for
transient analysis or not.

372 CHAPTER 4. WRSPICE COMMANDS

This page intentionally left blank.

Chapter 5

Margin Analysis

WRspice has provision for automated operating range and Monte Carlo analysis. Both types of anal-
ysis perform repeated simulation runs with varying parameters, and record whether or not the circuit
“worked” with that parameter set. Writing the code that tests whether the circuit is functioning prop-
erly or not is probably the major challenge in applying these analyses. It is usually helpful to have
a thorough understanding of how the circuit behaves before performing margin analysis. The margin
analysis is one of the later steps in circuit design.

Both types of margin analysis can use a file format which contains the SPICE deck plus executable
statements. There are actually two formats recognized, one for compatibility with the JSPICE3 program,
and a new format particular to WRspice. Use of one of these formats is the most straightforward method
of initiating margin analysis, however there are short-cuts and hooks for more advanced users. The
scripting capability is a powerful tool, and in general allows much tedium to be automated.

5.1 Operating Range Analysis

In operating range analysis, a suitably configured source file containing a circuit description is evaluated
over a two dimensional area of parameter space, producing an output file describing a true/false result
at each evaluated point. The algorithm and implementation are designed to be as efficient as possible
to speed execution. Results can be viewed graphically during or after simulation.

As with conventional circuit and command files, operating range analysis files can be sourced by
simply typing in the file name. If the file name happens to conflict with a WRspice command, then the
file can be input with the source command by typing

source filename

In batch mode, the operating range analysis is performed immediately. Otherwise, actual operating
range analysis is performed with the check command (see 4.6.6). In batch mode, the check command
is run automatically, if the file has certain properties to be described.

In order to initiate margin analysis with the check command, the current circuit must be from a
margin analysis file, or have appropriate bound codeblocks. Every circuit suitable for margin analysis
must have a control block which contains a shell routine which will evaluate the circuit variables and
establish whether or not the operation is correct. If operation is incorrect, a vector named “checkFAIL”

373

374 CHAPTER 5. MARGIN ANALYSIS

must be set to a non-zero value. Alternatively, the script can return the value 1 to indicate trial failure.
These control statements can be supplied in the circuit file in a block initiated with a .control line and
ending with a .endc line, or through another file added as a codeblock and bound to the “controls” of
the circuit, through use of the codeblock command.

A second block of statements, the “header” or “exec” block, is typically required, though it is not
an error if none is provided. This block provides initializing statements, and is executed at the start
of operating range analysis, or at the start of each trial in Monte Carlo analysis. This block can be
provided in the circuit file within an .exec and an .endc line, or can be a bound codeblock, bound to
the “execs” of the circuit.

Monte Carlo analysis files differ from operating range files only in the header or .exec lines (or header
codeblock). During Monte Carlo analysis, the header block is executed before every simulation so that
variables can be updated. In operating range analysis variables are initialized by the header block only
once, at the start of analysis.

If the circuit has a line with the characters .monte, then Monte Carlo analysis is assumed, and the
-m option to the check command is unnecessary. Similarly, a .checkall line will imply the checking
of all points in operating range analysis, making the -a option to the check command unnecessary. A
line containing the characters .check will indicate (the default) operating range analysis. One of these
lines must appear if the file is to be analyzed in batch mode. These lines also suppress the automatic
execution of the .exec lines and the .control lines as the file is sourced (the .exec lines are actually
executed, but no vectors are saved, to enable correct shell variable expansion). A line containing the
string .noexec appearing in the circuit file will have the same effect.

There are a number of vectors with defined names which control operating range and Monte Carlo
analysis. In addition, there are relevant shell variables. The vectors created for use in an analysis run
are assigned to a plot structure created for the analysis. This plot becomes the current plot after the
analysis starts. These vectors are usually set in the header (.exec) block, unless the defaults are used.
They can also be set by hand, or under the control of another script, if the current plot is the constants
plot, before starting the analysis. The pre-named vectors are as follows:

checkPNTS (real, length >= 1)
These are the points of the scale variable (e.g., time in transient analysis) at which the pass/fail
test is applied. If a fail is encountered, the simulation is stopped and the next trial started. If not
specified, the pass/fail test is applied after the trial is finished. The checkPNTS vector is usually
set in the header to a list of values with the compose command.

checkVAL1 (real, length 1)
This is the initial central value of the first parameter to be varied during operating range analysis.
It is not used in Monte Carlo analysis.

checkDEL1 (real, length 1)
The first central value will be incremented or decremented by this value between trials in operating
range analysis. It is not used in Monte Carlo analysis.

checkSTP1 (integer, length 1)
This is the number of trials above and below the central value. In Monte Carlo analysis, it partially
specifies the number of simulation runs to perform, and specifies the X-axis of the visual array
used to monitor progress (with the mplot command). In operating range analysis, the default is
zero. In Monte Carlo analysis, the default is 3.

checkVAL2 checkDEL2 checkSTP2
These are as above, but relate to the second parameter to be varied in the circuit in operating range

5.1. OPERATING RANGE ANALYSIS 375

analysis. In Monte Carlo analysis, only checkSTP2 is used, in a manner analogous to checkSTP1.
The total number of simulations in Monte Carlo analysis is (2*checkSTP1 + 1)*(2*checkSTP2

+ 1), the same as would be checked in operating range analysis. The checkSTP2 variable sets the
number of cells in the Y-axis of the plot produced by mplot.

checkFAIL (integer, length 1, 0 or nonzero)
This is the global pass/fail flag, which is set after each trial, nonzero indicates failure. This
variable is used in both operating range and Monte Carlo analysis. This variable is set by the code
which evaluates the pass/fail criteria.

opmin1, opmax1 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the first
parameter for each value of the second parameter. These vectors contain the values found, and are
automatically generated if the range finding feature is enabled. They are not generated in Monte
Carlo analysis.

opmin2, opmax2 (real, length >= 1)
The operating range analysis can be directed to find the operating range extrema of the second
parameter for each value of the first parameter. These vectors contain the values found, and are
automatically generated if the range finding feature is enabled. They are not generated in Monte
Carlo analysis.

range, r scale (real, length >= 1)
If the range finder was active, these vectors are automatically created and added to the plot. The
range vector and its scale r scale contain all of the extrema data, formatted in such a way that the
path is the contour of the boundary of the pass region. The plot command can be used to display
this contour by entering “plot range”.

value (real, length variable)
This vector can be used to pass trial values to the circuit, otherwise shell variables are used. This
pertains to operating range and Monte Carlo analysis. The name of this vector can be redefined
by setting a shell variable named “value” to a new name.

checkN1, checkN2 (integer, length 1)
These are the indices into the value array of the two parameters being varied in operating range
analysis. The other entries are fixed. These vectors are not used if shell variables pass the trial
values to the circuit, and are not used in Monte Carlo analysis.

The name of these vectors can be redefined by setting a shell variable of the same name (“checkN1”
or “checkN2”). The value of this variable, if a non-numeric string token, is taken as the name of a
vector containing the index. If the variable is set to a positive integer, that integer will be taken
as the index, and no vector is used.

The shell variables are:

checkiterate (integer 0-10)
This sets the binary search depth used in finding operating range extrema. If not set or set to zero,
the search is skipped. The binary search is used to find the exact values of the operating region
boundary, and has no relevance to the usual set of pass/fail outputs generated with the check
command. If nonzero, during operating range analysis and not in all-points mode, the extrema for
each row and column are found, and saved in the opmin1, opmax1, opmin2, and opmax2 vectors,
which are then used to generate the range and r scale vectors described above.

376 CHAPTER 5. MARGIN ANALYSIS

If both of the input vectors checkSTP1 and checkSTP2 are unset or set to zero, the range finder
behaves somewhat differently. In this case, if the all-points mode is active, and the file is using an
input “value” vector rather than shell variables for alterable parameters, then the range of each
of these parameters is determined. A masking facility allows some of these inputs to be skipped.
If the all-points mode is not set, the range for the two variables is found. The range finder is
described in more detail below. The range finder is not used in Monte Carlo analysis, and the
checkiterate variable is ignored in that case.

value1, value2
The value1 and value2 variables are set to the current trial values to be used in the circuit
(parameters 1 and 2). The SPICE deck should reference these variables (as $value1 and $value2)
as the parameters to vary. Alternatively, the vector value array can be used for this purpose. These
variables can be used in Monte Carlo analysis, but are not set implicitly.

Instead of using shell substitution and the value1/value2 variables to set varying circuit param-
eters, one can use an internal parameter passing method which is probably more efficient.

The form, given before the analysis,

set value1="%devicelist,paramlist"

sets up a direct push into the named parameters of listed devices, avoiding shell expansion and
vectors. Note that the list must follow a magic ‘%’ character, which tells the system to use the
devlist ,paramlist syntax, as used in the sweep command (see 4.6.39.2).

The jjoprng2.cir file in the examples illustrates use of this syntax.

If any of the shell variables value1, value2, or a shell variable named “value” are set to a string,
then the shell variable or vector named in the string will have the same function as the assigned-to
variable. For example, if in the header one has set value1 = C1, then the variable reference $C1 would
be used in the file to introduce variations, rather than $value1. Similarly, if we have issued set value =

myvec, the vector myvec would contain values to vary (using the pointer vectors checkN1 and checkN2),
and a reference would have the form $&myvec[$&checkN1]. Note that the alternate variables are not
automatically defined before the circuit is parsed, so that they should be set to some value in the header.
The default $value1 and $value2 are predefined to zero.

The “checkN1” and “checkN2” names can also be set as a shell variable, the value of which if a
positive integer will supply the index, or if a string token will redefine the name of the vector which
provides the index.

The checkVAL1, checkDEL1, etc. vectors to be used must be defined and properly initialized, either
in the deck or directly from the shell, before analysis.

The operating range analysis sets the shell variables value1 and value2 to the variables being varied. In
addition, vector variables can be set. This is needed for scripts such as optimization where the parameter
to be varied is required to be under program control. If a vector called value is defined, and a vector
called checkN1 is defined, and checkN1 >= 0 and checkN1 < the length of value, then value[checkN1]

is set to $value1. Similarly, if a vector called value is defined, and a vector called checkN2 is defined, and
checkN2 >= 0 and checkN2 < the length of value, then value[checkN2] is set to $value2. Thus, instead
of invoking $value1 and $value2 in the SPICE text, one can instead invoke $&value[$&checkN1],

$&value[$&checkN2], where we have previously defined the vectors value, checkN1, checkN2. Thus,
the file could have a number of parameters set to $&value[0], $&value[1], If checkN1 is
set to 2, for example, $&value[2] would be varied as parameter 1. The unreferenced values would
be fixed at predefined entries. As mentioned above, the “value1”, “value2”, “value”, “checkN1”, and
“chackN2” names can be redefined by assigning the name of a new variable to the shell variable name
being reassigned, using the set command.

5.1. OPERATING RANGE ANALYSIS 377

There are a number of ways to introduce the trial variations into the circuit. Of these, we have
explicitly identified shell variable and vector substitution. Below is a review of these methods.

1. Perhaps the most direct method is to include the forms $value1 and $value2 (if two dimensional)
for substitution in the current circuit. The variables will be replaced by the appropriate numerical
values before each trial, as for shell variable substitution.

2. If a variable named “value1” is set to a string token with the set command, then a variable of
the same name as the string token will hold the trial values, instead of value1. The same applies
to value2. Thus, for example, if the circuit contains expansion forms of the variables foo1 and
foo2 (i.e., $foo1 and $foo2), one could perform an analysis using these variables by giving

set value1 = foo1 value2 = foo2

3. The method above allows the SPICE options to be set. These are the built-in keywords, which
can be set with the set command or in a .options line in an input file, which control or provide
parameters to the simulation.

The most important example is temperature, using the temp option. To include temperaure as
one of the parameters to vary, one could provide, for example

set value1=temp

4. If there are existing vectors named “checkN1” and (if two dimensions) “checkN2” that contain
integer values, and the variable named “value” is set to the name of an existing vector (or a
vector named “value” exists), then the vector components indexed by checkN1 and checkN2 will
hold trial values, if within the size of the vector. For example:

let vec[10] = 0

let checkN1 = 5 checkN2 = 6

set value = vec

The first line creates a vector named “vec” of size sufficient to contain the indices. The iterated
values will be placed in vec[5] and vec[6]. The circuit should reference these values, either
through shell substitution (e.g., $&vec[5]) or directly as vectors.

Alternatively, a variable named “checkN1” can be set. If the value of this variable is an integer,
that integer will be used as the index. If the variable is a name token, then the index will be
supplied by a vector of the given name. The same applies to checkN2. The following example
illustrates these alternatives:

let vec[10] = 0

set checkN1 = 5

let foo = 6

set checkN2 = foo

5. Given that it is possible to set a vector as if a variable, by using the set command with the syntax

set &vector = value

it is possible to place trial values into vectors during analysis. The form above is equivalent to

let vector = value

378 CHAPTER 5. MARGIN ANALYSIS

Note, however, that the ‘&’ character has special significance to the WRspice shell, so when this
form if given on the command line the ampersand should be quoted, e.g., by preceding it with a
backslash.

Thus, suppose that the circuit depends on a vector named delta. One can set up trial substitution
using this vector as

set value1 = ’&delta’

6. The construct above can be extended to “special” vectors, which enable device and model param-
eters to be set ahead of the next analysis. These special vectors have the form

@devname[param]

where devname is the name of a device or model in the circuit, and param is one of the parameter
keywords for the device or model. These keywords can be listed with the show command.

For example, if the circuit contains a MOS device m1 one might have

set value1 = ’&@m1[w]’

This will perform the analysis while setting the m1 w (device width) parameter as parameter 1.

The range is constructed by row, where columns represent different values for value1. A second pass
fills in concave contours in column order, thus the same pattern should be obtained independently of
the parameter ordering. Patterns with islands or reentrancy may not be displayed correctly. The only
way to make the algorithm completely foolproof is to check every point, which is achieved by giving the
-a option to the check command, or by using .checkall.

During the analysis, a binary search can be employed to determine the actual values of the edges
of the operating region. This feature is enabled by setting the shell variable checkiterate to some value
between 1 and 10. This is the depth of the binary search used to find the endpoint. A binary search
will be performed during conventional operating range analysis only, and is skipped (other than in the
exception noted below) if in all-points mode (-a flag or .checkall line given). The search is skipped
if there are no pass points in the row or column. The computed values are stored in the opmin1, etc.
vectors, where the zeroth element corresponds to the lowest value of the fixed parameter. For example,
opmin1[0] is the minimum value of parameter 1 when parameter 2 is value2 - steps2*delta2. Entries of
these vectors corresponding to points that were not found are zero.

The value to set for the checkiterate variable is a trade-off between accuracy and execution time. If
the boundary is found within the parameter range defined by the input vectors (and as plotted with
the mplot command), the error is bounded by delta/2n, where delta is the appropriate checkDEL1 or
checkDEL2 value, and n is the checkiterate value. If the extremum is found outside of the given parameter
space, the error may be val/2n, where val is the value at the edge of the parameter space nearest the
solution.

After an operating range analysis with range finding is complete, two new vectors, range and r scale,
are created from the opmin1, etc. vectors and added to the current plot. These vectors incorporate all
of the nonzero entries in such a way that they form a path describing the boundary of the operating
region, with range containing Y-data and r scale containing X-data. This contour can be displayed by
plotting the range vector with the plot command.

The algorithm used the evaluate a row is shown below. This is the normal algorithm; if the -a flag is
given to the check command, or a .checkall line was found in the file, the points are simply stepped
through, and no binary searching is done.

5.1. OPERATING RANGE ANALYSIS 379

for each value2 value {
start at left
value1 = central1 - delta1 * nsteps1
loop {

analyze
record point
if (pass) break
value1 = value1 + delta1
if (value1 > central1 + delta1 * nsteps1) break

}
if (pass)

do binary search for lower extremum

start at right
value1 = central1 + delta1 * nsteps1
loop {

analyze
record point
if (pass) break
value1 = value1 - delta1
if (value1 < central1 - delta1 * nsteps1) break

}
if (pass)

do binary search for upper extremum
}

If both checkSTP1 and checkSTP2 are zero or not defined, the range finder can have an additional
operating mode. This mode is made active if the all-points mode is active (-a option or .checkall

given), and a vector is being used to supply trial values, rather than shell variables. If a vector named
“value” is defined, or a vector defined whose name is assigned to the shell variable named “value”, the
range of each of the components can be computed. Note that the vector can have arbitrarily many
entries, and each of these ranges can be found. The range finding can be skipped for certain entries by
defining a mask vector. This is a vector with the same length as the value vector, and the same name as
the value vector but suffixed with “ mask” as in value mask. Each non-zero entry in the mask signifies
that the corresponding variable in the value array will not be tested for range. Additionally, any entry in
the value vector which is zero will not be tested. If no mask vector is defined, the range will be computed
for all nonzero entries. The results are placed, somewhat arbitrarily, in the opmin1 and opmax1 vectors,
which will have lengths equal to that of the value vector. Skipped entries will be zero. No range vector
will be produced, since it is not relevant in this mode.

If not in all-points mode, the range will be computed for the shell variables. The opmin1, etc. will
contain the maximum and minimum values (length 1). The range vector will contain the four points
found. Note that the central value must be a pass point in either of these modes, or the range finding is
skipped. There is no output file produced when both checkSTP1 and checkSTP2 are zero or undefined.

One can keep track of the progress of the analysis in two ways. WRspice will print the analysis point
on the screen, plus indicate whether the circuit failed or passed at the point, if the -v option is given
to the check command. Shell echo commands can be used in the executable blocks to provide more
information on screen, and echoed output is printed whether or not -v is given. The second method uses
the mplot command, which graphically records the pass/fail points. If “mplot -on” is given before the
analysis, the results are plotted as simulation proceeds.

During operating range analysis, a file named basename.dxx is created in the current directory, where

380 CHAPTER 5. MARGIN ANALYSIS

basename is the base name of the input file, and xx is 00–99, set automatically to avoid clobbering existing
files. The output file name is stored in the mplot cur shell variable.

There is a special echof command that allows text to be printed in the output file. The echof
command is used exactly as the echo command. If there is no output file open, the command returns
with no action. The echof command can be used in either .control or .exec blocks in the input file.

5.2 Operating Range Analysis File Format

There are two recognized file formats which can be used as input for operating range analysis. One, the
“old format”, is retained for compatibility with an older version of SPICE. WRspice recognizes a second
“new format” which is more consistent with standard WRspice input file organization. In both cases,
the input file which specifies operating range analysis consists of three sections:

1. an initializing header

2. a body of control statements

3. the circuit description

5.2.1 Initializing Header

In the old format, the file must begin with a line containing only the string

.check

which is followed by shell commands. The header block in the old format is terminated with a line
containing only the string

.control

which also begins the control statement block.

In the new format, the first line of the file is taken to be a title line and is otherwise ignored, consistent
with other types of input files for WRspice. The header statements are found within a block which starts
with a line containing only the string

.exec

and ends with a line containing only the string

.endc

in other words, a standard .exec block. The comment prefix *@ can also be used to enter header block
text, as in described in 2.10.1. The new format file for margin analysis should also contain a line with
only the string

.check

5.2. OPERATING RANGE ANALYSIS FILE FORMAT 381

somewhere in the text. Unlike the old format, the ordering of the .exec block and the .check line is
unimportant.

The lines in the header block initialize internally defined variables. The variables are those listed
above as user-set, including the checkiterate shell variable. Variables which are not used (such as those
for variable 2 in a one dimensional case) can be ignored.

An example header is given below:

Old format:
.check

compose checkPNTS values 50p 100p 150p 200p

checkVAL1 = 12

checkDEL1 = .5

checkSTP1 = 5

checkVAL2 = .5

checkDEL2 = .1

checkSTP2 = 2

New format:
* Title for this file

.check

.exec

compose checkPNTS values 50p 100p 150p 200p

checkVAL1 = 12

checkDEL1 = .5

checkSTP1 = 5

checkVAL2 = .5

checkDEL2 = .1

checkSTP2 = 2

.endc

The variables checkFAIL, checkSTP1, and checkSTP2 are integers. The other variables are real, except
for checkPNTS which is a real vector.

The header block can also be supplied as a bound codeblock. This is accomplished, for example,
with the command

codeblock -abe filename

where filename is the name of a file which contains the statements to be used in the header block. If an
.exec codeblock is bound to the circuit, the bound block is executed rather than any locally specified
header block.

5.2.2 Control Statements

The control statement block is almost identical in the old and new formats. In the old format, the control
block immediately follows the header block, though in the new format this is not necessary. The control

382 CHAPTER 5. MARGIN ANALYSIS

statements are evaluated at each of the checkPNTS, and set the checkFAIL flag if the logic determines
that the circuit run has failed.

This control block begins with a line containing only the string

.control

and ends with a line containing only

.endc

i.e., the standard form for a WRspice control block (see 2.10.1).

The enclosed lines areWRspice script statements that perform a logical comparison of circuit variables
and set the checkFAIL variable accordingly.

The control block can also be supplied as a bound codeblock. This is accomplished, for example,
with the command

codeblock -ab filename

where filename is the name of a file which contains the statements to be used in the control block. If a
.control codeblock is bound to the circuit, the bound block is executed rather than any locally specified
control block.

5.2.3 Circuit Description

In the old format, the circuit description starts immediately after the end of the control block, with the
title line. In the new format, the title line is the first line of the file, and the circuit description is by
definition what is left after removing the .exec and .control blocks.

This circuit description section of the file consists of conventional WRspice format circuit description
lines. The parameters to be varied are replaced with $value1 and $value2. Alternatively, one can
define a vector called value, and unit length vectors checkN1 and checkN2. Then, the parameters to
be varied can be replaced with $&value[$&checkN1] and $&value[$&checkN2]. During analysis, the
$value1 and $value2 (and the value vector entries, if used) are replaced with the current values of the
variables.

Note that in the circuit description, it is often useful to use the concatenation character % to add a
suffix. For examples, the file line might be

v1 0 1 pulse (0 5m 10p ...)

where we want to vary the “5m”. If the value of $value1 is 5, one could replace this line with

v1 0 1 pulse (0 $value1%m 10p ...)

Without the %, the variable substitution would fail. Alternatively, one could set $value1 to 5e-3,
and not use the “m” suffix in the file.

The concatenation character can be set to a different character with the var catchar variable. If this
variable is set to a string consisting of a single punctuation character, then that character becomes the
concatenation character.

5.3. EXAMPLE OPERATING RANGE ANALYSIS CONTROL FILE 383

5.3 Example Operating Range Analysis Control File

The listing that follows is an operating range analysis control file for a Josephson binary counter circuit.

3 stage Josephson counter, operating range analysis

.check

.exec

Margins of a Josephson binary counter

This is an example of an operating range analysis input file

#

After sourcing the file, optionally enter "mplot -on" to see results

graphically, then "check" to initiate run. The results will be left

in a file.

#

compose checkPNTS values 50p 135p 185p 235p 285p 335p 385p 435p 485p

checkFAIL = 0

above two lines are required in header, the rest are optional

#

central value of first variable, number of evaluation steps above and

below, step delta:

checkVAL1 = 13

checkSTP1 = 5

checkDEL1 = .5

#

same thing for second variable

checkVAL2 = 38

checkSTP2 = 5

checkDEL2 = 1

#

one can define other initialized constants here as well

failthres = 1

#

end of header

.endc

.control

#

The following code is evaluated just after the time variable exceeds

each one of the checkPNTS

#

if time > checkPNTS[0]

if time < checkPNTS[1]

time is 50p, set quiescent phase differences. Uninitialized variables

do not require declaration in header

p0 = v(200) - v(201)

p1 = v(300) - v(301)

p2 = v(400) - v(401)

checkFAIL = 0

echo "tp1" to screen

echo tp1

end

end

384 CHAPTER 5. MARGIN ANALYSIS

if time > checkPNTS[1]

if time < checkPNTS[2]

time = 135p, state should be ’001’. if not set checkFAIL to 1

pi and the other variables in the ’constants’ plot are known

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp2

end

end

if time > checkPNTS[2]

if time < checkPNTS[3]

time = 185p, state should be ’010’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp3

end

end

if time > checkPNTS[3]

if time < checkPNTS[4]

time = 235p, state should be ’011’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

echo tp4

end

end

if time > checkPNTS[4]

if time < checkPNTS[5]

time = 285p, state should be ’100’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

5.3. EXAMPLE OPERATING RANGE ANALYSIS CONTROL FILE 385

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp5

end

end

if time > checkPNTS[5]

if time < checkPNTS[6]

time = 335p, state should be ’101’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp6

end

end

if time > checkPNTS[6]

if time < checkPNTS[7]

time = 385p, state should be ’110’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

echo tp7

end

end

if time > checkPNTS[7]

if time < checkPNTS[8]

time = 435p, state should be ’111’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

386 CHAPTER 5. MARGIN ANALYSIS

end

end

end

#

end of pass/fail logic

.endc

.tran 1p 500p uic

.subckt count 1 4 5 6 7

c1 4 0 3.2p

r1 3 8 .4

r2 4 9 1.1

b1 3 0 6 jj1

b2 5 0 7 jj1

l1 3 4 2.0p

l2 4 5 2.0p

l3 1 2 2.0p

l4 2 0 2.0p

l5 8 0 1.4p

l6 9 0 .1p

k1 l1 l3 .99

k2 l2 l4 .99

.ends count

r1 17 2 50

r2 1 6 50

r3 1 10 50

r4 1 14 50

r5 3 18 50

r6 7 13 50

r7 11 13 50

r8 15 13 50

r9 3 20 50

r10 4 5 .43

r11 8 9 .43

r12 12 19 .43

r13 16 30 .5

l1 5 6 2.1p

l2 9 10 2.1p

l3 19 14 2.1p

l4 30 0 2p

x1 3 2 4 100 101 count

x2 7 6 8 200 201 count

x3 11 10 12 300 301 count

x4 15 14 16 400 401 count

*

* These are the sources which vary

* In general, the $value1 or $value2 symbols can replace any numerical

* parameter in the circuit description. No checking is done as to whether

* the substitution makes sense.

*

*flux bias

v1 13 0 pulse(0 $value1%m 10p 10p)

5.4. MONTE CARLO ANALYSIS 387

*gate bias

v2 1 0 pulse(0 $value2%m 10p 10p)

*

*

v3 20 0 pwl(0 0 70p 0

+ 75p 15m 90p 15m 100p -15m 115p -15m

+ 125p 15m 140p 15m 150p -15m 165p -15m

+ 175p 15m 190p 15m 200p -15m 215p -15m

+ 225p 15m 240p 15m 250p -15m 265p -15m

+ 275p 15m 290p 15m 300p -15m 315p -15m

+ 325p 15m 340p 15m 350p -15m 365p -15m

+ 375p 15m 390p 15m 400p -15m 415p -15m

+ 425p 15m 440p 15m 450p -15m 465p -15m 500p -15m)

*

* flux bias first stage

v4 18 0 pulse(0 13m 10p 10p)

*gate bias first stage

v5 17 0 pulse(0 39m 8p 10p)

*

*Nb 3000 A/cm2 area = 20 square microns

.model jj1 jj(rtype=1,cct=1,icon=10m,vg=2.8m,delv=0.08m,

+ icrit=0.6m,r0=49.999998,rn=2.745098,cap=0.777093p)

.end

5.4 Monte Carlo Analysis

WRspice has a built-in facility for performing Monte Carlo analysis, where one or more circuit variables
are set according to a random distribution, and the circuit analyzed for functionality. The file formats
and operation are very similar to operating range analysis.

As in operating range analysis, a complete input file consists of three sections: a header, an exe-
cutable script analyzing operation, and the circuit deck. Unlike operating range analysis, however, the
header block is executed before every simulation run, so that circuit variables may be changed (not
just initialized) in the header. As in operating range analysis, an “old format” and a “new format” are
recognized. These formats are identical in Monte Carlo analysis, except that instead of a line containing
the string .check, Monte Carlo files contain the keyword .monte. This must be the first line of the file
in the old format, but can appear anywhere in a new format file. If both keywords appear in the file
(not a good idea), then Monte Carlo analysis is assumed.

As with conventional circuit and command files, Monte Carlo analysis files can be sourced by simply
typing in the file name. If the file name happens to conflict with a command, then the file can be input
with the source command. If not in batch mode, the analysis is initiated with the check command,
otherwise the analysis is performed immediately.

Monte Carlo analysis is enforced by supplying the -m option to the check command, which initiates
analysis. The -m option is only necessary if the input file does not contain a .monte line. If the -r option
is given, the simulations will be parceled out to remote servers, allowing parallelism in computation.

Output from a Monte Carlo run is saved in a file with base name that of the circuit, with a suffix
“.mxx”, where xx is a sequentially assigned number so as to make the file name unique. The output file
name is stored in the mplot cur shell variable.

388 CHAPTER 5. MARGIN ANALYSIS

The number of runs performed in Monte Carlo analysis is set by the checkSTP1 and checkSTP2 vari-
ables, as in operating range analysis. The number of points will be (2*checkSTP1 + 1)*(2*checkSTP2

+ 1). If the values are not given, they default to 3 (49 points).

In Monte Carlo analysis, the header block is executed before each simulation. In the header block,
shell variables and vectors may be set for each new trial. These variables and vectors can be used in the
SPICE text to modify circuit parameters. The names of the variables used, and whether to use vectors
or variables, is up to the user (variables are a little more efficient). Monte Carlo analysis does not use
predefined names for parameter data. Typically, the gauss function is used to specify a random value
for the variables in the header block.

It is possible to use .param defines to introduce random values in Monte Carlo analysis, as well as
shell variables and vectors. Parameters defined in .param lines are recomputed at the start of each trial,
before the .exec block is evaluated. Random values can be set by calling the random number generation
functions (unif, aunif, gauss, agauss, limit).

Parameters are visible in the .exec block if the .exec block is defined in the same file as the circuit
(directly or through an .include). Parameters are not visible in the .control block. Parameters are
not visible in bound codeblocks.

There is a special echof command that allows text to be printed in the output file. This is the
means by which the trial values are recorded, as there is no default recording mechanism. The file by
default records only the success or failure of each run. The echof command is used exactly as the echo
command. If there is no output file open, the command returns with no action. The echof command
can be used in either .control or .exec blocks in the input file.

Monte Carlo results can be viewed during analysis ar afterward with the mplot command. Giving
“mplot -on” will display results while simulating, as in operating range analysis. The display consists
of (2*checkSTP1 + 1) * (2*checkSTP2 + 1) squares, as in operating range analysis, with each square
indicating pass or fail. In Monte Carlo analysis, the squares are simply filled in in sequence, and their
placement has nothing to do with the actual circuit values.

5.5 Example Monte Carlo Analysis Control File

The following is an example new format Monte Carlo input file:

3 stage counter

.exec

Monte Carlo analysis of a Josephson binary counter

This is an example of a Monte Carlo analysis input file

#

compose checkPNTS values 50p 135p 185p 235p 285p 335p 385p 435p 485p

#

set value1 = $&(13*gauss(.2,1))

set value2 = $&(38*gauss(.2,1))

put the values in the output file

echof $value1 $value2

#

one can define other initialized constants here as well

failthres = 1

#

end of header

5.5. EXAMPLE MONTE CARLO ANALYSIS CONTROL FILE 389

.endc

.control

#

The following code is evaluated just after the time variable exceeds

each one of the checkPNTS

#

echo $&time

if time > checkPNTS[0]

if time < checkPNTS[1]

time is 50p, set quiescent phase differences. Uninitialized variables

do not require declaration in header

p0 = v(200) - v(201)

p1 = v(300) - v(301)

p2 = v(400) - v(401)

checkFAIL = 0

echo Test values: $value1 $value2

else

echo -n " Checking at time $&time ... "

end

end

if time > checkPNTS[1]

if time < checkPNTS[2]

time = 135p, state should be ’001’. if not set checkFAIL to 1

pi and the other variables in the ’constants’ plot are known

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[2]

if time < checkPNTS[3]

time = 185p, state should be ’010’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[3]

if time < checkPNTS[4]

390 CHAPTER 5. MARGIN ANALYSIS

time = 235p, state should be ’011’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) - p2) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[4]

if time < checkPNTS[5]

time = 285p, state should be ’100’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[5]

if time < checkPNTS[6]

time = 335p, state should be ’101’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) - p1) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

end

if time > checkPNTS[6]

if time < checkPNTS[7]

time = 385p, state should be ’110’. if not set checkFAIL to 1

if abs(v(200) - v(201) - p0) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

5.5. EXAMPLE MONTE CARLO ANALYSIS CONTROL FILE 391

end

end

end

if time > checkPNTS[7]

if time < checkPNTS[8]

time = 435p, state should be ’111’. if not set checkFAIL to 1

if abs(v(200) - v(201) + p0 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(300) - v(301) + p1 - 2*pi) > failthres

checkFAIL = 1;

end

if abs(v(400) - v(401) + p2 - 2*pi) > failthres

checkFAIL = 1;

end

end

if time > checkPNTS[1]

if checkFAIL <> 0

echo FAILED

else

echo OK

end

end

#

end of pass/fail logic

.endc

.tran 1p 500p uic

.subckt count 1 4 5 6 7

c1 4 0 3.2p

r1 3 8 .4

r2 4 9 1.1

b1 3 0 6 jj1

b2 5 0 7 jj1

l1 3 4 2.0p

l2 4 5 2.0p

l3 1 2 2.0p

l4 2 0 2.0p

l5 8 0 1.4p

l6 9 0 .1p

k1 l1 l3 .99

k2 l2 l4 .99

.ends count

r1 17 2 50

r2 1 6 50

r3 1 10 50

r4 1 14 50

r5 3 18 50

r6 7 13 50

r7 11 13 50

r8 15 13 50

r9 3 20 50

392 CHAPTER 5. MARGIN ANALYSIS

r10 4 5 .43

r11 8 9 .43

r12 12 19 .43

r13 16 30 .5

l1 5 6 2.1p

l2 9 10 2.1p

l3 19 14 2.1p

l4 30 0 2p

x1 3 2 4 100 101 count

x2 7 6 8 200 201 count

x3 11 10 12 300 301 count

x4 15 14 16 400 401 count

*

* These are the sources which vary

* In general, the $value1 or $value2 symbols can replace any

* numerical parameter in the circuit description. No checking

* is done as to whether the substitution makes sense.

*

*flux bias

v1 13 0 pulse(0 $value1%m 10p 10p)

*gate bias

v2 1 0 pulse(0 $value2%m 10p 10p)

*

*

v3 20 0 pwl(0 0 70p 0

+ 75p 15m 90p 15m 100p -15m 115p -15m

+ 125p 15m 140p 15m 150p -15m 165p -15m

+ 175p 15m 190p 15m 200p -15m 215p -15m

+ 225p 15m 240p 15m 250p -15m 265p -15m

+ 275p 15m 290p 15m 300p -15m 315p -15m

+ 325p 15m 340p 15m 350p -15m 365p -15m

+ 375p 15m 390p 15m 400p -15m 415p -15m

+ 425p 15m 440p 15m 450p -15m 465p -15m 500p -15m)

*

* flux bias first stage

v4 18 0 pulse(0 13m 10p 10p)

*gate bias first stage

v5 17 0 pulse(0 39m 8p 10p)

*

*Nb 3000 A/cm2 area = 20 square microns

.model jj1 jj(rtype=1,cct=1,icon=10m,vg=2.8m,delv=0.08m,

+ icrit=0.6m,r0=49.999998,rn=2.745098,cap=0.777093p)

.end

5.6 Atomic Monte Carlo and Range Analysis

This is a very new capability under development.

WRspice provides an interface to the primitive operations used for operating range and Monte Carlo
analysis. This allows the user to write scripts to implement custom statistical analysis procedures. The

5.7. CIRCUIT MARGIN OPTIMIZATION 393

scripting is more flexible than the built-in analysis described elsewhere.

5.7 Circuit Margin Optimization

There are three scripts which implement a margin optimization algorithm used by Clark Hamilton at
NIST. These files (kept in the scripts directory) are optimize, margins, and merit. The main script is
optimize, which is invoked with the name of the file to be optimized as an argument.

This facility is for advanced users. The present status of the scripts is unknown, and it is possible
that they may require modification before use. They are provided as an example of how the WRspice

scripting facility can be employed for optimization.

An example input file, which defines and initializes various variables and vectors as well as providing
a circuit to optimize, is shown below. To perform optimization, one gives “optimize filename”.

.check

set checkiterate = 3

let checkN1 = 0

compose checkPNTS values 1n 2n

let value[19] = 0

let flags[19] = 0

let flags[0] = 1

let value[0] = .8

.control

if (TIME >= checkPNTS[0])

 checkFAIL = 0

 if ((abs(v(1)) > 1.5) or (abs(v(1)) < .5))

 checkFAIL = 1

 endif

endif

.endc

optimization test

i1 0 1 pulse(0 1 0 1n)

r1 1 0 $&value[0]

.tran .01n 1.1n

.end

This is the simplest way to input the file, alternatively one could set the shell variables and vectors
externally and/or use a bound codeblock for pass/fail evaluation.

The margins script, called by optimize calls the check command. The variable checkiterate must
be set to a nonzero value up to 10. This is the binary search depth for finding the operating range.

The vectors checkN1 and value must be defined, checkN1 is the index into the value array of the
variable being adjusted. It is altered by the scripts, but it and value must be defined before the script is
input or in the header as shown.

The vector checkPNTS is the array of points where analysis is performed. Note that due to some
strangeness, at least two entries must exist.

The value array is initialized to the starting values. The flags vector contains 1 for each entry in the
array which is to be varied, the others are treated as constants.

394 CHAPTER 5. MARGIN ANALYSIS

The lengths of the vectors value and flags is 20, which is assumed in the optimization script.

After the analysis is complete, the value array will contain the optimized values. Two other arrays,
lower and upper, are created, and contain the lower and upper limit for each value index.

The scripts provided can be customized by the user for more specific applications, or used as templates
for different types of analysis. It is recommended that such scripts be defined as codeblocks to speed
execution.

Appendix A

File Formats

A.1 Rawfile Format

Rawfiles produced and read by WRspice have either an ASCII or a binary format. ASCII format is the
preferred format for general use, as it is hardware independent and easy to modify, though the binary
format is the most economical in terms of space and speed of access.

The ASCII format consists of lines or sets of lines introduced by a keyword. The Title and Date lines
should be the first in the file and should occur only once. There may be any number of plots in the file,
each one beginning with the Plotname, Flags, No. Variables, No. Points, Variables, and Values

lines. The Command and Option lines are optional and may occur anywhere between the Plotname and
Values lines. Note that after the Variables keyword there must be numvars “declarations” of outputs,
and after the Values keyword, there must be numpoints lines, each consisting of numvars values. To
clarify this discussion, one should create an ASCII rawfile with WRspice and examine it.

Line Name Description

Title An arbitrary string describing the circuit
Date A free-format date string
Plotname A string describing the analysis type
Flags Either “complex” or “real”
No. Variables The number of variables (numvars)
No. Points The number of points (numpoints)
Command An arbitrary WRspice command
Option WRspice variables
Variables A number of variable lines (see below)
Values A number of data lines (see below)

Any text on a Command line is executed when the file is loaded as if it were typed as a command. By
default, WRspice puts a version command into every rawfile it creates.

Text on an Option line is parsed as if it were the arguments to a WRspice set command. The
variables set are then available normally, except that they are read-only and are associated with the
plot.

A Variable line looks like

395

396 APPENDIX A. FILE FORMATS

number name typename [parm=value]

The number field is ignored by WRspice. The name is the name by which this quantity will be referenced
in WRspice. The typename may be either a pre-defined type from the table below, or one defined with
the deftype command.

Name Description SPICE2 Numeric Code

notype Dimensionless value 0
time Time 1
frequency Frequency 2
voltage Voltage 3
current Current 4
output-noise SPICE2 .noise result 5
input-noise SPICE2 .noise result 6
HD2 SPICE2 .disto result 7
HD3 SPICE2 .disto result 8
DIM2 SPICE2 .disto result 9
SIM2 SPICE2 .disto result 10
DIM3 SPICE2 .disto result 11
pole SPICE3 pz result 12
zero SPICE3 pz result 13

The (optional) parm keywords and values follow. The known parameter names are listed in the table
below.

Name Description

min Minimum significant value for this output
max Maximum significant value for this output
color The name of a color to use for this value
scale The name of another output to use as the scale
grid The type of grid to use – numeric codes are:

0 Linear grid
1 Log-log grid
2 X-log/Y-linear grid
3 X-linear/Y-log grid
4 Polar grid
5 Smith grid

plot The plotting style to use – numeric codes are:
0 Connected points
1 “Comb” style
2 Unconnected points

dims The dimensions of this vector – not fully supported

If the flags value is complex, the points look like r ,i where r and i are exponential floating point
format. Otherwise they are real values in exponential format. Only one of real and complex should
appear.

The lines are guaranteed to be less than 80 columns wide, unless the plot title or variable names are
very long, or a large number of variable options are given.

A.2. HELP DATABASE FILES 397

The binary format is similar to the ASCII format in organization, except that it is not text-mode.
Strings are NULL terminated instead of newline terminated, and the values are in the machine’s double
precision floating point format instead of in ASCII. This makes it much easier to read and write and
reduces file size, but the binary format is not portable between machines with different floating point
formats.

The circuit title, date, and analysis type name in that order are at the start of the plot, each
terminated by a NULL byte. Then the flags field (a short, which is 1 for real data and 2 for complex
data), the number of outputs, and the number of points (both integers) are present. Following this
is a list of NULL-terminated strings which are command lines. This list is terminated by an extra
NULL byte. Then come the options, which consist of the name, followed by the type and the value in
binary. The output “declarations” consist of the name, type code, flags, color, grid type, plot type, and
dimension information in that order. Next come the values, which are either doubles or pairs of doubles
in the case of complex data.

The “old” binary format, which is used by SPICE2, is not accepted by WRspice, however the format
is given below should it be necessary to write a translator.

SPICE2 Binary Rawfile Format
Field Size in Bytes

title 80
date 8
time 8
numoutputs 2
the integer 4 2
output names 8 for each output
types of output 2 for each output
node index 2 for each output
plot title 24
data numpoints * numoutputs * 8

The data are in the form of double precision numbers, or pairs of single precision numbers if the data
are complex.

The values recognized for the “types of output” fields are listed in the data types (top) table above
as the “SPICE2 Numeric Code”.

A.2 Help Database Files

The help information is obtained from database files suffixed with .hlp found along the help search path.
These directories may also contain other files referenced in the help text, such as image files. The help
search path can be set in the environment with the variable SPICE HLP DIR, and/or may be set with
the helppath variable, which will override the environment. These files have a simple format, allowing
users to create and modify them. Each help entry is associated with one or more keywords, which should
be unique in the database. The help system has a debugging mode, which can usually be switched on
by the application, which will issue a warning message on stderr if a name clash is detected. The files
are ASCII text, either in DOS or Unix format. Fields are separated by keywords which begin with “!!”.
Although the help system provides rich-text presentation from HTML formatting, entries can be in plain
text. A sample plain-text entry has the form:

398 APPENDIX A. FILE FORMATS

!!KEYWORD

excmd

!!TITLE

Example Command

!!TEXT

This command exists only in this example. Note that the

!!keywords only have effect if they start in the first

column. The blank line below is optional.

!!SUBTOPICS

akeyword

anotherkeyword

!!SEEALSO

yetanotherkeyword

In this example, the keyword “excmd” is used to access the topic, and should be unique among the
database entries accessed by the application. The text which appears in the topic (following !!TEXT) is
shown indented, which is recommended for clarity, but is not required.

In “.hlp” files, lines anywhere with ‘*’ or ‘#’ in the first column are ignored, as they are assumed
to be comments. Blank lines outside of the !!TEXT field are ignored. Leading white space is stripped,
which can be a problem for maintaining indentation in formatted plain text. To add a space which will
not be stripped, use the HTML escape “ ”.

The following ‘!!’ keywords can appear in “.hlp” files. These are recognized only in upper case,
and must start in the first text column.

!!(space) anything
A line beginning with two exclamation points followed by a space character is ignored.

!!KEYWORD keyword-list
This keyword signals the start of a new topic. The keyword-list consists of one or more tokens, each
of which must be unique among all topics in the database. The words are used to identify the topic,
and if more than one is listed, the additional words are equivalent aliases. The keyword-list may
follow !!KEYWORD on the same line, or may be listed in the following line, in which case !!KEYWORD
should appear alone on the line.

Punctuation is allowed in keywords, only white space characters can not be used. The ‘#’ character
has special meaning and should not be part of a keyword name. Also, character sequences that
could be confused with a URL or directory path should be avoided. The latter basically prohibits
the ‘/’ character (and also ‘\’ under Windows) from being included in keywords. There are special
names starting with ‘$’ which are expanded to application-specific internal variables, as described
below. To avoid any possibility of a clash, it is probably best to avoid ‘$’ in general keywords.

It is often useful to include a meaningful prefix in keywords to ensure uniqueness, for example in
Xic, all commands have keywords prefixed with “xic:”.

!!TITLE string
The !!TITLE specifies the title of the topic, and should follow the !!KEYWORD specification. The
title text can appear on the same line following !!TITLE, or on the next line, in which case !!TITLE
should appear alone in the line. The title is printed at the top of the topic display, and is used in
menus of topics.

!!TEXT

This line signals the beginning of the topic text, which is expected to be plain text. The keyword is

A.2. HELP DATABASE FILES 399

mutually exclusive with the !!HTML keyword. The lines following !!TEXT up to the next !!KEYWORD,
!!SEEALSO, or !!SUBTOPICS line or end of file are read into the display window. The plain text is
converted to HTML before being sent to the display in the following manner:

1. The title text is enclosed in <H1>...</H1>.

2. Each line of text has a
 appended.

3. The subtopics and see-alsos are preceded with added <H3>Subtopics</H3> and
<H3>References</H3> lines.

4. The subtopics and see-alsos are converted to links of the form title
where the keyword is the database keyword, and the title is the title text for the entry.

Note that the text area can contain HTML tags for various things, such as images. Also note
that text formatting is taken from the help file (the
 breaks lines), and not reformatted at
display time. The !!HTML line should be used rather than !!TEXT if the text requires full HTML
formatting.

!!HTML

This line signals the beginning of the topic text, which is expected to be HTML-formatted. The
keyword is mutually exclusive with the !!TEXT keyword. The parser understands all of the standard
HTML 3.2 syntax, and a few 4.0 extensions. References are to keywords found in the database
and general URLs. Image (.gif, etc.) files can be referenced, and are expected to be found along
with the .hlp files.

!!IFDEF word
This line can appear in the block of text following !!TEXT or !!HTML. In conjunction with the
!!ELSE and !!ENDIF directives, it allows for the conditional inclusion of blocks of text in the topic.
The word is one of the special words defined by the application. Presently, the following words are
defined:

in Xic Xic

in WRspice WRspice

in either, under Windows Windows

If word is defined, the text up to the next !!ELSE or !!ENDIF will be included in the topic, and
any text following an !!ELSE up to !!ENDIF is discarded. If word is not defined, the text up to the
next !!ELSE or !!ENDIF is discarded, and any text following an !!ELSE is included. The constructs
can be nested. A word that is not recognized or absent is “not defined”. Every !!IFDEF should
have a corresponding !!ENDIF. The !!ELSE is optional. The !!SEEALSO and !!SUBTOPICS lines
can appear within the blocks.

Example:

!!HTML

Here is some text.

!!IFDEF Xic

You are reading this in Xic.

!!ELSE

!!IFDEF WRspice

You are reading this in WRspice.

!!ELSE

You are not reading this in Xic or WRspice.

!!ENDIF

!!ENDIF

400 APPENDIX A. FILE FORMATS

!!IFNDEF word
This keyword can appear in the block of text following !!TEXT or !!HTML. It is similar to !!IFDEF

but has the reverse logic.

!!ELSE

This keyword can follow !!IFDEF or !!IFNDEF and defines the start of a block of text to include
in the topic if the condition is not satisfied.

!!ENDIF

This keyword terminates the text blocks to be conditionally included in the topic, using !!IFDEF

or !!IFNDEF.

!!INCLUDE filename
The keyword may appear in the text following !!TEXT or !!HTML. When encountered in the text
to be included in the topic, the text of filename, which is searched for in the help search path if not
an absolute pathname, is added to the displayed text of the current topic. There is no modification
of the text from filename.

If the filename is a relative path to a subdirectory of one of the directories of a directory in the
help search path, the subdirectory is added to the search list. Thus, an HTML document and
associated gif files can be placed in a separate subdirectory in the help tree. The HTML document
can be referenced from the main help files with a !!INCLUDE directive, and there is no need to
explicitly change the help search path.

!!REDIRECT keyword target
This will define keyword as an alias for target. The target can be any input token recognizable by
the help system, including URLs, named anchors, and local files. For example:

!!REDIRECT nyt http://www.nytimes.com

Giving “!help nyt” in Xic or “help nyt” in WRspice will bring up a help window containing the
New York Times web page.

!!HEADER

The text that follows, up until the next !!KEYWORD or !!FOOTER, is saved for inclusion in each page
composed from the !!HTML lines for database keywords. The header is inserted at the top of the
page. There can be only one header defined, and if more than one are found in the help files, the
first one read will be used.

In the header text, the literal token %TITLE% is replaced with the !!TITLE text of the current topic
when displayed.

!!FOOTER

The text that follows, up until the next !!KEYWORD or !!HEADER, is saved for inclusion in each page
composed from the !!HTML lines for database keywords. The footer is inserted at the bottom of
the page. There can be only one footer defined, and if more than one are found in the help files,
the first one read will be used.

!!SEEALSO keyword-list

The keyword-list consists of a list of keywords that are expected to be defined by !!KEYWORD lines
elsewhere in the database. A menu of these items is displayed at the bottom of the topic text, under
the heading “References”. The keywords specified after !!SEEALSO can appear on the same line
separated with space, or on multiple lines. If a keyword in these lists is not found in the database,
the normal action is to ignore the error. The application may provide a debugging mode, whereby
unresolved references will produce a warning message.

A.2. HELP DATABASE FILES 401

!!SUBTOPICS keyword-list
This produces a menu of the topics found in the keyword-list very similar to !!SEEALSO, however
under the heading “Subtopics”. This can be used in addition to !!SEEALSO.

A.2.1 Anchor Text

Clickable references in the HTML text have the usual form:

highlighted text

Here, “something” can be a help database keyword or an ordinary URL.

One can use named anchors in help keywords. This means that the ‘#’ symbol is holy, and should
not be used in help keywords. The named anchors can appear in the !!HTML part of the help database
entries in the usual HTML way, e.g.

!!KEYWORD

somekeyword

...

!!HTML

...

some text

Then, referencing forms like “!help somekeyword#refname” and blather will bring up the “somekeyword” topic, but with “some
text” at the top of the help window, rather than the start of the document.

There is an additional capability: ‘$’ expansion. Words found in anchor text that begin with a dollar
sign (‘$’) character may be replaced by either a path related to the program, the value of a variable
saved in the program, or the value of an environment variable. The character that immediately follows
the word can not be alphanumeric.

This replacement is handled by a callback to the application, but both Xic (and its derivatives) and
WRspice support the following keywords and behavior.

$PROGROOT

This word is replaced by the full path to the program installation directory, for example
“/usr/local/xictools/xic”.

$HELP

This word is replaced by $PROGROOT/help, meaning the same directory as $PROGROOT suffixed with
/help.

$EXAMPLES

This word is replaced by $PROGROOT/examples, as above.

$DOCS

This word is replaced by $PROGROOT/docs, as above.

$SCRIPTS

This word is replaced by $PROGROOT/scripts, as above.

402 APPENDIX A. FILE FORMATS

If there is no match to these words, the word, without the dollar sign, is checked against the variable
database. If a variable is set with the same name, the string value of the variable replaces the word. If
there is no match, but the word without the dollar sign matches tne name of an environment variable,
the value of the environment variable will replace the word. If there is no match, there is no substitution.
Substitutions are evaluated recursively.

If the first character of an anchor URL is ‘~’, the path is tilde expanded. This is done after ‘$’ substi-
tution. Tildes denote a user’s home directory: “~/mydir” might expand to “/home/yourhome/mydir”,
and “~joe/joesdir” might expand to “/home/joe/joesdir”, etc.

In WRspice, one can source files from anchor text in the HTML viewer, if the anchor text consists of
a file name with a “.cir” extension. Thus, if one has a circuit file named “mycircuit.cir”, and the
HTML text in the help window contains a reference like

click here

then clicking on the “click here” tag will source mycircuit.cir intoWRspice. Similarly, anchor references
to files with a “.raw” extension will be loaded into WRspice (as a rawfile, i.e., a plot data file) when the
anchor is clicked.

A.2.2 .mozyrc File

The help system looks for a file named “.mozyrc” in the user’s home directory, which contains keywords
which define the default behavior of many of the commands and features of the help window. This is
used only in UNIX/Linux releases. It is necessary to install this file if one wants alternate selections
from the help window, for example different fonts, to be persistent.

A sample .mozyrc file listing is provided below. The file can be found in the startup directory in
the installation tree, under the name “mozyrc”. To install, edit the file if necessary, then move it to your
home directory under the name “.mozyrc”.

This is the startup file which sets defaults for the mozy web browser

and the Xic/WRspice HTML viewer. It should be installed as ".mozyrc"

in the user’s home directory, should the user wish to change the

defaults.

--- DISPLAY ATTRIBUTES ---

Background color used for pages that don’t have a <body> tag,

such as help text (default #e8e8f0)

DefaultBgColor #e8e8f0

Background image URL to use for pages that don’t have a <body> tag

(no default)

#DefaultBgImage /some/dir/pretty_picture.jpg

Text color to use for pages that don’t have a <body> tag

(default black)

DefaultFgText black

A.2. HELP DATABASE FILES 403

Color to use for links in pages without a <body> tag

(default blue)

DefaultFgLink blue

How to handle images:

0 Don’t display images that require downloading

1 Download images when encountered in document

2 Download images after document is displayed

3 Display images progressively after document is displayed (the default)

ImageLoadMode 3

How to underline anchors when underlining is enabled

0 No underline

1 Single solid underline (default)

2 Double solid underline

3 Single dashed underline

4 Double dashed underline

AnchorUnderline 1

If this is set to one (the default) anchors are shown as buttons. If set

to zero, anchors use the underlining style

AnchorButtons 0

If set to one (the default) anchors will be highlighted when the pointer

passes over them. If zero, there will be no highlighting

AnchorHighlight 1

The default font families. This is the XLFD family name with "-size"

appended. Defaults: adobe-times-normal-p-14 misc-fixed-normal-c-14

FontFamily adobe-times-normal-p-14

FixedFontFamily misc-fixed-normal-*-14

If set to one, animations are frozen. If zero (the default) animations

will be shown normally

FreezeAnimations 0

--- COMMUNICATIONS ---

Time in seconds allowed for a response from a message (0 for no timeout,

to 600, default 15)

Timeout 15

Number of times to retry a message after a timeout (0 to 10, default 4)

Retries 4

The port number used for HTTP communications (1 to 65536, default 80)

HTTP_Port 80

The port number used for FTP communications (1 to 65536, default 21)

FTP_Port 21

404 APPENDIX A. FILE FORMATS

--- GENERAL --

Number of cache files to save (2 to 4096, default 64)

CacheSize 64

Set to one to disable disk cache, 0 (the default) enables cache

NoCache 0

Set to one to disable sending and receiving cookies

NoCookies 0

--- DEBUGGING --

Set this to one to print extended status messages on terminal screen

(default 0)

DebugMode 0

Set this to one to print transaction headers to terminal screen

(default 0)

PrintTransact 0

Debugging mode for images

0 Disable debugging mode (the default)

1 Load local images after document is displayed

2 Display local images progressively after document is displayed

LocalImageTestMode 0

Issue warnings about bad HTML syntax to terminal (1) or not (0, the default)

BadHTMLwarnings 0

A.3 Example Data Files

The following circuits are examples. There are a number of example files available with the WRspice

distribution. These are normally found in /usr/local/xictools/wrspice/examples.

A.3.1 Circuit 1: Simple Differential Pair

The following file determines the dc operating point of a simple differential pair. In addition, the ac
small-signal response is computed over the frequency range 1Hz to 100MHz.

Simple differential pair.

vcc 7 0 12

vee 8 0 -12

vin 1 0 ac 1

rs1 1 2 1k

rs2 6 0 1k

q1 3 2 4 mod1

q2 5 6 4 mod1

A.3. EXAMPLE DATA FILES 405

rc1 7 3 10k

rc2 7 5 10k

re 4 8 10k

.model mod1 npn bf=50 vaf=50 is=1.E-12 rb=100 cjc=.5pf tf=.6ns

.ac dec 10 1 100meg

.end

A.3.2 Circuit 2: MOS Output Characteristics

The following file computes the output characteristics of a MOSFET device over the range 0-10V for
VDS and 0-5V for VGS.

MOS output characteristics

.options node nopage

vds 3 0

vgs 2 0

m1 1 2 0 0 mod1 l=4u w=6u ad=10p as=10p

.model mod1 nmos vto=-2 nsub=1.0e15 uo=550

* vids measures Id, we could have used Vds, but Id would be negative

vids 3 1

.dc vds 0 10 .5 vgs 0 5 1

.end

A.3.3 Circuit 3: Simple RTL Inverter

The following file determines the dc transfer curve and the transient pulse response of a simple RTL
inverter. RTL was an early logic family which died out in the early 1970’s. We could not think of
anything more archaic, as WRspice does not contain a vacuum tube model.

The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and a pulse width of
30ns. The transient interval is 0 to 100ns, with printing to be done every nanosecond.

Simple Resistor-Transistor Logic (RTL) inverter

vcc 4 0 5

vin 1 0 pulse 0 5 2ns 2ns 2ns 30ns

rb 1 2 10k

q1 3 2 0 q1

rc 3 4 1k

.model q1 npn bf 20 rb 100 tf .1ns cjc 2pf

.dc vin 0 5 0.1

.tran 1ns 100ns

.end

A.3.4 Circuit 4: Four-Bit Adder

The following file simulates a four-bit binary adder, using several subcircuits to describe various pieces
of the overall circuit.

406 APPENDIX A. FILE FORMATS

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

*

*** SUBCIRCUIT DEFINITIONS

.SUBCKT NAND 1 2 3 4

*NODES: INPUT(2), OUTPUT, VCC

Q1 9 5 1 QMOD

D1CLAMP 0 1 DMOD

Q2 9 5 2 QMOD

D2CLAMP 0 2 DMOD

RB 4 5 4K

R1 4 6 1.6K

Q3 6 9 8 QMOD

R2 8 0 1K

RC 4 7 130

Q4 7 6 10 QMOD

DVBEDROP 10 3 DMOD

Q5 3 8 0 QMOD

.ENDS NAND

.SUBCKT ONEBIT 1 2 3 4 5 6

*NODES: INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC

X1 1 2 7 6 NAND

X2 1 7 8 6 NAND

X3 2 7 9 6 NAND

X4 8 9 10 6 NAND

X5 3 10 11 6 NAND

X6 3 11 12 6 NAND

X7 10 11 13 6 NAND

X8 12 13 4 6 NAND

X9 11 7 5 6 NAND

.ENDS ONEBIT

.SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9

*NODES: INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,

* CARRY-IN, CARRY-OUT, VCC

X1 1 2 7 5 10 9 ONEBIT

X2 3 4 10 6 8 9 ONEBIT

.ENDS TWOBIT

*

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*NODES: INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),

* OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC

X1 1 2 3 4 9 10 13 16 15 TWOBIT

X2 5 6 7 8 11 12 16 14 15 TWOBIT

.ENDS FOURBIT

*

*** DEFINE NOMINAL CIRCUIT

*

.MODEL DMOD D

.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)

VCC 99 0 DC 5V

VIN1A 1 0 PULSE(0 3 0 10NS 10NS 10NS 50NS)

VIN1B 2 0 PULSE(0 3 0 10NS 10NS 20NS 100NS)

A.3. EXAMPLE DATA FILES 407

VIN2A 3 0 PULSE(0 3 0 10NS 10NS 40NS 200NS)

VIN2B 4 0 PULSE(0 3 0 10NS 10NS 80NS 400NS)

VIN3A 5 0 PULSE(0 3 0 10NS 10NS 160NS 800NS)

VIN3B 6 0 PULSE(0 3 0 10NS 10NS 320NS 1600NS)

VIN4A 7 0 PULSE(0 3 0 10NS 10NS 640NS 3200NS)

VIN4B 8 0 PULSE(0 3 0 10NS 10NS 1280NS 6400NS)

X1 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT

RBIT0 9 0 1K

RBIT1 10 0 1K

RBIT2 11 0 1K

RBIT3 12 0 1K

RCOUT 13 0 1K

*

*** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)

* Ah, the good olde days...

.TRAN 1NS 6400NS

.END

A.3.5 Circuit 5: Transmission Line Inverter

The following file simulates a transmission line inverter. Two transmission line elements are required
since two propagation modes are excited. In the case of a coaxial line, the first line (t1) models the
inner conductor with respect to the shield, and the second line (t2) models the shield with respect to
the outside world.

transmission-line inverter

v1 1 0 pulse(0 1 0 0.1N)

r1 1 2 50

x1 2 0 0 4 tline

r2 4 0 50

.subckt tline 1 2 3 4

t1 1 2 3 4 z0=50 td=1.5ns

t2 2 0 4 0 z0=100 td=1ns

.ends tline

.tran 0.1ns 20ns

.end

A.3.6 Circuit 6: Function and Table Demo

Below is a file which illustrates some features exclusive to WRspice for specifying the output of sources.

WRspice function and table demo

*

* WRspice allows arbitrary functional dependence in sources. This

* file demonstrates some of the capability.

*

* v1 is numerically equal to the exponentiation of

* 2 times the sine. "x" is replaced by the time variable.

v1 1 0 exp(2*sin(6.28e9*x))

408 APPENDIX A. FILE FORMATS

r1 1 0 1

*

* v2 obtains values from table t1

v2 2 0 table(t1, time)

r2 2 0 1

.table t1 0 0 100p .1 500p 0 750p .2 1000p 0

*

* v3 is a 0-1 ramp

v3 3 0 pwl(0 0 1n 1)

r3 3 0 1

*

* e1 illustrates use of sub-tables. x is the voltage from v3

e1 4 0 3 0 table(t2, x)

* below is an alternative equivalent form for e1

*e1 4 0 t2(v(3))

r4 4 0 1

.table t2 0 table t3 .5 table t4 .75 .75 1 0

.table t3 0 0 .25 1 .5 0

.table t4 0 0 .5 0 .625 1 .75 .75, x)

*

* e2 produces the same output as e1, but uses a PWL statement.

* when the controlling nodes are given, pwl uses the control source,

* and not time when used in e,f,g,h sources

e2 5 0 3 0 pwl(0 0 .25 1 .5 0 .625 1 .75 .75 1 0)

r5 5 0 1

*

.tran 1p 1n

* type "run", then "plot v(1) v(2) v(3) v(4)"

.end

A.3.7 Circuit 7: MOS Convergence Test

Below is an example circuit that illustrates some of the new features, and some older features perhaps
not widely appreciated. This also served as a test for improving MOS convergence. To run a convergence
test:

1. Source this circuit.

2. Press the siminterface button in the Debug tool.

3. Type “set value1 = mult”.

4. Type “loop .5 2.5 .1 op”.

This runs operating point analysis for M values from .5 to 2.5, and displays a little plot of the
convergence process. In the display, ‘+’ means an increasing gmin step, ‘.’ is a source step, ‘-’ is a
decreasing gmin step.

Note that 100 nS is too coarse to get a decent looking plot with BSIM devices. Use “tran 1n 10u”
in that case, since the circuit seems to be oscillating at very high frequency.

A.3. EXAMPLE DATA FILES 409

mosamp2 - mos amplifier - transient

.options abstol=10n vntol=10n noopiter mult=2 nqs=1 reltol=1e-4

*.op

.tran 0.1us 10us

.plot tran v(20) v(66)

* set below to 0 for old MOS model

.param bsim = 1

.if bsim = 1

m1 15 15 1 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m2 1 1 2 32 n1 w=12.7u l=266.7u m=$mult nqsmod=$nqs

m3 2 2 30 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m4 15 5 4 32 n1 w=12.7u l=106.7u m=$mult nqsmod=$nqs

m5 4 4 30 32 n1 w=88.9u l=12.7u m=$mult nqsmod=$nqs

m6 15 15 5 32 n1 w=44.5u l=25.4u m=$mult nqsmod=$nqs

m7 5 20 8 32 n1 w=482.6u l=12.7u m=$mult nqsmod=$nqs

m8 8 2 30 32 n1 w=88.9u l=25.4u m=$mult nqsmod=$nqs

m9 15 15 6 32 n1 w=44.5u l=25.4u m=$mult nqsmod=$nqs

m10 6 21 8 32 n1 w=482.6u l=12.7u m=$mult nqsmod=$nqs

m11 15 6 7 32 n1 w=12.7u l=106.7u m=$mult nqsmod=$nqs

m12 7 4 30 32 n1 w=88.9u l=12.7u m=$mult nqsmod=$nqs

m13 15 10 9 32 n1 w=139.7u l=12.7u m=$mult nqsmod=$nqs

m14 9 11 30 32 n1 w=139.7u l=12.7u m=$mult nqsmod=$nqs

m15 15 15 12 32 n1 w=12.7u l=207.8u m=$mult nqsmod=$nqs

m16 12 12 11 32 n1 w=54.1u l=12.7u m=$mult nqsmod=$nqs

m17 11 11 30 32 n1 w=54.1u l=12.7u m=$mult nqsmod=$nqs

m18 15 15 10 32 n1 w=12.7u l=45.2u m=$mult nqsmod=$nqs

m19 10 12 13 32 n1 w=270.5u l=12.7u m=$mult nqsmod=$nqs

m20 13 7 30 32 n1 w=270.5u l=12.7u m=$mult nqsmod=$nqs

m21 15 10 14 32 n1 w=254u l=12.7u m=$mult nqsmod=$nqs

m22 14 11 30 32 n1 w=241.3u l=12.7u m=$mult nqsmod=$nqs

m23 15 20 16 32 n1 w=19u l=38.1u m=$mult nqsmod=$nqs

m24 16 14 30 32 n1 w=406.4u l=12.7u m=$mult nqsmod=$nqs

m25 15 15 20 32 n1 w=38.1u l=42.7u m=$mult nqsmod=$nqs

m26 20 16 30 32 n1 w=381u l=25.4u m=$mult nqsmod=$nqs

m27 20 15 66 32 n1 w=22.9u l=7.6u m=$mult nqsmod=$nqs

.else

m1 15 15 1 32 n1 w=88.9u l=25.4u m=$mult

m2 1 1 2 32 n1 w=12.7u l=266.7u m=$mult

m3 2 2 30 32 n1 w=88.9u l=25.4u m=$mult

m4 15 5 4 32 n1 w=12.7u l=106.7u m=$mult

m5 4 4 30 32 n1 w=88.9u l=12.7u m=$mult

m6 15 15 5 32 n1 w=44.5u l=25.4u m=$mult

m7 5 20 8 32 n1 w=482.6u l=12.7u m=$mult

m8 8 2 30 32 n1 w=88.9u l=25.4u m=$mult

m9 15 15 6 32 n1 w=44.5u l=25.4u m=$mult

m10 6 21 8 32 n1 w=482.6u l=12.7u m=$mult

m11 15 6 7 32 n1 w=12.7u l=106.7u m=$mult

m12 7 4 30 32 n1 w=88.9u l=12.7u m=$mult

m13 15 10 9 32 n1 w=139.7u l=12.7u m=$mult

m14 9 11 30 32 n1 w=139.7u l=12.7u m=$mult

m15 15 15 12 32 n1 w=12.7u l=207.8u m=$mult

410 APPENDIX A. FILE FORMATS

m16 12 12 11 32 n1 w=54.1u l=12.7u m=$mult

m17 11 11 30 32 n1 w=54.1u l=12.7u m=$mult

m18 15 15 10 32 n1 w=12.7u l=45.2u m=$mult

m19 10 12 13 32 n1 w=270.5u l=12.7u m=$mult

m20 13 7 30 32 n1 w=270.5u l=12.7u m=$mult

m21 15 10 14 32 n1 w=254u l=12.7u m=$mult

m22 14 11 30 32 n1 w=241.3u l=12.7u m=$mult

m23 15 20 16 32 n1 w=19u l=38.1u m=$mult

m24 16 14 30 32 n1 w=406.4u l=12.7u m=$mult

m25 15 15 20 32 n1 w=38.1u l=42.7u m=$mult

m26 20 16 30 32 n1 w=381u l=25.4u m=$mult

m27 20 15 66 32 n1 w=22.9u l=7.6u m=$mult

.endif

cc 7 9 40pf

cl 66 0 70pf

vin 21 0 AC pulse(0 5 1ns 1ns 1ns 5us 10us)

vccp 15 0 dc +15

vddn 30 0 dc -15

vb 32 0 dc -20

.if bsim

.model n1 nmos(level=8 capmod=3)

.else

.model n1 nmos(nsub=2.2e15 uo=575 ucrit=49k uexp=0.1 tox=0.11u xj=2.95u

+ level=2 cgso=1.5n cgdo=1.5n cbd=4.5f cbs=4.5f ld=2.4485u nss=3.2e10

+ kp=2e-5 phi=0.6)

.endif

A.3.8 Circuit 8: Verilog Pseudo-Random Sequence

This example illustrates use of a .verilog block to generate a digital signal, that is then interfaced to
and processed by a conventional SPICE circuit. The digital signal is a 511 step pseudo-random sequence,
which is converted to a voltage and filtered.

* WRspice pseudo-random bit sequence demo

v1 1 0 a/255-1

r1 1 2 100

c1 2 0 10p

.tran 1p 10n

.plot tran v(1) v(2)

.verilog

module prbs;

reg [8:0] a, b;

reg clk;

integer cnt;

initial

begin

a = 9’hff;

clk = 0;

A.3. EXAMPLE DATA FILES 411

cnt = 0;

$monitor("%d", cnt, "%b", a, a[0]);

end

always

#5 clk = ~clk;

always

@(posedge clk)

begin

a = { a[4]^a[0], a[8:1] };

if (a == 9’hff)

$stop;

cnt = cnt + 1;

end

endmodule

.endv

A.3.9 Circuit 9: Josephson Junction I-V Curve

WRspice jj I-V curve demo

*

* One can plot a pretty decent iv curve using transient analysis.

* This will show the differences between the various model options.

*

b1 1 0 jj1 control=v2

v1 2 0 pwl(0 0 2n 70m 4n 0 5n 0)

r1 2 1 100

*

* for rtype=4, vary v2 between 0 and 1 for no gap to full gap

v2 3 0 .5

*

r2 3 0 1

*

* It is interesting to set rtype and delv to different values, and note

* the changes.

*

*Nb 1000 A/cm2 area = 30 square microns

.model jj1 jj(rtype=4,cct=1,icon=10m,vg=2.8m,delv=.1m,

+ icrit=0.3m,r0=100,rn=5.4902,cap=1.14195p)

.tran 5p 5n

* type "run", then "plot -b v(1) (-v1#branch)"

.end

A.3.10 Circuit 10: Josephson Gap Potential Modulation

WRspice jj qp modulation demo

*

412 APPENDIX A. FILE FORMATS

* The rtype=4 option of the Josephson model causes the gap potential

* to scale with the external "control current" absolute value. For

* unit control current (1 Amp) or larger, the full potential is used,

* otherwise it scales linearly to zero. The transfer function is defined

* externally with controlled sources, as below. The approximation

* Vg = Vg0*(1-t**4) is pretty good, except near t = 1 (T = Tc, t = T/Tc).

* The actual transfer function is left to the user - in the example below,

* the ambient temperature is 7K, Tc=9.2K, and 1mv of "input" causes 1K

* temperature shift.

*

* For amusement, change cct=1 to cct=0 below. This runs much more quickly

* as critical current is set to zero.

*

b1 1 0 jj1 control=v2

v1 2 0 pulse(0 35m 10p 10p)

r1 2 1 100

*

v2 3 0

g1 3 0 4 0 function 1 - (1000*x+7)/9.2)^4

v4 4 0 pulse(-1m 1m 10p 10p 10p 20p 60p)

*

*Nb 1000 A/cm2 area = 30 square microns

.model jj1 jj(rtype=4,cct=1,icon=10m,vg=2.8m,delv=.1m,

+ icrit=0.3m,r0=100,rn=5.4902,cap=1.14195p)

.tran 1p 500p uic

* type "run", then plot v(1) and v(4) to see the gap shift and input

.end

Appendix B

Utility Programs

The WRspice distribution provides a few supplemental utility and accessory programs.

B.1 The csvtoraw Utility: CSV to Rawfile Conversion

This program will convert a space/comma separated file to a rawfile.

Usage: csvtoraw [filename]
Output goes to the standard output channel. Input is taken from the file if a name was given, otherwise
from standard input.

A “csv” (comma-separated values) file is assumed to have a form as described below.

• Any lines that start with white space or a comment character ahead of the header line are ignored.
Comment characters are ∗#!.

• The header line contains a number of words, space and/or comma separated, these are the vector
names. If they contain a comment character or comma the word should be double-quoted.

• Lines that follow are ignored if the first non-space character is a comment character, comma, or
the line is blank.

• Otherwise the lines should contain the same number of numbers as words in the header line. Any
number format as used in WRspice is fine, numbers are separated by spaces and/or commas.

• The leftmost logical column will be taken as the scale vector.

B.2 The mmjco Utility: Tunnel Junction Model Calculator

WRspice contains an internal tunnel junction model (TJM) of a Josephson junction. The model requires
pre-prepared tables of “fit” parameters, which avoid performing lengthly calculation at run time. The
mmjco program generates the needed files.

In general, the user may not need to interact directly with mmjco, as WRspice will call mmjco when
needed to create new fit files, and store these under a directory named .mmjco in the user’s home

413

414 APPENDIX B. UTILITY PROGRAMS

directory. Once a fit file has been created for a particular parameter set, it will be reused in future
WRspice sessions when needed,

The core functionality of mmjco is derived from the MiTMoJCo project by D. R. Gulevich (found on
GitHub.com), specifically the mitmojco.py environment that provides an interface for creating tunnel
junction amplitude (TCA) and fitting tables. This has been implemented in mmjco as two C++ classes,
one for creating tunnel junction amplitudes, which basically evaluates the Werthamer model as formu-
lated for MiTMoJCo by Gulevich, the second to compress the amplitudes into a compact representation.
This representation is used by the TJM (JJ level=3) device model in WRspice. The method is that of
Odintsov, Semenov, and Zorin (See below for a list of references).

The mmjco program has additional features.

• Sweep tables can be produced for a range of temperatures, allowing temperature sweeps to be
performed in simulation without having to create a fit file at each temperature.

• There is a built-in BCS computation of energy gap given temperature, superconducting transition
temperature, and Debye temperature of the junction materials.

• Tunnel current amplitude tables are generated in “rawfile” format, so can be plotted withinWRspice

or Synopsys WaveView.

• The fit and sweep file formats are compatible with the TJM developed for Synopsys PrimeSim-
HSPICE under the IARPA SuperTools program.

B.2.1 Running mmjco

Running mmjco enters a command-line processing loop, the user responds to the “mmjco> ” prompt with
commands from the list below. Each command can be followed by options as indicated. Additionally,
there are “cdf” and “swp” modes where mmjco will create TCA and fit files or temperature sweep files
according to the arguments, and exit. This is mostly to support WRspice, which uses this mode to create
new models on-the-fly.

In this document, text in square brackets ([...]) is optional. A vertical pipe character (|) indicates
that either the text to the right or left is acceptable, i.e., it separates options.

B.2.1.1 Command Line Operations

These modes are used by the TJM device model in WRspice.

Command: mmjco cdf arguments

If the first argument to the mmjco executable is cdf, a TCA file and corresponding fit file are created,
and mmjco exits immediately in this case. Arguments following cdf are the same arguments that can
follow the cd and cf interactive commands.

Command: mmjco swp -fs sweepfile temperature

Similarly, swf will create a possibly-interpolated fit file from an existing sweep file, for the temperature
provided.

B.2. THE MMJCO UTILITY: TUNNEL JUNCTION MODEL CALCULATOR 415

B.2.1.2 Interactive mmjco Commands

The following are the interactive commands which can be entered after starting mmjco with no arguments.

cd[ata] [-t temp] [-d|-d1|-d2 delta] [-s smooth] [-x nx] [-f filename] [-r|-rr|-rd]
Create TCA data, save internally and to a file. See below for an explanation of the options.

Tunnel current amplitude and smoothing options:
-t The assumed temperature follows, in Kelvin. Default 4.2.
-d This will set both d1 and d2, the pair breaking energy in milli-electron

volts, of the two superconducting banks. The default is 1.4 mev.
-d1,-d2 Like -d, but apply to only one of the banks. The final occurrence of d,d1,d2

will have precedence.
-s This provides the smoothing parameter as used in MiTMoJCo. the ac-

cepted range is 0.0 – 0.099. The default is 0.008. If less than 0.001, 0 is
assumed. When 0, no smoothing is done and raw BCS tunnel amplitudes
are generated.

-x The number of points used to create the tunnel current amplitudes. The
range of sweep of voltage normalized to the gap voltage (d1+d2) extends
from 0.001 through 2.0. The default point count is 500.

-f A name for the TCA amplitude file. If not given, a default is used, described
below.

-r Output file is a complex-valued rawfile.
-rr Output file is a real-valued rawfile.
-rd Output file simple data file. If none of -r,-rr,-rd options is set, the format

will be -rr if the program was built for XicTools, -rd otherwise.

cf[it] [-n terms] [-h thr] [-ff filename]
Create fit parameters for TCA data currently in memory from cd or ld commands. This is saved
internally and to a file. See below for an explanation of the options.

Fitting table options:
-n The size of the table, defaults to 8. Larger tables are more accurate but

take more time to generate and process. A maximum of 20 is enforced.
-h The ratio of the absolute to relative tolerances, used in compression, the

default is 0.2.
-ff A name for the fitting parameter table. If not given, a default is used,

described below.

cm[odel] [-h thr] [-fm [filename]] [-r|-rr|-rd]
Create a model for TCA data using fitting parameters currently in memory, compute the residual,
and optionally save to a file. If -fm is given without a filename, a file name will be generated
internally. If -fm is not given, the model will not be saved to a file, but used only to compute the
residual. The printed residual number is an indication of the fit quality, smaller values indicate
better matching.

If one of -r, -rr, -rd is given when a TCA file is being generated, it overrides the default type for
file to produce.

-r complex-valued rawfile
-rr real-valued rawfile
-rd simple data file

The default file type is -rr when built for XicTools, or the simple data file format otherwise.

The model files are saved in the current directory (unless a path is given explicitly).

416 APPENDIX B. UTILITY PROGRAMS

cs[weep] Tstrt Tend [Tdelta] arguments
Create a temperature sweep file, which involves creating sequential records of fit parameters for
temperatures starting with Tstrt and ending at at or near Tend, spaced in temperature by Tdelta.
These are real numbers in Kelvin. If the third number Tdelta does not appear, 0.1K is assumed.
The arguments are those that can be given to the cd or cf commands.

ct[ab] T1 T2 [... TN] arguments
Create a temperature table file. The first two temperatures T1 and T2 are required, and these
can be followed by an arbitrary number of additional temperatures. The temperatures are real
numbers in Kelvin. The arguments are those that can be given to the cd or cf commands. The
file will contain fit parameters for each temperature given.

d[ir] directory path
Give a path to a directory where all amplitude and fit files will be stored and loaded from, if a
rooted path is not given with the file names. When built for XicTools, the default location is a
subdirectory “.mmjco” in the user’s home directory, otherwise the current directory is assumed.

g[ap] [-tc Tc] [-td Td] [T1 T2...]
Compute and print the superconducting energy gap at temperatures. The -tc specifies the super-
conducting transition temperature, and -td specifies the Debye temperature, both Kelvin. If not
given, the defaults are for Niobium: Tc = 9.26K and Td = 276K. There can be zero to 10 real
number arguments representing temperatures in Kelvin. If zero, print the gap for temperatures
from 0 to Tc at 0.1K increments. If two numbers, print the gap for the smaller to the larger in
0.1K increments. Otherwise, print the gap at the given temperatures.

ld[ata] filename
Load the internal TCA data register from a TCA data file whose name must be given. This
understands all supported file formats.

lf[it] filename
Load the internal fit parameters register from a fit parameter file given.

ls[weep] -fs filename temp
Load the internal fit register from a sweep file, interpolating to temperature temp.

h[elp] | v[ersion] | ?
Print help and the running mmjco release number.

q[uit] | e[xit]
Exit mmjco.

B.2.1.3 File Name Encoding

Running mmjco can generate three types of files: a file containing values of the tunnel current amplitudes
(TCA files), a file containing the fitting parameters used to represent the tunnel current amplitues in a
compact form, and files that contain collections of fitting parameter sets, as for a temperature sweep.
The “model” files use the same format as the TCA files. By default, these files are given a name that
encodes the various parameter values used in creation.

Tunnel current amplitude files, including model files, are by default given an internally-generated file
name in the forms below.

tcaTTTTTTdddddDDDDDssPPPP.data

tcaTTTTTTdddddDDDDDssPPPP.raw

B.2. THE MMJCO UTILITY: TUNNEL JUNCTION MODEL CALCULATOR 417

The “tca” and “.data”/“.raw” and similar are literal. All fields are fixed width and zero padded.
Real numbers are converted to integers by multiplying by a scale factor and rounding to integer.

TTTTTT

A six-digit integer equal to 1e4*temperature.

ddddd

A 5-digit integer equal to 1e7*d1 , where d1 is the side 1 gap potential in volts.

DDDDD

A 5-digit integer equal to 1e7*d2 , where d2 is the side 2 gap potential in volts.

ss

A two digit integer equal to 1e3*sf , where sf is the smoothing parameter.

PPPP

The number of points used (-x option).

In WRspice, a rawfile (.raw extension) can be loaded with the load command, and the amplitudes
can then be plotted with “plot all”.

The fitting parameter file name has the following form.

tcaTTTTTTdddddDDDDDssPPPP-nnHHH.fit

The first part, ahead of the ‘-’, is as described above. Following the hyphen:

nn

The two-digit fitting table size.

HHH

A three digit integer equal to 1e3*thr , where thr is the compression threshold.

Sweep file names have the following form.

tswNNNttttttTTTTTTssPPPP-nnHHH.swp

The part following the hyphen is the same as for the fit file.

NNN

A three digit integer giving the number of records in the file.

tttttt

A six digit integer equal to 1e4*Tstart , where Tstart is the starting temperature in Kelvin.

TTTTTT

A six digit integer equal to 1e4*Tdelta, where Tdelta is the temperature spacing.

ss

A two digit integer equal to 1e3*sf, where sf is the smoothing parameter.

PPPP

The number of points used (-x option).

418 APPENDIX B. UTILITY PROGRAMS

The fit parameter table format is similar to that used by MiTMoJCo, identical if the header is
ignored. Note that the table values do not match those found in the MiTMoJCo distribution. It seems
that these values are not unique, and the various programs can converge to different sets. It was found
that the original and present versions of mitmojco.py gave different values, and neither matched the
values provided in the amplitudes folder.

B.2.2 File Formats

B.2.2.1 TCA file formats

Tunnel current amplitude (TCA) tables are created by the cd and cm commands. They consist of real
and imaginary parts of the pair and quasiparticle amplitudes, on a scale of normalized potential across
the structure, where the unit value is the sum of the gap energies of the two electrodes. The scale extends
from 0 to 2 in these units.

There actually are three formats available, selectable with options to the cd and cm commands.

option: -rd
The file name is described in the previous section, with a suffix “.data”. This is a generic numerical
format, consisting of a comment line and six columns of numbers. The number of data lines is
the value given with the “-x” option to the cd command, defaulting to 500. The example below
illustrates the format.

X Jpair_real Jpair_imag Jqp_real Jqp_imag

0 1.00000e-03 7.50623e-01 2.85275e-04 -7.50625e-01 3.37356e-04

1 5.00601e-03 7.51136e-01 1.36358e-03 -7.51123e-01 1.62410e-03

2 9.01202e-03 7.51643e-01 2.27465e-03 -7.51594e-01 2.74301e-03

3 1.30180e-02 7.52144e-01 3.03372e-03 -7.52040e-01 3.70900e-03

...

498 1.99599e+00 4.22402e-01 -5.29166e-01 1.52235e-02 1.87539e+00

499 2.00000e+00 4.21420e-01 -5.28564e-01 1.51180e-02 1.87962e+00

The other two options emit the data using the SPICE “rawfile” format. This is a format developed
for plot data in Berkeley Spice3, which is supported by most plotting programs, including Synopsys
WaveView and the load function of WRspice. The only difference is that one format ouptuts complex
numbers for two variables (pair and quasiparticle amplitudes), while the other format outputs real values
for four variables (the real and imaginary parts of the amplitudes).

option: -r
The file name is described in the previous section, with a suffix “.raw”. Output is in rawfile format
using complex numbers.

option: -rr
The file name is described in the previous section, with a suffix “.raw”. Output is in rawfile format
using real numbers.

The rawfile format description can be found in A.1.

B.2. THE MMJCO UTILITY: TUNNEL JUNCTION MODEL CALCULATOR 419

B.2.2.2 Fit file format

A fit file contains a compacted digest of a TCA table, as prescribed by the Odintsov, Semenov and
Zorin (OSZ) algorithm. These can be generated with the cf command. Fit files can be used as input to
simulators that contain a compatible tunnel junction model (TJM). Presently, WRspice and Synopsys
HSPICE can use these files.

An example fit file is shown below.

tcafit 4.2000e+00 1.3696e-03 1.3696e-03 0.008 500 8 0.200 3.9580e-2

-5.55136e+00, 7.35249e-02, 1.28573e+00, 1.08362e+01,-1.58776e-01, 2.87279e+01

-1.24623e-02, 1.00032e+00, 5.84894e-03,-4.50828e-04, 5.81876e-03,-2.11396e-04

-3.83312e-02, 1.00112e+00, 2.10779e-02,-3.09528e-04, 2.13882e-02, 1.13197e-03

-1.18261e-01, 9.98252e-01, 6.29481e-02, 1.95061e-03, 6.04875e-02, 1.68472e-02

-5.41049e-02, 7.52572e-07,-2.72420e-04, 5.67468e+00, 5.43002e-04, 2.37802e+00

-9.94491e-01, 6.50936e-01, 7.80341e-01, 1.14849e-01,-2.36003e-01, 9.49693e-01

-3.42835e-01, 9.60836e-01, 1.75970e-01, 1.81214e-02, 1.47672e-01, 1.40112e-01

-2.80018e-01, 6.49039e-03, 6.26863e-03, 1.81423e-01, 9.20013e-03, 3.23103e-02

The first line is a header, the first word of which is “tcafit”. The numbers that follow in this line
are:

• The temperature in Kelvin (4.2000e+00).

• The left electrode pair-breaking energy in ev (1.3696e-03).

• The right electrode pair-breaking energy in ev (1.3696e-03).

• The smoothing parameter value used to create the TCA table, -s option in the cd command for
example (0.008).

• The number of scale points used in the TCA table, -x option in the cd command for example
(500).

• The number of terms used in the fit table, -n option in the cf command (8).

• he value of the threshold parameter used when generating the fit parameter table, -h option of the
cf command (0.200).

• Normalized quasiparticle current at x=0.8, used to estimate the sub-gap conductance (3.9580e-2).

Following the header line are six columns of real numbers. The number of rows is equal to the
“terms”, which is the -n option to the cf command. The columns are the OSZ parameters P.real,
P.imag, A.real, A.imag, B.real, B.imag.

B.2.2.3 Sweep file format

Temperature sweep files are concatenations of fit records as described above for a temperature range.
These allow rapid temperature modeling through interpolation in supporting simulators (WRspice and
Synopsys HSPICE). Sweep files are created with the cs command.

Below is an example temperature sweep file.

420 APPENDIX B. UTILITY PROGRAMS

tsweep 91 0.1000 0.1000 0.008 500 8 0.200

tcafit 1.0000e-01 1.4086e-03 1.4086e-03 1.3185e-02

-8.51331e+00, 1.15164e-01, 1.29900e+00, 1.11105e+01,-4.05570e-01, 5.65607e+01

-1.06700e-02, 1.00009e+00, 3.58651e-03,-2.25268e-04, 3.57013e-03,-5.66586e-05

-2.47980e-02, 1.00072e+00, 1.14692e-02,-5.49747e-04, 1.15840e-02,-1.07382e-04

-6.31470e-02, 1.00196e+00, 2.92347e-02,-1.70767e-03, 2.93324e-02, 2.09767e-03

-1.86179e+00, 9.23541e-01, 7.52628e-01,-8.71131e-02,-4.37397e-01, 2.11473e+00

-1.56178e-01, 1.00378e+00, 6.81933e-02,-6.76474e-03, 7.04144e-02, 1.46763e-02

-3.74403e-01, 1.01258e+00, 1.53951e-01,-3.71976e-02, 1.73747e-01, 7.86682e-02

-8.73847e-01, 1.06711e+00, 2.56553e-01,-1.53780e-01, 4.86150e-01, 3.82557e-01

tcafit 2.0000e-01 1.4086e-03 1.4086e-03 1.3185e-02

-8.51331e+00, 1.15164e-01, 1.29900e+00, 1.11105e+01,-4.05570e-01, 5.65607e+01

-1.06700e-02, 1.00009e+00, 3.58651e-03,-2.25268e-04, 3.57013e-03,-5.66586e-05

...

The first line is a file header starting with the word “tsweep”. The numbers that follow on this line
are:

• The number of fit records contained in this file (91).

• The lowest temperature K used for fit parameters in the file, this will be used in the first fit record
(0.1000).

• The temperature delta K used in the sweep file (0.1000).

• The smoothing parameter, -s option, used to create all TCA tables (0.008).

• The number of scale points, -x option, used to create all TCA tables (500).

• The number of terms used for each fit table, -n option (8).

• The value of the threshold parameter used in each fit table (0.200).

Following this header, fit records are concatenated. These are similar to the format described above,
the only difference is that the header line is simplified to omit redundant information. The fit record
header contains the following value following the word “tcafit”.

• The temperature in Kelvin (4.2000e+00).

• The left electrode pair-breaking energy in ev (1.3696e-03).

• The right electrode pair-breaking energy in ev (1.3696e-03).

• Normalized quasiparticle current at x=0.8, used to estimate the sub-gap conductance (3.9580e-2).

B.2.3 References

Background references from the MiTMoJCo project.

Tunnel current calculation:
A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 24, 1035 (1967).
D. R. Gulevich, V. P. Koshelets, and F. V. Kusmartsev, Phys. Rev. B 96, 024515 (2017).

B.3. THE MULTIDEC UTILITY: COUPLED LOSSY TRANSMISSION LINES 421

A. B. Zorin, I. O. Kulik, K. K. Likharev, and J. R. Schrieffer, Sov. J. Low Temp. Phys. 5, 537 (1979).
D. R. Gulevich, V. P. Koshelets, and F. V. Kusmartsev, Phys. Rev. B 96, 024515 (2017).
D. R. Gulevich, V. P. Koshelets, F. V. Kusmartsev, arXiv:1709.04052 (2017).
D. R. Gulevich, L. V. Filippenko, V. P. Koshelets, arXiv:1809.01642 (2018).

Compression:
A. A. Odintsov, V. K. Semenov and A. B. Zorin, IEEE Trans. Magn. 23, 763 (1987).
D. R. Gulevich, V. P. Koshelets, and F. V. Kusmartsev, Phys. Rev. B 96, 024515 (2017).

B.3 The multidec Utility: Coupled Lossy Transmission Lines

The standalone program multidec produces a subcircuit for multiconductor lossy transmission lines in
terms of uncoupled (single) simple lossy lines. This decomposition is valid only if the following hold:

1. The electrical parameters (R, G, Cs, Cm, Ls, Lm) of all wires are identical and independent of
frequency.

2. Each line is coupled only to its (maximum 2) nearest neighbors.

The subcircuit is sent to the standard output and is intended to be included in an input file.

The command-line options for multidec are as follows:

-l<self-inductance Ls>
-c<self-capacitance Cs>
-r<series-resistance R>
-g<parallel-conductance G>
-k<coeff-of-inductive-coupling K>
-x<mutual-capacitance Cm>
-o<subckt-name>
-n<number-of-conductors>
-L<length>

The inductive coupling coefficient K is the ratio of Lm to Ls. Values for -l, -c, -o, -n and -L must be
specified.

Example:

multidec -n4 -l9e-9 -c20e-12 -r5.3 -x5e-12 -k0.7 -otest -L5.4

This utility was written by J.S. Roychowdhury for use with the lossy transmission line model [13].

B.4 The printtoraw Utility: Print to Rawfile Conversion

The printtoraw program is a stand-alone utility provided with the WRspice distribution. This converts
the data in files produced by the print command using output redirection into the rawfile format, which
can be plotted. This works only for print files in the standard columnar form.

422 APPENDIX B. UTILITY PROGRAMS

Usage: printtoraw [printfile]

The argument, if given, is assumed to be a path to a file that was produced by the WRspice print
command through redirection. If no argument is given, the standard input is read. The data are
converted to rawfile format and dumped to the standard output.

Example:

wrspice> run

wrspice> print v(1) v(2) v(3) > myfile

wrspice> quit

bash> printtoraw myfile > myfile.raw

wrspice> load myfile.raw

wrspice> plot all

B.5 The proc2mod Utility: BSIM1 Model Generation

This utility, provided with SPICE3, produces a set of BSIM1 models from process-dependent data
provided in a “process” file. An example process (.pro) file is provided with the WRspice examples.
This utility was written by J. Pierret [3], and the reference presumably provides more information.

B.6 The wrspiced Daemon: Remote SPICE Controller

WRspice can be accessed and run from a remote system for asynchronous simulation runs, for assistance
in computationally intensive tasks such as Monte Carlo analysis, and as a simulator for the Xic graphical
editor. This is made possible through a daemon (background) process which controls WRspice on the
remote machine. The daemon has the executable name “wrspiced”, and should be running on the
remote machine. This can be initiated in the system startup procedure, or manually. Generally, any
user can start wrspiced, but only one daemon can be running on the host computer.

The wrspiced program is part of the WRspice distribution, and is installed in the same directory
as the wrspice executable. The daemon manages the queue of submitted jobs and responses, and
maintains the communications port. The wrspiced daemon will establish itself on a port, and wait for
client messages.

B.6.1 SPICE Server Configuration

There is little or no configuration required to run wrspiced, but there are a few basic prerequisites. Our
assumption is that WRspice is installed on a network-reachable remote computer (the “SPICE server”),
and we wish to submit jobs to this WRspice from within Xic, or from within WRspice running on local
computers (the “clients”).

The SPICE server must have WRspice installed, and WRspice must be licensed to run on the server.
As a prerequisite, WRspice should operate on the SPICE server host in the normal way.

B.6. THE WRSPICED DAEMON: REMOTE SPICE CONTROLLER 423

Historically, wrspiced has used the service name “spice” and port number 3004. Releases 3.2.8 and
later use the service name “wrspice” instead of “spice”, and use port number 6114 by default. The
port 6114 is registered with IANA for this service.

The system services database is represented by the contents of the file /etc/services in simple
installations. If using NIS, then the system will get its services information from elsewhere. A system
administrator can add service names and port assignments to this database. The wrspiced program
does not require this.

B.6.2 Starting the Daemon

The wrspiced program command line has the following form:

wrspiced [-fg] [-l logfile] [-p program] [-m maxjobs] [-t port]

There are five optional arguments.

-fg

If given, the wrspiced program will remain in the foreground (i.e., not become a “daemon”), but
will service requests normally. This may be useful for debugging purposes.

-l logfile
The logfile is a path to a file that will receive status messages from wrspiced. The default is
the value of the SPICE DAEMONLOG environment variable if set when the program is started, or
/tmp/wrspiced.log.

-p program
This specifies the WRspice program to run, in case for some reason the wrspice binary has been
renamed, or wrspice is not in the expected location. This overrides the values of the SPICE PATH
and SPICE EXEC DIR environment variables, which can also be used to set the path to the binary.
The default is “/usr/local/xictools/bin/wrspice”.

-m maxjobs
This sets the maximum number of jobs that the server will allow to be running at the same time.
The default is 5.

-t port
This sets the port to be used by the daemon, and overrides any port set in the services database.
Clients must use the same port number to connect to the SPICE server.

The daemon is started by simply typing the command. If a machine is to operate continuously as
a SPICE server, it is recommended that the wrspiced daemon be started in the system initialization
scripts. The daemon will run until explicitly killed by a signal, or the machine is halted. When the
wrspiced process terminates, any WRspice processes under management will also be killed. The daemon
can be terminated, by the process owner, by giving the command “ps aux | grep wrspiced” and
noting the process id (pid) number of the running wrspiced process, and then issuing “kill pid” using
this pid number.

It may be necessary to become root before starting wrspiced, as on some systems connection to the
port will otherwise be refused due to permission requirements. Starting by root is also required if the
log file is to be written to a directory such as /var/log that requires root permission for writing.

424 APPENDIX B. UTILITY PROGRAMS

B.6.3 Client Configuration

The port number used by the client must be the same as that used for the server. As for the server, if not
supplied the port number will be resolved if possible in the services database (e.g., the /etc/services

file), and will revert to a default if not found.

In Xic and WRspice, the port number to use can be specified with the host name, by appending the
number following a colon, i.e.,

hostname[:port]

A WRspice server can receive jobs from Xic, and from WRspice (rspice command). Both programs
have means by which the SPICE server can be specified from within the program. One means common
to both programs is through use of the SPICE HOST environment variable. The variable should be set to
the host name of the SPICE server, as resolvable by the client, followed by the optional colon and port
number. When set, Xic will by default use this server for SPICE jobs initiated with the Run button in
the side menu, and WRspice will use this host in the rspice command. In a situation where the SPICE
server provides the only SPICE available, the SPICE HOST variable should be set in the user’s shell
startup script. In WRspice the rhost shell variable and the rhost command can also be used to specify
the remote host, and these override any value set in the environment.

Note: In Xic, when WRspice connects, a message is printed in the terminal window similar to

Stream established to wrspice://chaucer, port 4573.

The “port” in this case is not the wrspiced port discussed above, but is a transient port created for the
process.

Bibliography

[1] A. Vladimirescu and S. Liu, The Simulation of MOS Integrated Circuits Using SPICE2, ERL Memo
No. ERL M80/7, Electronics Research Laboratory, University of California, Berkeley, Oct. 1980.

[2] B. J. Sheu, D. L. Scharfetter, and P. K. Ko, SPICE2 Implementation of BSIM, ERL Memo No.
ERL M85/42, Electronics Research Laboratory, University of California, Berkeley, May 1985.

[3] J. R. Pierret, A MOS Parameter Extraction Program for the BSIM Model, ERL Memo Nos. ERL
M84/99 and M84/100, Electronics Research Laboratory, University of California, Berkeley, Nov.
1984.

[4] Min-Chie Jeng, Design and Modeling of Deep-Submicrometer MOSFETs, ERL Memo Nos. ERL
M84/99 and ERL M90/90, Electronics Research Laboratory, University of California, Berkeley,
October 1990.

[5] Soyeon Park, Analysis and SPICE implementation of High Temperature Effects on MOSFET, Mas-
ter’s Thesis, University of California, Berkeley, December 1986.

[6] Clement Szeto, Simulator of Temperature effects in MOSFETs (STEIM), Master’s Thesis, Univer-
sity of California, Berkeley, May 1988.

[7] A. E. Parker and D. J. Skellern, An Improved FET Model for Computer Simulators, IEEE Trans.
CAD, vol. 9, no.5, pp. 551-553, May 1990.

[8] Y. Cheng, M. Chan, K. Hui, M-C Jeng, Z. Liu, J. Huang, K. Chen, J. Chen, R. Tu, P. Ko and C.
Hu, BSIM3v3 Manual, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, 1996.

[9] R. Saleh and A. Yang, Editors, Simulation and Modeling, IEEE Circuits and Devices, vol. 8, no. 3,
pp. 7-8 and 49, May 1992.

[10] H. Statz et al., GaAs FET Device and Circuit Simulation in SPICE, IEEE Transactions on Electron
Devices, Vol. 34, Number 2, February 1987 pp. 160-169.

[11] R. E. Jewett, Josephson Junctions in SPICE2G5, ERL Memo, Electronics Research Laboratory,
University of California, Berkeley, 1982.

[12] S. R. Whiteley, Josephson Junctions in SPICE3, IEEE Trans. Magn., vol. 27, no. 2, pp. 2902-2905,
March 1991.

[13] J. S. Roychowdhury and D. O. Pederson, Efficient Transient Simulation of Lossy Interconnect, Proc.
DAC 91.

[14] Shen Lin and Ernest S. Kuh, Transient Simulation of Lossy Interconnect, Proc. DAC, pp 81-86,
1992.

425

426 BIBLIOGRAPHY

[15] M. Jeffery, P. Y. Xie, S. R. Whiteley, and T. Van Duzer, Monte Carlo and thermal noise analysis
of ultra-high-speed high temperature superconductor digital circuits, IEEE Trans. Applied Supercon-
ductivity, vol. 9, no. 2, pt. 3, pp. 4095-4098, June 1999.

[16] Sergey K. Tolpygo, Vladimir Bilkhovsky, T. J. Weir, Alex Wynn, D. E. Oats, L. M. Johnson, and
M. A. Gouker, Advanced Fabrication Processes for Superconducting Very Large-Scale Integrated
Circuits, IEEE Trans. Appl. Superconductivity vol. 26, no. 3, 1100110, 2016.
Sergey K. Tolpygo, Vladimir Bolkovsky, Scott Zarr, T. J. Weir, Alex Wynn, Alexandra L. Day, L.
M. Johnson, and M. A. Gouker, Properties of Unshunted and Resistively Shunted Nb/AlOX-Al/Nb
Josephson Junctions With Critical Current Densities From 0.1 to 1 mA/µm2, IEEE Trans. Appl.
Superconductivity, vol. 27, no. 4, 1100815, 2017.

Index

.ac line, 48

.adc line, 68

.check line, 66, 374

.checkall line, 66

.control line, 64

.dc line, 49

.disto line, 51

.elif line, 39

.else line, 39

.end line, 26

.endc line, 64, 374

.endif line, 39

.endl line, 27

.ends line, 44

.endv line, 67

.exec line, 64

.four line, 62

.global line, 29

.ic line, 30

.if line, 39

.inc line, 27

.include line, 27

.lib line, 27

.model, 70

.monte line, 66, 374, 387

.mosmap line, 29

.mozyrc file, 402

.newjob line, 26

.nodeset line, 30

.noexec line, 66

.noise line, 53

.op line, 54

.options line, 30, 31

.param line, 37

.plot line, 62

.postrun line, 64

.print line, 62

.probe line, 61

.pz line, 57

.save line, 61

.sens line, 58

.spinclude line, 27

.splib line, 27

.subckt line, 41

.table line, 35

.temp line, 36

.tf line, 58

.title line, 25

.tran line, 59

.verilog line, 67

.wrspiceinit file, 169
/measure line, 63
/stop line, 63
/width line, 63
@delta vector, 61

, 72

abs function, 222
abstol variable, 353
ac analysis, 8, 48
ac command, 283
acct variable, 369
acos function, 222
acosh function, 222
agauss function, 230
alias command, 265
alias substitution, 207
alter command, 283
alterf command, 283
am specification, 106
am tran function, 106
analysis, 8

ac, 8, 48
dc, 8, 49
distortion, 9, 51
looping, 10
Monte Carlo, 10
noise, 9, 53
operating range, 10
pole-zero, 9, 57
sensitivity, 9, 58
transfer function, 8, 58
transient, 8, 59

427

428 INDEX

appendwrite variable, 342
area parameter, 113
argc variable, 339
argv variable, 339
asciiplot command, 326
asin function, 222
asinh function, 222
aspice command, 284
atan function, 222
atanh function, 222
aunif function, 230

backquote substitution, 208
backslash quoting, 208
batch mode, 159, 236
beta function, 227
binomial function, 227
bipolar transistor instance, 116
bipolar transistor model, 116
break statement, 258
bug command, 333
bypass variable, 357

cache command, 284
capacitor, 74
capacitor model, 75
case sensitivity, 22, 160
cbrt function, 223
CCCS, 111
CCVS, 112
cd command, 265
cdump command, 259
ceil function, 223
chained analysis, 47
check command, 285, 373

variables, 288
vectors, 288

checkiterate variable, 342, 375
chgtol variable, 353
chisq function, 227
Circuits tool, 15, 172, 181
cktvars variable, 339
codeblock command, 269
colorN, 190
colorN variable, 346
Colors tool, 173
colors, setting, 169
combine command, 326
combplot variable, 346
command completion, 206
command editing, 205

command interpretation, 210
command line options, 159–162

–class, 162
–name, 162
–no-xshm, 162
–sync, 162
–v, 162
–vb, 162
–vv, 162
-b, 159
-c, 160
-d, 160
-dnone, 160
-i, 160
-j, 160
-m, 161
-mnone, 161
-n, 161
-o, 161
-p, 161
-q, 161
-r, 161
-s, 161
-t, 161
-x, 161

Command Options panel, 186
command scripts, 210
Commands tool, 173
comment line, 25
compose command, 315
concatenation character, 382
constants plot, 214
continue statement, 258
control blocks, 64, 237
control structures, 256
convergence, 10, 30
cos function, 223
cosh function, 223
cptime variable, 370
cross command, 316
CSDF file format, 280
csvtoraw program, 413
Ctrl-D, 18
curanalysis variable, 346
curplot variable, 347
curplotdate variable, 347
curplotname variable, 347
curplottitle variable, 347
current circuit, 15
current flow convention, 69
current plot, 213

INDEX 429

current source, 87

daemon, wrspiced, 252
db function, 223
dc analysis, 8, 49
dc analysis, chained, 46
dc command, 291
dcmu variable, 353
dcoddstep variable, 360
Debug Options panel, 187
Debug tool, 173
debug variable, 370
defad variable, 353
defas variable, 353
default models, 72
define command, 316
defl variable, 353
deftype command, 317
defw variable, 354
delete command, 291
delmin variable, 354
dependent source, 109
deriv function, 223
destroy command, 291
dev variable, 369
devcnt command, 292
device expressions, 88
device library, 6, 69
device models, 70
devload command, 292
devls command, 293
devmod command, 293
diff command, 318
diff abstol variable, 342
diff reltol variable, 342
diff vntol variable, 342
dimensions, vectors, 215
diode instance, 113
diode model, 114
display command, 318
DISPLAY environment variable, 159, 165, 170
display variable, 371
disto command, 294
distortion analysis, 9, 51
dollarcmt variable, 342
dontplot variable, 371
double quoting, 207
dowhile block, 257
dphimax variable, 354
dpolydegree variable, 223, 342
drag and drop, 170, 176

dump command, 294
dumpnodes command, 271

echo command, 265
echof command, 265, 388
edit command, 18, 271
EDITOR environment variable, 165
editor variable, 343
end statement, 258
environment

XT GUI COMPACT, 165
XT KLU PATH, 164
XTNETDEBUG, 164

environment variables, 162–167
DISPLAY, 165
EDITOR, 165
HOME, 165
setting, 163
SPICE ASCIIRAWFILE, 166
SPICE BUGADDR, 166
SPICE DAEMONLOG, 167
SPICE EDITOR, 165
SPICE EXEC DIR, 166
SPICE HLP PATH, 166
SPICE HOST, 166
SPICE INP PATH, 166
SPICE LIB DIR, 166
SPICE NEWS FILE, 166
SPICE OPTCHAR, 166
SPICE PATH, 166
SPICE TMP DIR, 166
SPICENOMAIL, 167
TMPDIR, 165
WRSPICE FIFO, 164
WRSPICE HOME, 163
XT HOMEDIR, 164
XT LOCAL MALLOC, 165
XT PREFIX, 164
XT SYSTEM MALLOC, 165
XTNOMAIL, 167

erf function, 223
erfc function, 223
erlang function, 227
errorlog variable, 343
example run, 18
exec plot, 66, 212
executable comments, 65
exp function, 223
exp tran function, 96
exponential function, 227
exponential specification, 96

430 INDEX

expression list, 232
expression substitution, 210
extprec variable, 360

fft function, 223
fifo, 212
file formats, 395

help files, 397
rawfile, 395

file manager, 175
File Selection window, 175
Files tool, 172, 181
filetype variable, 343
findlower command, 295
findrange command, 295
findupper command, 296
floor function, 223
Fonts tool, 172, 180
forcegmin variable, 360
foreach block, 257
format string, 275
fourgridsize variable, 343
fourier command, 318
fpemode variable, 357
free command, 296
FreeBSD, 8

gamma function, 224
gauss function, 230
gauss tran function, 97
gaussian pulse specification, 101
Gaussian random specification, 97
global nodes, 29
global return value, 209, 259
global substitution, 207
gmax variable, 354
gmin variable, 355
gminfirst variable, 360
gminsteps variable, 357
goto statement, 258
gpulse tran function, 101
gridsize variable, 347
gridstyle keyword

lingrid, 349
loglog, 349
polar, 351
smith, 351
smithgrid, 351
xlog, 352
ylog, 352

gridstyle variable, 347

group variable, 347

hardcopy command, 327
hardcopy drivers, 348
hcopycommand variable, 347
hcopydriver variable, 348
hcopyheight variable, 348
hcopylandscape variable, 348
hcopyresol variable, 348
hcopyrmdelay variable, 348
hcopywidth variable, 349
hcopyxoff variable, 349
hcopyyoff variable, 349
height variable, 340
help command, 333
help database, 204
help files, 397
Help menu, 173
help system, 14, 197
help viewer

.mozyrc file, 200
Anchor Buttons, 203
Anchor Highlight, 203
Anchor Plain, 203
anchor styles, 203
Anchor Underline, 203
back, 199
Bad HTML Warnings, 203
Clear Cache, 203
cookies, 203
Default Colors, 201
Delayed Images, 203
disk cache, 202
Don’t Cache, 202
Find Text, 201
forward, 199
Freeze Animations, 203
image formats, 203
Log Transactions, 203
Make FIFO, 200
No Images, 203
Old Charset, 200
Open, 199
Open File, 199
Print, 199
Progressive Images, 203
Quit, 200
Reload, 200
Reload Cache, 203
Save, 199
Save Config, 200

INDEX 431

Search Database, 201
Set Font, 202
Set Proxy, 200
Show Cache, 203
stop, 199
Sync Images, 203

helpinitxpos variable, 343
helpinitypos variable, 343
helppath variable, 343
helpreset command, 334
history command, 266
history substitution, 206
history variable, 340
HOME environment variable, 165
HSPICE functions, 229
HSPICE simulator, 4
hspice variable, 361

if block, 257
ifft function, 224
ignoreeof variable, 340
im function, 224
implicit source, 278
independent source, 87
inductor, 75
inductor model, 76
initialization files, 168
input format, 21
insideADMS, 243
int function, 224
integ function, 224
interactive simulation, 14
interp tran function, 98
interplev variable, 357
interpolate function, 224
interpolation specification, 98
io redirection, 208
iplot command, 328
itl1 variable, 357
itl2 variable, 358
itl2gmin variable, 358
itl2src variable, 358
itl3 variable, 370
itl4 variable, 358
itl5 variable, 370

j function, 224
j0 function, 224
j1 function, 224
JFET instance, 118
JFET model, 119

jjaccel variable, 361
jn function, 225
jobs command, 296
Josephson junction instance, 132
Josephson junction model, 144

KLU plug-in, 167

label statement, 258
length function, 225
let command, 17, 215, 319
limit function, 231
limpts variable, 370
limtim variable, 370
linearize command, 320
lingrid variable, 349
linplot variable, 349
list variable, 369
listing command, 271
ln function, 225
load command, 272
loadable device modules, 239, 292
loadthrds variable, 358
log function, 225
log10 function, 225
loglog variable, 349
loop command, 311
loopthrds variable, 359
LTRA model, 86
lvlcod variable, 370
lvltim variable, 370

mag function, 225
mail window, 179
MAPI, 180
mapkey command, 261
margin analysis, 66
math functions, 222
mavg function, 228
maxdata variable, 46, 355
maxord variable, 359
mctrial command, 296
mean function, 225
measure command, 297
measurement, 14
measurement functions, 228
measurement interval, 297
measurement types, 301
measurements, chained, 303
measurements, source reference, 303
memory management, 165
memory statistics, 170

432 INDEX

memory use, 10
MESFET instance, 120
MESFET model, 121
method variable, 364
minbreak variable, 355
mmax function, 228
mmin function, 228
mmjco program, 413
mod variable, 369
modelcard variable, 366
modpath variable, 343
Monte Carlo analysis, 10, 374, 387

example, 388
MOSFET binning, 123
MOSFET defaults, 123
MOSFET instance, 121
MOSFET L/W selection, 123
MOSFET levels, 127
MOSFET model, 122
mplot command, 329, 388
mplot window, 193
mplot cur variable, 343
mpp function, 228
mpw function, 228
mrft function, 228
mrft2 function, 229
mrms function, 229
multi variable, 349
multi-threads, 11
multidec program, 421
multidimensional vectors, 215
mutual inductor, 77

name field, 22
named pipe, 212
nfreqs variable, 343
noadjoint variable, 364
noasciiplotvalue variable, 349
noaskquit variable, 340
nobjthack variable, 366
nobreak variable, 349
nocc variable, 340
noclobber variable, 340
node names, 22
node variable, 369
noedit variable, 340
noeditwin variable, 344
noerrwin variable, 340
noglob variable, 340
nogrid variable, 350
nointerp variable, 350

noise analysis, 9, 53
noise command, 304
noiter variable, 361
nojjtp variable, 361
noklu variable, 362
nomatsort variable, 362
nomod variable, 370
nomodload variable, 344
nomoremode variable, 340
nonomatch variable, 341
noopiter variable, 362
nopadding variable, 344
nopage variable, 344
noplotlogo variable, 350
noprintscale variable, 344
noprtitle variable, 344
norm function, 225
noshellopts variable, 362
nosort variable, 341
nosubckt variable, 371
notrapcheck variable, 364
number field, 23
numdgt variable, 344

off parameter, 10, 113
ogauss function, 228
oldlimit variable, 362
oldsteplim variable, 362
op command, 304
operating range analysis, 10, 373

checkDEL1, 374
checkDEL2, 374
checkFAIL, 375
checkiterate, 375
checkN1, 375
checkN2, 375
checkPNTS, 374
checkSTP1, 374
checkSTP2, 374
checkVAL1, 374
checkVAL2, 374
example, 383
file format, 380
finding endpoints, 378
opmax1, 375
opmax2, 375
opmin1, 375
opmin2, 375
r scale, 375
range, 375
value, 375

INDEX 433

value1, 376
value2, 376

operating range files, 374
operators, 220
option character, 159
options, 30, 31
optmerge variable, 365
opts variable, 369

p pseudo-function, 218
parhier variable, 38, 365
pattern specification, 100
pause command, 266
pedigree, 6
pexnodes variable, 366
ph function, 225
phase-mode DC, 50
pick command, 320
pivrel variable, 355
pivtol variable, 355
platforms, 8
Plot Colors panel, 183
plot command, 15, 330
plot description, 212
Plot Options panel, 182
Plot Options tool, 173
plot panel, 188
plot text editing, 190
plot text selection, 190
plot to file, 194
plot window, 188
plot zoom in, 189
plot catchar variable, 366
plotgeom variable, 350
plotposn variable, 350
plots, 18
Plots tool, 173, 182
plots variable, 350
plotstyle keyword

combplot, 346
lineplot, 349
pointplot, 350

plotstyle variable, 350
plotting, 14
plotwin command, 332
pointchars variable, 350
pointplot variable, 350
poisson function, 228
polar variable, 351
pole-zero analysis, 9, 57
poly keyword, 74, 75, 77

poly specification, 93
polydegree variable, 351
polysteps variable, 351
pos function, 225
post variable, 369
post-measurement commands, 302
pow function, 231
present variable, 351
print command, 17, 273
print help text, 199
print panel, 194
printautowidth variable, 344
printf command, 276
printnoheader variable, 344
printnoindex variable, 344
printnopageheader variable, 344
printnoscale variable, 344
printtoraw program, 421
proc2mod program, 422
program variable, 371
prompt variable, 341
PSF file format, 279
pulse specification, 99
pulse tran function, 99
pwd command, 266
PWL specification, 103
pwl tran function, 103
pwr function, 232
pz command, 304

qhelp command, 334
quit command, 334
quoting, 207

backquote, 208
backslash, 208
double, 207
single, 207

rampup variable, 355
random variable, 344
rawfile, 17
rawfile ASCII format, 395
rawfile binary format, 396
rawfile options, 395
rawfile variable, 345
rawfile variables, 395
rawfileprec variable, 345
re function, 225
rehash command, 266
reltol variable, 355
renumber variable, 363

434 INDEX

repeat block, 256
reset command, 304
resistor, 77
resistor model, 78
resmin variable, 355
resume command, 305
return command, 276
retval command, 260
revertmode variable, 341
rhost command, 305
rhost variable, 345
rms function, 226
rnd function, 228
rprogram variable, 345
RSJ model, 144
rspice command, 305
run command, 15, 306
runops, 281
Runops tool, 173, 187
rusage command, 334

accept, 337
cvchktime, 336
elapsed, 335
equations, 337
faults, 335
fillin, 337
involcxswitch, 337
loadthrds, 337
loadtime, 336
loopthrds, 337
lutime, 336
matsize, 337
nonzero, 337
pagefaults, 337
rejected, 337
reordertime, 336
solvetime, 336
space, 335
time, 336
totaltime, 335
totiter, 337
trancuriters, 337
traniter, 338
tranitercut, 338
tranlutime, 336
tranouttime, 336
tranpoints, 338
transolvetime, 336
trantime, 337
trantrapcut, 338
trantstime, 337

volcxswitch, 338

save command, 306
save help text, 199
savecurrent variable, 363
scale factors, 23
scaletype keyword

group, 347
multi, 349
single, 351

scaletype variable, 351
sced command, 277
script comments, 210
scripts, 14, 210, 236
search help database, 201
seed command, 321
semicolon termination, 209
sens command, 307
sensitivity analysis, 9, 58
server mode, 237
set and let, 233
set command, 17, 266
setcase command, 262
setcirc command, 15, 307
setdim command, 321
setfont command, 263
setplot command, 321
setrdb command, 263
setscale command, 322
settype command, 323
sffm tran function, 105
sgn function, 226
shell, 14, 205
shell comand, 268
shell commands, 264
Shell Options panel, 184
shell scripts, 211
Shell tool, 173
shell variable expansion, 24
shell variables, 209
shift command, 268
show command, 307
sign function, 232
Simulation Options panel, 185
Simulation Options tool, 173
sin function, 226
sin tran function, 107
sine pulse specification, 108
sine specification, 107
single frequency FM specification, 105
single quoted expressions, 36

INDEX 435

single quoting, 207
single variable, 351
single-quote expansion, 24
single-quoted expressions, 24
sinh function, 226
smith variable, 351
smithgrid variable, 351
source, 87
source command, 15, 277
source expressions, 88
source, implicit, 278
sourcepath variable, 181, 341
sparse matrix package, 167
spec command, 324
spec catchar variable, 366
spectrace variable, 324, 345
specwindow variable, 324, 345
specwindoworder variable, 324, 346
spice options, 30, 31
spice3 variable, 363
SPICE ASCIIRAWFILE environment variable, 166
SPICE BUGADDR environment variable, 166
SPICE DAEMONLOG environment variable, 167
SPICE EDITOR environment variable, 165
SPICE EXEC DIR environment variable, 166
SPICE HLP PATH environment variable, 166
SPICE HOST environment variable, 166
SPICE INP PATH environment variable, 166
SPICE LIB DIR environment variable, 166
SPICE NEWS FILE environment variable, 166
SPICE OPTCHAR environment variable, 159, 166
SPICE PATH environment variable, 166
SPICE TMP DIR environment variable, 166
SPICENOMAIL environment variable, 167
spicepath variable, 346
sprint command, 279
spulse tran function, 108
sqrt function, 226
srcsteps variable, 359
startup file, 168, 169
state command, 309
statistical database, 335
statistical functions, 227
stats command, 338
status command, 309
step command, 309
steptype variable, 365
stop command, 309
strcicmp command, 260
strciprefix command, 260
strcmp command, 259

strictnumparse variable, 366
string comparison, 259
strprefix command, 260
subc catchar variable, 42, 366
subc catmode variable, 42, 367
subcircuit call, 44
subcircuit declaration, 41
subcircuit expansion, 42
subcircuit/model cache, 45
subcircuits, 41
subend variable, 367
subinvoke variable, 367
submaps variable, 367
substart variable, 367
sum function, 226
sweep analysis, 47
sweep command, 311
switch, 80
switch model, 80

table reference specification, 108
table tran function, 108
tan function, 226
tanh function, 226
tbsetup command, 169
tbupdate command, 169, 264
tdist function, 228
temp variable, 72, 356
temper variable, 218
temperature, 72

coefficient, 73
text editor, 177
text entry windows, 174
text-mode interface, 13
tf command, 313
tgauss tran function, 97
threads, 11
ticmarks variable, 351
title line, 25
title variable, 352
TJM, 151
tjm path variable, 365
TMPDIR environment variable, 165
tnom variable, 72, 356
tool control window, 13, 170
Tools menu, 172
TRA model, 86
trace command, 313
tracing, 14
tran command, 314
tran functions, 94

436 INDEX

tran functions, in expressions, 95
transfer function analysis, 8, 58
transient analysis, 8, 59
translate variable, 363
transmission line, 81
transmission line, lumped, 86
trantrace variable, 371
trapcheck variable, 363
trapratio variable, 356
trtol variable, 356
trytocompact variable, 364

uic keyword, 69
unalias command, 268
undefine command, 325
unif function, 229
units field, 23
units variable, 346
units catchar variable, 368
units sepchar variable, 368
unitvec function, 226
unixcom variable, 341
unlet command, 325
unset command, 268
Update Tools button, 169
updating XicTools, 199
urc, 86
URC model, 86
useadjoint variable, 364
user interface setup commands, 261
user-defined functions, 96
usrset command, 268

var catchar variable, 368
variable expansion, 210
variable substitution, 24, 64, 209
variable types, 209
Variables tool, 173, 184, 209
variables, shell, 209
vasilent variable, 364
vastep command, 314
vastep variable, 360
VCCS, 109
VCVS, 110
vector description, 212
vector function, 226
vector indexing, 215
vector substitution, 209, 220
vectors, 16
Vectors tool, 17, 173, 184
vectors, dimension, 47

vectors, dimensions, 215
Verilog, 14
Verilog blocks, 67
Verilog interface, 68
Verilog-A, 240
version command, 338
virtual memory use, 10
vntol variable, 356
voltage source, 87

Werthamer model, 151
where command, 314
while block, 257
WR button, 171
write command, 279
wrsfifo, 212
wrspiced daemon, 252
wrspiced program, 422
wrspiceinit file, 168
wrupdate command, 264

X resources, 169
xcompress variable, 352
xdelta variable, 352
xeditor command, 280
xglinewidth variable, 352
xgmarkers variable, 352
xgraph command, 332
Xic, 8, 14
xindices variable, 352
xlabel variable, 352
xlimit variable, 352
xlog variable, 352
xmu variable, 356
XT GUI COMPACT environment variable, 165
XT HOMEDIR environment variable, 164
XT KLU PATH environment variable, 164
XT LOCAL MALLOC environment variable, 165
XT PREFIX environment variable, 164
XT SYSTEM MALLOC environment variable, 165
XTNETDEBUG environment variable, 164
XTNOMAIL environment variable, 167

y0 function, 226
y1 function, 226
ydelta variable, 352
ylabel variable, 352
ylimit variable, 352
ylog variable, 352
yn function, 226
ysep variable, 352

INDEX 437

This page intentionally left blank.

